• Northumbria University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
London Metropolitan University Featured Masters Courses
Birmingham City University Featured Masters Courses
University of Kent Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Sheffield Featured Masters Courses
"earth" AND "sciences"×
0 miles

Masters Degrees (Earth Sciences)

We have 284 Masters Degrees (Earth Sciences)

  • "earth" AND "sciences" ×
  • clear all
Showing 1 to 15 of 284
Order by 
The School of Earth Sciences has strong international links and the presence of researchers from all over the world makes for an exciting and stimulating environment. Read more
The School of Earth Sciences has strong international links and the presence of researchers from all over the world makes for an exciting and stimulating environment. Research involves the full breadth of the earth sciences and has benefited from major investment in new laboratories and equipment in the past few years. Important initiatives include experimental and theoretical studies of physical, chemical and biological processes of the Earth.

Please note: If you are applying for this programme, you need to select Geology as the programme choice when completing your online application form.

Research groups

The research programme at Bristol is characterised by an expanding range of exciting subject areas. Research in the School of Earth Sciences encourages interdisciplinary collaboration between its five research groups, which in turn nurtures revolutionary research.

Geochemistry
The Geochemistry group uses fundamental chemical techniques to understand natural processes on a range of temporal and spatial scales. This can be from single atoms on mineral surfaces and the environmental geochemistry of the modern Earth to the large-scale chemical structure of planets and the birth of the solar system. The group has considerable expertise in isotopic measurements, spectroscopy and first-principles calculations.

Geophysics
Geophysics uses physical properties of the solid Earth to measure structure and processes on scales from the single crystal to the entire planet. Members of the Bristol Geophysics group use gravity, seismic and satellite data to image the Earth in a variety of different contexts. These include the Earth's core, mantle and tectonic processes, volcanoes, oil and gas reservoirs and mines.

Palaeobiology
The Palaeobiology group uses the fossil record to study the history of life. Research focuses on major diversifications, mass extinctions, dating the tree of life, phylogenomics and molecular palaeobiology, morphological innovation, biomechanics, and links between evolution and development; the organisms of interest range from foraminifera to dinosaurs.

Petrology
The Petrology group uses a combination of high-pressure and high-temperature experiments, petrology, geochemistry and mineral physics to attack a wide range of problems in the solid Earth - from the core to the surface.

Volcanology
The Volcanology group at Bristol aims to understand the physical processes underlying volcanic phenomena and develop methods of hazard and risk assessment that can be applied to volcanoes worldwide.

Recent case studies and collaborators include the Met Office, Montserrat Volcano Observatory, Eyjafjallajökull, Iceland and INGEOMINAS in Columbia.

Research centres

The School of Earth Sciences is involved in a number of collaborative research groups on an international level. Inter-faculty research centres such as the Biogeochemistry Research Centre and the Cabot Institute involve collaboration across several departments and faculties.

Centre for Environmental and Geophysical Flows
This interdisciplinary research centre brings together expertise from the Schools of Earth Sciences, Geographical Sciences, Mechanical Engineering and Mathematics. This creates diverse research activities and interests, from traffic flow to explosive volcanic flows, meteorology to oceanography.

Biogeochemistry Research Centre
The Biogeochemistry Research Centre involves staff from the Schools of Earth Sciences, Geographical Sciences and Chemistry. The research aims to develop our understanding of the biogeochemistry of modern-day and ancient environments and the way that it is affected by natural processes and the actions of mankind.

Bristol Isotope Group
The Bristol Isotope Group is a world-class research facility for isotope measurements directed at understanding natural processes, from the formation of the solar system, the origin of Earth - its deep structure and atmosphere, through to the evolution of that atmosphere and contemporary climate change.

Interface Analysis Centre
The Interface Analysis Centre specialises in the application of a wide range of analytical techniques and is used by the Schools of Chemistry, Earth Sciences and Physics.

The Cabot Institute
The Cabot Institute carries out fundamental and responsive research on risks and uncertainty in a changing environment. Interests include climate change, natural hazards, food and energy security, resilience and governance, and human impacts on the environment.

