• University of Surrey Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Bristol Featured Masters Courses
King’s College London Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Bath Featured Masters Courses
EURECOM Featured Masters Courses
University of Hertfordshire Featured Masters Courses
"electric"×
0 miles

Masters Degrees (Electric)

We have 114 Masters Degrees (Electric)

  • "electric" ×
  • clear all
Showing 1 to 15 of 114
Order by 
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_smartgrid.pdf
This track of the Master of Science in Electrical Engineering provides tools to manage the new challenges of electricity systems involving increasing presence of Renewable Energy Sources (RES) and Dispersed Generation. Such a new generation paradigm drives the evolution of distribution networks towards Smart Grids. Mastering the evolution requires new professional skills, ranging from the use of information-communication technology as enabling key for enhancing traditional networks to a full knowledge of the regulation of power systems operated in liberalized energy markets. Graduates will be highly employable in the following sectors: planning and operation of distribution systems; manufacturing of RES power plants; energy market operators.
The programme is taught in English and supported by ENEL Distribuzione S.p.A

Subjects

Electric power systems; Project management: principles & tools; Electricity Market; TLC networks for electricity systems Sensors, measurements and smart metering; Electromagnetic compatibility; Electric switching apparatus (or other offered courses); Planning & operation of distribution grids with a high penetration of RES; Renewable energy sources and network interface; Regulation of electric power systems; Network automation and protection systems; tools for network simulation; Smart grids: components, functionalities & benefits

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This course delivers a broad coverage of all major disciplines in Electrical Power, including power electronics, electric drives, electrical machine design and power systems. Read more
This course delivers a broad coverage of all major disciplines in Electrical Power, including power electronics, electric drives, electrical machine design and power systems. It also covers important electrical power themes such as renewable energy systems and electric vehicles.

The Electrical Power MSc covers the following key subject areas:
-Electrical Machines
-Power Electronics
-Electric Drives
-Power System Operation
-Control of Electrical Power

A feature of the course is design of electrical systems for transportation and renewable energy applications. This is a particular specialisation of researchers in the School of Electrical and Electronic Engineering.

You will develop a knowledge of industry standard computer aided design and analysis techniques appropriate to electrical power such as the use of software packages such as MagNet, MATLAB, Simulink, PSpice and ERACS.

Throughout the course you use industry standard test and measurement equipment, experimental hardware, and software packages relevant to the field of electrical and power engineering.

The course comprises a mixture of lectures, tutorials, coursework and practical laboratory classes. You will research a specialist topic of your choice through an in-depth project. Innovative educational techniques are designed to equip you with practical design skills and research methodologies.

As a graduate of this course you are equipped with the knowledge and practical experience to embark on a career as an engineer in the field of Electrical Power. You will also have skills in research and knowledge acquisition and a solid foundation for further postgraduate studies in the field of electrical engineering and power engineering.

Delivery

You take modules to a total value of 180 credits over three semesters. Taught modules, worth 120 credits, take place during the first and second semesters with exams held in January and May/June. An individual project, worth 60 credits, is undertaken over semesters two and three.

Background reading and design work take place during the second semester. The majority of experimental work and preparation of your dissertation takes place during the semester three.

Teaching takes place in lecture theatres equipped with audio visual equipment. Blackboard, a web based Virtual Learning Environment (VLE) supports your taught modules. Practical sessions are in small groups with experts in the field of Power Electronics, Electric Drives, Machines, and Power Systems and in modern laboratory and computing facilities.

Employability

We collect information from our graduates six months after they leave University. This is part of the Destination of Leavers from Higher Education (DLHE) survey that every UK higher education institution takes part in.

Accreditation

The course is accredited by the Institution of Engineering and Technology (IET) and Engineering Council, and therefore provides a good foundation for professional registration.

Read less
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability. Read more
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability.

By the time you graduate, you will have a thorough understanding of sustainability standards, various renewable energies, smart grid and power electronics for renewable energy and energy use management in buildings, urban design and other areas. Research on sustainable energy technology has opened up many job opportunities in industry, government institutions and research centres.

What are benefits of the programme?