Read less
Coordinated by the . School of Earth Sciences. , the Master of Science (Earth Sciences) program offers two streams. Atmospheric Science. Read more

Coordinated by the School of Earth Sciences, the Master of Science (Earth Sciences) program offers two streams:

  • Atmospheric Science
  • Geology

The program includes collaboration between Earth Sciences/Geosciences departments from at least two other institutions (originally Monash and La Trobe universities, under our Victorian Institute of Earth and Planetary Sciences or ‘VIEPS’ legal agreement and partnership) expanding in the last decade to involve cooperation between several institutions (including Melbourne). Cooperation at this national level provides students from all participating institutions with the opportunity to access the best and broadest array of advanced coursework in the Earth Sciences discipline.                  

The School of Earth Sciences is home to diverse research activities that are well supported by equipment and technology both in the lab and field. Our research interests include: the solid Earth, the fluid Earth (including our atmosphere and oceans), and processes that operate at the interface between these regions. Current research activities in the School include: climate variability and change, sedimentary geology, palaeontology and the physics and chemistry of the Earth’s deep interior.

Students in the Master of Science (Earth Sciences) who have a weighted average mark of 80% or higher in the prerequisite undergraduate major, are eligible for consideration for the Graduate Research Program in Science. This is a five-year course of study comprising the Master of Science and the Doctor of Philosophy (PhD)

Upon completion of this course, students should have:

  • Discipline-specific knowledge and expertise appropriate for post-graduate research in the Earth Sciences field;
  • Critical judgement;
  • Ability to undertake rigorous and independent thinking; 
  • A problem-solving approach to new and unfamiliar tasks.


CAREER OUTCOMES

As a graduate of this program, one can find a rewarding career in government organisations, research institutions, environmental consultancies, and the oil, gas and mining industries. 

As a graduate, you may find a rewarding career as a:

  • Climatologist
  • Energy specialist
  • Environmental consultant
  • Environmental geologist
  • Exploration geologist
  • Mine geologist
  • Researcher
  • Resources geologist
  • State geological surveyor
  • Weather forecaster


Read less
This course will provide you with the opportunity to carry out an independent research project under the supervision of our leading academics. Read more
This course will provide you with the opportunity to carry out an independent research project under the supervision of our leading academics.

You will receive training in research methods and take a taught course unit in a relevant subject area. The research topic for your project is agreed with a supervisor in advance and can be in any area of the expertise in the department research groups. The project outline will be developed in consultation with your supervisor and project work is carried out in parallel with the taught courses, becoming full-time during the third term.

This Master’s by Research will provide you with a suitable background to work as a research assistant or as the grounding for further study towards a PhD.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscearthsciencesbyresearch.aspx

Why choose this course?

- This course is ideal for graduates in geology and related sciences who wish to carry out independent research over a shorter time period than is possible in a doctorate (PhD) programme. It allows you study at Master's level an aspect of the geological sciences which may not be catered for by specialist MSc programmes.

- You will be involved at every step of the research project - from planning and sample collection, laboratory work, result analysis, to writing your dissertation.

- It is ideal preparation if you are interested in studying for a PhD, but would like to have further preparation and training.

- In the 2008 Research Assessment Exercise (RAE), the Department of Earth Science’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

- The Department has up-to-date computer interpretation facilities, a full range of modern geochemical laboratories including XRF, quadrupole and multicollector ICP Mass Spectrometry, atmospheric chemistry and a new excimer laser ablation facility, excellent structural modelling laboratories, palaeontology and sedimentology laboratories.

Course content and structure

The course consists of the following three components:

A Research Study Skills Course Unit
- Personal research skills (e.g. safety, time and project management, teamwork)
- IT skills (e.g. literature retrieval, web authoring, databases, modelling)
- Data analysis skills (e.g. statistical methods, GIS systems, sampling techniques)
- Communication skills (e.g. posters, oral presentation, writing papers, web pages)
- Subject-specific skills and techniques. These amount to 55% of the research skills assessment, and for example may include parts of specialist taught courses (see below), a training course on the theory and practice of chemical and isotopic analysis, or other training arranged by the project supervisor. This will include training for research in the general field of the research project, not solely what is needed to carry out the project.

A Specialist Taught Course Unit
You will choose an advanced taught course unit relevant to the subject area of your research project. The following taught units are currently offered:
- Applied Sedimentology and Stratigraphy
- Pollution Sources and Pathways
- Oceans and Atmospheres
- Risk and Environmental Management
- Geographical Information Systems
- Environmental Inorganic Analysis
- Contaminants in the Environment
- Advanced Igneous Petrogenesis
- Seismic Processing and Interpretation
- Geodynamics and Plate Tectonics
- Interpretation of Structural Settings
- Coal Geology
- Petroleum Geology and Evaluation
- Terrestrial Palaeoecology
- Palaeoclimates

Research Project
The project may be on any topic which is within the broad research themes of the Department. You will be linked to a potential supervisor at the application stage and, in consultation with the supervisor, you will develop a detailed project outline during the first half of the first term. Project work is then carried out in parallel with taught courses during terms one and two, becoming the full-time activity after Easter. A bound dissertation is submitted for examination in early September.

On completion of the course graduates will have:

- an advanced knowledge and understanding of a variety of analytical, technical, numerical, modelling and interpretive techniques applicable to the specific field of earth sciences

- the articulation of knowledge and the understanding of published work, concepts and theories in the chosen field of earth sciences at an advanced level

- the acquisition of knowledge from published work in the chosen area of earth sciences to a level appropriate for a MSc degree.

Assessment

Research Study Skills: this is assessed by coursework and theory examination and will include short written assignments, a seminar, worksheets and practical tests. These assessments contribute 12.5% of the course marks.

Specialist Taught Course Units: these are mostly assessed by a written, theory examination and coursework. The unit assessment contributes 12.5% of the course marks.

Research Project: the project dissertation must be submitted in early September. It will be marked by both an internal and an external examiner, and will be defended at an oral examination with both examiners. The project assessment contributes 75% of the course marks.

Employability & career opportunities

Subject to agreement and suitable funding, MSc by Research students can transfer to the MPhil/PhD programme at Royal Holloway. They may use the research carried out for the MSc towards the PhD, and count the time spent towards MPhil/PhD registration requirements, provided that the MSc research forms a coherent part of the PhD, and that the transfer is approved prior to submission of the MSc research dissertation.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
The MPhil in Earth Sciences is a 12 month full-time programme of research that introduces students to research skills and specialist knowledge. Read more
The MPhil in Earth Sciences is a 12 month full-time programme of research that introduces students to research skills and specialist knowledge. It involves carrying out an original piece of research and is examined on the basis of a dissertation; there are no taught courses.

Most of our graduate students apply for PhD admission. We would not normally admit more than 2-3 MPhil applicants per year and if you are interested in applying, please get in touch directly with the Department to ascertain if you would be a suitable candidate before making an application.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/eaesmpmea

Course detail

If you are exploring the possibility of postgraduate work in the Cambridge Earth Sciences Department you will:

- have either done an undergraduate degree in an earth science subject, or perhaps want to use your degree from another science subject such as physics, chemistry, mathematics or biological sciences.

- probably be looking for a PhD or MPhil research course (we do not offer a taught masters course).

- relishing the stimulus of one of the UK's premier research departments.

Format

Students will meet with supervisors frequently and formal progress meetings will be arranged at least once a term.

Formal feedback will be provided under the University graduate supervision reporting system, students can expect one online report a term.

Assessment

The assessment for this MPhil is solely based on the 15,000 word dissertation which is examined by viva.

Continuing

After completing this MPhil you will be able to apply for a PhD in this or other departments.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The Department of Earth & Space Sciences offers a 36-credit Master of Science degree in Geoscience designed for the professional development of geologists and precollege teachers. Read more
The Department of Earth & Space Sciences offers a 36-credit Master of Science degree in Geoscience designed for the professional development of geologists and precollege teachers. Students may also obtain Pennsylvania teaching certification in Earth and Space Science and/or General Science with the appropriate selection of courses. Employment and advancement opportunities for MS Geoscience graduates are excellent due to the hundreds of environmental firms, government agencies, and school districts within the greater Philadelphia area.