• studying at international university recognised throughout the world
• close cooperation with world-famous universities and research centres to solve major technical challenges including energy crises and environmental pollution
• excellent research opportunities, using advanced experimental equipment including a network analyser, power analyser, Dspace controller, wind turbine and PV testing system
• continuous development of core modules to meet the requirement of industrial innovation
• cutting-edge research in the intelligent and efficient utilisation of solar, wind energy and other renewable energy sources

Lab Facilities

Power electronics laboratory equipped with advanced experimental equipment
• Sustainable energy laboratory equipped with advanced experimental equipment including a 600W wind turbine, two 270W solar modules, batteries, an inverter with sinusoidal output and main controller
• Electric machine and power system laboratory

Modules

• Sustainable Energy and Environment
• Nuclear Energy Technology
• Power System Network and Smart Grid
• Integration of Energy Strategies in the Design of Buildings
• Photovoltaic Energy Technology
• Renewable Kinetic Energy Technologies
• Power Electronics and Applications for Renewable Energy
• Sustainable Urban Planning Strategies
• Msc Project

What are my career prospects?

Graduates of this programme will typically work on professional tasks including the implementation of sustainable energy technologies within existing or new systems, and modelling and evaluation of the impact on ecosystems, economics and society. Graduates may be employed as electric power system engineers, electric power system consultants, sustainable technology consultants, electric power projects managers, sustainable cities and building design consultants, managers and team leaders in government.

Read less
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_energy_ren.pdf
This track of the Master of Science in Electrical Engineering aims to form graduates with a comprehensive scientific and technological background on electrical power systems. It builds on basic disciplines (covering digital signal processing, electromagnetic compatibility and engineering electromagnetics, measurements and diagnosis techniques, power electronics and electrical drives, design of electrical machines and apparatus, etc.) and provides solid skills in the areas of electrical energy and renewable sources, electrical systems in transportation, design and automation of electrical systems. Graduates will be highly employable in the sectors of generation, transmission, distribution and utilization of electrical energy; manufacturing of electrical machines and power electronics equipment; industrial automation; design, production and operation of electrical systems for transportation (rail, automotive, aerospace and marine); companies operating on the electricity market.
The programme is taught in English.

Subjects

Measurement Oriented Digital Signal Processing, Electric Power Systems, Science And Technology of Electrical Materials, Power Electronics, Applied Statistics, Electromagnetic Compatibility, Electrical Switching Apparatus (or other offered courses), Construction and Design of Electrical Machines, Electric Systems for Transportation, Reliability Engineering and Quality Control, Electrical Drives

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Joint Master Degree in Sustainable Automotive Engineering (JMDSAE) provides courses in the field of Low Carbon Automotive Engineering and more largely in Electromobility. Read more

The Joint Master Degree in Sustainable Automotive Engineering (JMDSAE) provides courses in the field of Low Carbon Automotive Engineering and more largely in Electromobility. The partner institutions have the shared aim of promoting strong cooperation in order to implement the JMDSAE. In particular the objectives are:

  • Providing students with a broad scientific background and in-depth knowledge of the automotive related fields in order to become independent learners, capable of solving engineering problems in a multidisciplinary way.
  • Preparing graduates for the industry or for further research by equipping them with adequate knowledge and skills related to modern automotive systems.
  • Equipping graduates with the ability to critically evaluate their own work relative to other work in the field in order to establish best global practices.
  • Strengthening scientific, teaching and research collaborations within the European Union and other countries.
  • Developing a network of experts in the automotive field with leading academic and industrial partners.

Program structure

The JMDSAE consists of four semesters including an internship and a Master thesis.

Semester 1 & 2

University of Antwerp Term 1: September to December

AUTOMOTION AND ENGINE TECHNOLOGIES

  • Engine technologies and green fuels (6 ECTS)
  • Vehicle dynamics (3 ECTS)
  • Electric power subsystem in EV and HEV (6 ECTS)
  • Communication & Entrepreneurship (6 ECTS)

Loughborough University Term 2: January to March

POWERTRAIN

  • Powertrain calibration and optimization (10,5 ECTS)
  • Sustainable Vehicle Powertrains (10,5 ECTS)

University of Bordeaux Term 3: April to June

ELECTROMOBILITY

  • Design of EV/HEV powertrain (6 ECTS)
  • Analysis and modelling technical systems (6 ECTS)
  • Electro-mobility (6 ECTS)

Or:

University of Deusto Term 3: April to June

FUTURE VEHICLES

  • In-vehicle intelligent transportation (6 ECTS)
  • Vibro-acoustic comfort in electric powered (6 ECTS)
  • Lightweight structures (6 ECTS)

Semester 3: September to January

  • Compulsory internship in the industry, preferably with associated industrial partners (30ECTS).