The Curriculum

All students complete a 19-credit core with the following courses: ESS 523 Field Geology, ESS 521 Geometrics, ESS 596 Earth Systems Science, ESS 547 Geoscience Seminar, and ESS 602 Directed Research. The core also includes choosing 2 of the following 4 courses: ESS 530 Oceanography, ESS 570 Meteorology, ESS 536 Environmental Geology, and ESS 549 Advanced Hydrogeology. The remaining 17 credits may be fulfilled by electives, of which at least 8 must be ESS or SCE courses. The MS Geoscience degree requires completion of a non-thesis, final project with a faculty advisor involving original, independent scientific or education research.

Benefits of the Program

• Evening, summer, and weekend courses
• Designed for completion in two years
• State-of-the-art equipment and facilities
• Focus on enhancing knowledge and skills needed by geologists and science teachers
• Meet and work with geologists and science teachers from throughout the greater Philadelphia area
• Affordable tuition
• Hundreds of alumni in the region employed as geologists and teachers

Read less
This MSc is a uniquely broad and flexible programme that suits students' aspirations, background and experience. UCL Earth Sciences has strengths in geophysics, geochemistry, palaeobiology, mineral physics, geodynamics, geohazards, climate science, environmental geosciences and policy, and other areas. Read more

This MSc is a uniquely broad and flexible programme that suits students' aspirations, background and experience. UCL Earth Sciences has strengths in geophysics, geochemistry, palaeobiology, mineral physics, geodynamics, geohazards, climate science, environmental geosciences and policy, and other areas. Students choose from a wide range of optional modules from within the department and more widely across UCL, building an MSc tailored to their interests.

About this degree

The programme aims to integrate theoretical studies with essential practical skills in the Earth sciences, both in the field and in the laboratory. Students develop the ability to work on group projects, prepare written reports, acquire oral skills and gain training in the methods of scientific research.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), six optional modules (75 credits) and a research dissertation (60 credits).

Core modules

  • Research Methods
  • Project Proposal
  • Earth and Planetary Systems Science

Optional modules

  • Earth and Planetary Materials
  • Melting and Volcanism
  • Physical Volcanology and Volcanic Hazard
  • Earthquake Seismology & Earthquake Hazard
  • Tectonic Geomorphology
  • Palaeoceanography
  • Palaeoclimatology
  • Biodiversity and Macroevolutionary Patterns
  • Deep Earth and Planetary Modelling
  • Geodynamics and Global Tectonics
  • Crustal Dynamics, Mountain Building and Basin Analysis
  • Advanced Biodiversity and Macroevolutionary Studies

Students can also choose relevant elective modules from UCL Geography.

Dissertation/report

All MSc students undertake an independent research project which culminates in a dissertation of approximately 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, and laboratory and fieldwork exercises. Student performance is assessed through coursework, written assignments, unseen written examination and the dissertation.

Fieldwork

Crustal Dynamics, Mountain Building and Basin Analysis is a fieldwork only module without a classroom element.

Further information on modules and degree structure is available on the department website: Geoscience MSc

Careers

Geoscience students have gone on to pursue careers in many varied areas, such as planning and surveying, governmental organisations, academic research.

Recent career destinations for this degree

  • PhD in Climatology, Cardiff University (Prifysgol Caerdydd)
  • PhD in Geoscience, UCL
  • Engineer, Geo-Info
  • Lecturer in Geology, University of Benin
  • Oil and Gas Analyst, EIC (Energy Industries Council)

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Earth Sciences is engaged in world-class research into the processes at work on and within the Earth and planets.

Graduate students benefit from our lively and welcoming environment and world-class facilities, which include the UK's only NASA Regional Planetary Image Facility and access to the University of London Observatory in north London.

The department also hosts the UCL Hazard Research Centre, Europe's leading multidisciplinary hazard research centre, and engages in extensive collaborative work with the Royal Institution and the Natural History Museum.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Earth Sciences

92% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Planetary Science is an exciting area of study, as new data returning from current planetary probes and rovers expands and deepens our understanding of the geology of other planets. Read more
Planetary Science is an exciting area of study, as new data returning from current planetary probes and rovers expands and deepens our understanding of the geology of other planets. If you have an undergraduate degree in earth sciences or geology, but want to increase your knowledge of planetary sciences, then this course will bring you up to date with developments in the field. The specialist knowledge you acquire could help you change career, or build a career within the planetary sciences and education, or enable you to progress onto doctoral research at PhD level.