Semester 4: February to June

  • Research thesis to be supervized by one of the partner institutions (30ECTS).

Strengths of this Master program

  • This innovative program covers different aspects of the electric/hybrid electric vehicle sector, thus responding to the ever changing energy needs of the automobile industry and the criteria of pollution reduction.
  • Courses cover the latest technological trends and knowledge in the topics of Automotion and Engine Technologies, Powertrain, Electromobility and Future Vehicles.
  • All classes are taught in English and language classes in each country are available.
  • Classes and internships take place within four different universities / countries, thus providing a rich multicultural background which develops students’ ability to adapt and work in different international environments.
  • Associated partners are leading actors within the automotive field thus providing innovative internship and networking possibilities for students.

After this Master program?

The European Commission estimates 12 million jobs within the European automotive industry. The industry also has strong economic connections to many other developing industrial sectors. There is therefore already a strong and growing need for a qualified workforce in this domain in Europe and throughout the world.

Graduates are expertly qualified to work in R&D departments that focus on the development of hybrid/electrical vehicles as well as parts of these vehicles as powertrains.



Read less
The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. Read more

Mission and Goals

The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. This special programme aims to prepare technicians capable of following and actively directing technological advances, operating effectively in a competitive and multi-disciplinary industrial context.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Career Opportunities

Graduates find employment in numerous industrial sectors, including industries producing and distributing energy, thermal, thermal-electric, air-conditioning and refrigeration plant design and management companies, energy management in companies or bodies with production objectives which may be far-removed energy. A Master of Science Engineer has openings in research and development as well as in activities related to the feasibility study and design of large-scale plant, innovative processes and development of technologically advanced machines and components.

For the academic year 2014-2015 prospective students with a university qualification obtained abroad can apply only for the 1st semester. This study course does not accept applications for the 2nd semester.
Applicants are required to take the GRE test (Graduate Record Examination) through ETS DI code 6939 in due time to have test scores sent to Welcome Desk Piacenza (welcome.piacenza(at)polimi.it) within the last day of the application period.

Recommended minimum GRE scores to be achieved for admission:
Verbal Reasoning: 155
Quantitative Reasoning: 155
Analytical Writing: 4.0

Only students with a Degree earned at an Italian University can apply without taking GRE test and they can also apply for admission at the 2nd semester.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_01.pdf
The programme provides a mix of design, operational and management skills, with particular emphasis on system and process engineering related to the production of basic energy carriers (electricity, heat and fuels) under tight environmental constraints. Students will learn how to evaluate and solve engineering issues (thermal, environmental, mechanical, chemical, electrical) raised by energy conversion systems, as well as analyze and assess operational and maintenance issues. Particular attention will be devoted to renewable energy sources, non-conventional energy technologies, emission control, electric systems with distributed power generation, etc. Teaching is organized around 3 core aspects: modeling and simulation tools; interdisciplinary vision; problem-solving approach. The programme is taught in English.

Subjects*

1st year – 1st semester
- Advanced Mathematical methods for energy engineering
- Advanced Thermodynamics and Heat Transfer
- Fundamentals of chemical processes for energy and the environment
1st year – 2nd semester
- Turbomachinery and internal combustion engines
- Energy and environmental technologies for building systems
- Electric conversion of renewable energy sources
- Materials and manufacturing process for energy

2nd year – 1st semester
- Energy systems and low-carbon technologies
- Air pollution and control engineering
- Operation and control of machines for power generation
2nd year – 2nd semester
- Bio-energy and waste-to-energy technologies
- Smart grids and regulation for renewable energy sources
- Major independent project work

* The list and titles of the courses to be followed is undergoing a revision aimed at enhancing the focus of the programme on the connection between Energy and the Environment. This will entail a reduction of the credits devoted to manufacturing, operation and control of machines and an increase of the credits devoted to optimization methods, renewable energy, industrial ecology. The final list of courses to be taken for the Academic Year 2016-17 will be available in January 2016.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Established for over 50 years with excellent industrial links and an outstanding record for the employment of its graduates, this course has been developed to provide the industry with high calibre engineers that are equipped with the necessary skills to advance vehicle technology to meet the demands of the future. Read more

Established for over 50 years with excellent industrial links and an outstanding record for the employment of its graduates, this course has been developed to provide the industry with high calibre engineers that are equipped with the necessary skills to advance vehicle technology to meet the demands of the future.

Who is it for?

The MSc in Automotive Engineering is suitable for graduates in engineering, physics or mathematics, and will prepare you for a career in this exciting field, from engine design to hybrid and electric vehicles, chassis and braking operations, and much more.

Why this course?

This course aims to provide graduates with the technical qualities, transferable skills and independent learning ability to make them effective in organisations that design and develop automotive products. Our strategic links with industry ensure that all of the course material is relevant, timely and meets the needs of organisations competing within the automotive sector. This industry-led education makes Cranfield graduates some of the most desirable in the world for automotive companies to recruit.

We offer students the opportunity to study in a postgraduate only environment where Masters' graduates can go onto secure positions in full-time employment in their chosen field, or undertake academic research. You will be taught by leading academics as well as industrial practitioners, and work alongside a strong research team at Cranfield University. Industry placements are on offer during research work.

Informed by Industry

The MSc in Automotive Engineering is directed by an Industrial Advisory Panel comprising senior engineers from the automotive sector. This maintains course relevancy and ensures that graduates are equipped with the skills and knowledge required by leading employers. You will have the opportunity to meet this panel and present your individual research project to them at an annual event held in July. Panel members include:

  • Mr Rod Calvert, Automotive Management Consultant
  • Mr Doug Cross, Flybrid Automotive Ltd
  • Dr Jon Dixon, Ford Motor Company Ltd
  • Dr Matthew Hancock, Jaguar Land Rover
  • Mr Steve Liggins, Jaguar Land Rover
  • Mr Paul McCarthy, JCB Power Systems
  • Mr Steve Miles, Ford Motor Company Ltd
  • Dr Leon Rosario, Lotus Engineering
  • Mr Nuno Simoes, Multimatic Technical Centre Europe
  • Mr Steve Swift, Multimatic Technical Centre Europe
  • Dr John Temple, Nissan Technology Centre Europe
  • Mr Malcolm Thomson, AVL.

Accreditation

The MSc is accredited by Mechanical Engineers (IMechE) & Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

This course comprises eight compulsory taught modules that are assessed via a combination of written exams and individual coursework assignments, a group project and an individual research project.

Group project

You will undertake a substantial group project between October and March, which focuses on designing and optimising a particular vehicle system/assembly. This is designed to prepare you for the project-based working environment within the majority of the automotive industry.

As a group, you will be required to present your findings, market the product and demonstrate technical expertise in the form of a written submission and a presentation to the Industrial Advisory Board, academic staff and fellow students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

View details of the 2017 Group Project - Design of an autonomous (self driving) electric vehicle

Individual project

The individual research project is the largest single component of the course taking place between April and August. It allows you to develop specialist skills in an area of your choice by taking the theory from the taught modules and joining it with practical application, usually involving a design feasibility assessment, systems analysis or facility development. Most of the projects are initiated by industrial contacts or associated with current research programmes.

In recent years, some industry sponsors have given students the opportunity to be based on site. Thesis topics will often become the basis of an employment opportunity or PhD research topic.

Assessment

Taught modules 50%, Group project 10%, Individual research project 40%

Your career

Our postgraduate Automotive Engineering course provides you with the necessary skills for a career in the automotive industry. Cranfield’s automotive graduates have an excellent employment record and currently occupy positions of high responsibility in industry, such as managers of research establishments, chief engineers, engine and vehicle programme managers. Some of our graduates decide to continue their education through PhD studies with Cranfield University.

Companies that have recruited graduates of this course include:

  • Jaguar Land Rover
  • Lotus
  • Millbrook Proving Ground
  • McLaren
  • Ricardo.

We also arrange company visits and career open days with key employers.



Read less
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems. Read more
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/electrical-power-engineering-msc-ft-dtfepz6/

Learn From The Best

Our teaching team includes experts from the Northumbria Photovoltaics Application Centre (NPAC) and Power and Wind Energy Research (PaWER) group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, laboratory sessions, computer workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a practical or theoretical master’s dissertation that will hone your skills in evaluating and applying research techniques and methodologies.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Northumbria University provides outstanding facilities for electrical power engineering. Our laboratories have equipment that includes oscilloscopes, signal generators and Labview software as well as National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) to measure and control signal voltages.

Our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the practical/theoretical dissertation that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. Our specialist interests include electrical and electronic engineering, mobile communication, microelectronic, renewable and sustainable energy technologies, and advanced materials.

Give Your Career An Edge

The course will equip you with the knowledge and skills you’ll need to work in the electrical power engineering and renewable energy sectors. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The group projects will provide experience of working with others while also raising your awareness of commercial considerations and how industry operates. One project involves the development of an innovative product that must satisfy pre-determined criteria including a realistic business model.

Your dissertation can be linked to the University’s on-going research, giving you experience of being incorporated into a pre-existing working team and environment. Alternatively you can undertake a practice-based dissertation that’s linked to a project that you’ve chosen for its relevance to your interests, self-development and career prospects.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in electrical power engineering and/or the renewable energy industry. Roles could include designing, developing and maintaining electrical control systems and components.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors. Read more

Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors.

You’ll develop a broad grasp of a range of interlocking disciplines, combining core modules developing your practical lab skills and industry awareness with a range of optional modules that allow you to focus on topics that suit your interests or career plans. Next-generation silicon technologies, electric drives and generating electric power from renewable sources are among the topics you could study.

This course will appeal to people with a broad interest in electronics and communications, as well as those who are interested in modern communications techniques, radio propagation, cellular mobile systems, control systems, power and drives, and modern system on-chip technology.

Specialist facilities

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of project, you may have use of our Terahertz photonics lab, ultrasound and bioelectronics labs, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds.

The School also contains facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility. The Faculty is also home to the £4.3 million EPSRC National Facility for Innovative Robotic Systems, set to make us a world leader in robot design and construction.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.



Read less
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE). Read more
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE).

The course covers topics such as photovoltaic, wind, thermo-mechanical energy conversion systems, hybrid renewable energy systems, energy efficiency, building energy modelling and engineering optimisation.

The University has a well-established reputation for renewable and sustainable energy technologies.

You’ll benefit from excellent technical facilities including specialist workshops. We also have a laboratory that’s dedicated to power networks, wind energy, photovoltaics and battery testing for electric vehicles.

For more information about the January start for this course, please view the website: https://www.northumbria.ac.uk/study-at-northumbria/courses/renewable-and-sustainable-energy-technologies-msc-ft-dtfrws6/

Learn From The Best

Our teaching team includes experts from Renewable and Sustainable Energy Research Group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a master’s project that will hone your skills in evaluating and applying research techniques and methodologies. The topic of the project will reflect your own unique interests.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

Module Overview
KB7003 - Building Energy and Environmental Modelling (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7045 - Wind, Photovoltaic and Hybrid Renewable Energy Systems (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Northumbria University provides outstanding facilities for renewable and sustainable energy technologies. For example our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the master’s project that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. One of Northumbria’s signature research themes is ‘Future Engineering’, which is about innovation in the engineering industry so that it’s fit for purpose in the 21st century. We also have particular interests in smart materials and sustainable technologies.

Give Your Career An Edge

MSc Renewable and Sustainable Technologies has been accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. Chartered status is associated with improved employability and higher salaries.

The course will equip you with the expertise to design, optimise, apply and evaluate renewable and sustainable energy technologies. Your master’s project will extend your practical experience of industry-standard hardware and software tools. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in renewable and sustainable energy technologies. Renewable energy production could increase by up to 1,000% by 2050 compared to 2010, according to the UN Intergovernmental Panel on Climate Change, so there will be a pressing need for well-trained professionals.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
UNDERSTAND THE STRATEGIC IMPACTS OF FINANCIAL DECISIONS. Read more

Objectives

UNDERSTAND THE STRATEGIC IMPACTS OF FINANCIAL DECISIONS

The mission of the MSc in Finance program is to provide graduates with an advanced knowledge of finance and to prepare them, through an understanding of the strategic impacts of financial decisions, for careers in banking, financial services or corporate finance with international companies at a managerial level.

The program covers the fundamentals of finance, as well as advanced topics in corporate finance, financial management, and financial markets.

DEVELOP YOUR SENSE OF THE FINANCIAL ANALYSIS

Its aim is to provide students with strong technical and analytical skills in the principles and application of finance, as well as solid industry knowledge and multicultural exposure.

PREPARE YOUR CAREER IN THE SECTOR OF FINANCE

The MSc Finance prepares students for careers in the financial sector such as investment and commercial banking, asset management, financial services and consulting, or for corporate finance positions within international companies at a managerial level.

The program provides an excellent preparation for the Chartered Financial Analysts® (CFA) exams, as it is based on the CFA Candidate Body of Knowledge (CBOK) and is part of the CFA University Recognition program. It also covers related fields such as management control systems, economics, corporate governance, and private equity investment.

LOCATIONS

Students have the opportunity to follow the MSc Finance program in:

- Grenoble
- London
- Singapore

Students may also spend a semester at a campus other than the one in which they are enrolled (subject to specific conditions).

MAIN FEATURES

- A two-year program: requires full-time attendance during one academic year for coursework. The second year is dedicated solely to the Final Management Project and can be completed in parallel with a job or internship.
- Curriculum based on the CFA program.
- International perspective.
- Combined academic and 'real-world' expertise within the faculty.
- International and multi-cultural student body.
- GGSB expertise on the financing of innovative companies, given our location within a high-tech international marketplace.
- An integrative case study based on inter-campus, virtual team work
- A choice of two electives
- Exchange campus option (subject to conditions)

Program

The MSc Finance program begins in the Fall semester of each year and requires full-time attendance during one academic year for completion of coursework. The second year is dedicated solely to the Final Management Project.

INTRODUCTION WEEK (E-LEARNING MODULES)

- Fundamentals of Accounting and Finance
- Fundamentals of Excel and Statistics

THE PROGRAM INCLUDES FOUR STAGES*:

- Fundamentals of Finance - http://en.grenoble-em.com/module-1-fundamentals-finance
- Mastering Financial Management - http://en.grenoble-em.com/module-2-mastering-financial-management
- Advanced Finance - http://en.grenoble-em.com/module-3-advanced-finance
- Electives - http://en.grenoble-em.com/modules-4-electives
- Followed by a Capstone course - http://en.grenoble-em.com/module-5-capstone-course
- and Final Management Project on a finance-related topic or based on an internship in a company in France or abroad - http://en.grenoble-em.com/final-project

*Content subject to change.

The program is taught entirely in English by both academics and professionals, all with extensive experience in finance. The teaching style is very interactive and emphasis is placed on group work.

CAREER PERSONAL DEVELOPMENT WITHIN THE MSC PROGRAM

- Job market presentations
- Access and training on the international job platform (TopMBA)
- CV writing workshop
- Workshops on job search and networking techniques
- Mock interview sessions with alumni, business leaders and international headhunters
- Personal coaching to clarify career goals, CV and cover letters, and development gaps

CNCP RECOGNITION

MSc Finance graduates are also awarded a certificate conferring the title of Manager Financier. This title is recognized by the CNCP*, an agency of the French Ministry of Labor. It is a recognition that the graduate’s core financial management skills conform to the standards established by the Ministry of Labor for managers of financial activities.

*Commission Nationale de la Certification Professionnelle

Careers

SOME OF OUR MSC FINANCE GRADUATE JOB TITLES:

- Financial Controller
- Cash Manager
- Hedge Fund Analyst
- Internal Auditor
- Investment Banking Manager
- Portfolio Manager
- Sales Manager in Asset Management
- Commodity Markets Manager
- M&A Financial Analyst
- Debt Capital Markets Analyst
- Financial Advisor
- Buy-side/Sell-side Analyst
- Financial Auditor
- Credit Analyst

EMPLOYERS OF OUR MSC FINANCE GRADUATES:

- Airbus
- Amazon
- Barclays Capital
- BNP Paribas
- Cadbury
- Deloitte
- Ernst & Young
- General Electric
- HSBC
- Hewlett-Packard
- JP Morgan
- KPMG
- PWC
- Schneider Electric
- Société Générale
- Thyssenkrupp
- Tyco Electronics

Admission

Junior professionals already working in the financial services sector will enhance their experience with the formal training provided through the MSc Finance program.

This program is also suitable for graduates from a wide range of disciplines, such as management or engineering, who would be well served by a formal finance credential.

ENTRY REQUIREMENTS

- Bachelor-level undergraduate degree.
- Work experience is not compulsory.
- Fluency in English - see test requirements below.
- Quantitative proficiency is required for this program. This can be demonstrated by one of the following:
- A prior degree from a recognized institution in a quantitative major showing good academic performance (Mathematics, Finance, Engineering, Economics…)
- CFA level 1
- GMAT
- GRE

This quantitative aptitude test requirement may be waived at the discretion of the MSc Finance Admissions Board for candidates that exhibit previous academic excellence from top ranked universities or business schools, especially in quantitative subjects.

Read less
About the course. The deployment of power electronic converters and electrical machines continues to grow at a rapid rate in sectors such as hybrid and all-electric vehicles, aerospace, renewables and advanced industrial automation. Read more

About the course

The deployment of power electronic converters and electrical machines continues to grow at a rapid rate in sectors such as hybrid and all-electric vehicles, aerospace, renewables and advanced industrial automation.

In many of these applications, high performance components are combined into sophisticated motion control and energy management systems. This course will give you a rigorous and in-depth knowledge of the key component technologies and their integration into advanced systems.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

Core modules

  • Power Electronic Converters
  • AC Machines
  • Permanent Magnet Machines and Actuators
  • Motion Control and Servo Drives
  • Advanced Control of Electric Drives
  • Energy Storage and Management
  • MSc Individual Project
  • Major Research Project

Examples of optional modules

  • Power Semiconductor Devices
  • Advanced Signal Processing
  • Packaging and Reliability of Microsystems
  • Electronic Communication Technologies
  • Systems Design

Teaching and assessment

You’ll learn through research-led teaching, lectures, laboratories, seminars, tutorials and coursework exercises. Assessment is by examinations, coursework and a project dissertation with poster presentation.




Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. Read more
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. The aim of the MEngSc (Electrical and Electronic Engineering) programme is to provide advanced coursework with options for a research element or industrial element, and additional professional development coursework. Students choose from a range of courses in Analogue, Mixed Signal, and RF Integrated Circuit Design, VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, Adaptive Signal Processing and Advanced Control. A range of electives for the coursework-only stream includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship

Visit the website: http://www.ucc.ie/en/ckr47/

Course Details

The MEngSc (EEE) has three Streams which include coursework only, coursework with a research project, or coursework with an industrial placement. Students following Stream 1 take course modules to the value of 60 credits and carry out a Minor Research Project to the value of 30 credits. Students following Stream 2 take course modules to the value of 60 credits and carry out an Industrial Placement to the value of 30 credits. Students following Stream 3 take course modules to the value of 90 credits, up to 20 credits of which can be in topics such as business, law, and innovation.

Format

In all Streams, students take five core modules from the following range of courses: Advanced Analogue and Mixed Signal Integrated Circuit Design, Advanced RF Integrated Circuit Design, Advanced VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, and Adaptive Signal Processing and Advanced Control. In addition, students following Stream 1 (Research Project) and Stream 2 (Industry Placement) carry out a Research Report. Following successful completion of the coursework and Research Report, students in Streams 1 and 2 carry out a research project or industry placement over the summer months.

Students who choose the coursework-only option, Stream 3, take additional courses in lieu of the project or placement. These can be chosen from a range of electives that includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship.

Assessment

Part I consists of coursework modules and mini-project to the value of 60 credits. These are assessed using a combination of written examinations and continuous assessment. Successful completion of the initial tranche of coursework modules qualifies the student to progress to Part II, the research project, industrial placement, or additional coursework to the value of 30 credits in the cases of Streams 1, 2, and 3, respectively.

Placement and Study Abroad Information

For students following Streams 1 and 2, research projects and industrial placements are normally in Ireland. Where the opportunity arises, a research project or work placement may be carried out outside Ireland.

Careers

MEngSc (Electrical and Electronic Engineering) graduates will have a competitive advantage in the jobs market by virtue of having completed advanced coursework in Electrical and Electronic Engineering and, in the case of Streams 1 and 2, having completed a significant research project or work placement.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MSc Power Electronics, Machines and Drives is a flexible study programme designed for UK industrially-based, part-time students. Read more
The MSc Power Electronics, Machines and Drives is a flexible study programme designed for UK industrially-based, part-time students. It enables you to combine traditional classroom-based study with modern web-based distance learning.
This part-time MSc was originally set up with EPSRC funding to provide a training programme in power electronics, machines and drives, and their applications. The course material is regularly reviewed and updated to meet the needs of engineers in industry.

The control and conversion of electric power using solid-state techniques are now commonplace in both the domestic and industrial environments. A recent estimate suggested that over 40% of all electric power generated passes through silicon before reaching its final destination.

A knowledge and understanding of the diverse disciplines encompassed by power electronics, machines and motor drives - devices, converters, control theory and motor drive systems - is therefore essential to all power engineers.

This course aims to provide a specialist education in power electronics, machines and drives techniques, covering key fundamental principles along with modern applications and current practices.

Read less

Show 10 15 30 per page



Cookie Policy    X