You will be taught by academics who are actively engaged in cutting-edge planetary research that is expanding the boundaries of knowledge. We cover planetary surfaces and remote sensing, volcanic activity on Earth and other planets, the nature of comets, asteroids and meteorites, and the internal structure and origin of planets, as well as offering advanced modules in astronomy, scientific computing, and the design of, and participation in, an analogue field mission. You can choose from a range of modules and put together a programme that matches, expands and deepens your particular interests.

The course can be taken via distance-learning or face-to-face evening study.

Why study this course at Birkbeck?

This programme will teach you about cutting-edge developments in this exciting, constantly expanding field.
This programme is ideal if you have studied earth sciences or geology at undergraduate level and want to deepen your understanding of planetary sciences.
Our Department of Earth and Planetary Sciences has been offering evening study courses for over 70 years and is ranked 6th in the UK.
You will learn in an environment of active research and be taught by lecturers who are working at the forefront of their specialisms.
Studying with us will give you access to world-class research facilities.
We retain close links with UCL's Department of Earth Sciences, sharing expertise, facilities and events across the 2 institutions, including live streaming of lectures and digital lecture notes.
We are part of the joint UCL-Birkbeck Institute of Earth and Planetary Sciences (IEPS).

Our research

Birkbeck is one of the world’s leading research-intensive institutions. Our cutting-edge scholarship informs public policy, achieves scientific advances, supports the economy, promotes culture and the arts, and makes a positive difference to society.

Birkbeck’s research excellence was confirmed in the 2014 Research Excellence Framework, which placed Birkbeck 30th in the UK for research, with 73% of our research rated world-leading or internationally excellent.

In our joint submission with UCL, Earth Systems and Environmental Sciences at Birkbeck were rated 6th the UK in the 2014 Research Excellence Framework (REF), while we achieved 100% for an environment conducive to research of the highest quality.

Read less
The hydrocarbon industry is crucial to provide us with domestic energy, transportation, plastics and other everyday needs. Petroleum Geoscience by Distance Learning with the University of London lets you earn a Masters degree in this booming sector which fits around your work or family commitments. Read more

The hydrocarbon industry is crucial to provide us with domestic energy, transportation, plastics and other everyday needs. Petroleum Geoscience by Distance Learning with the University of London lets you earn a Masters degree in this booming sector which fits around your work or family commitments.

Choose from a range of course modules to tailor your learning, studying online over a period of years to earn your MSc. This flexible programme lets you choose between the standard course structure, a postgraduate diploma or a series of individual taught courses, letting you fit your studies around your daily life.

You’ll graduate with a Masters degree from the University of London by studying with the University of London International Programmes featuring academic direction from the renowned Royal Holloway Department of Earth Sciences, which is consistently ranked among the UK’s top 10. The programme finishes with a one-week field trip and research project, letting you contribute to our leading research culture while you develop your skills and knowledge.

Royal Holloway is recognised as one of the world’s premier training centres for the hydrocarbon industry, and has run a Petroleum Geoscience MSc programme since 1985. We’ve established invaluable links within the industry while helping over 600 graduates from 32 countries progress into rewarding careers in the Earth Sciences. Study Petroleum Geoscience (by Distance Learning) to enhance your career development without the need for full-time study. 

  • Benefit from a pioneering research culture, with 94% of Department of Earth Sciences research ranked world-leading or internationally excellent – no.2 in the UK (REF 2014).
  • Graduate with a Masters degree developed and taught by a department consistently ranked among the UK’s top 10 (The Complete University Guide and The Guardian 2016).
  • Study a programme recognised internationally as one of the industry’s best.
  • Benefit from adaptable part-time learning fitted around your daily life.

Course structure

  • Tectonics and Lithosphere Dynamics
  • Geophysical Analysis
  • Structural Analysis
  • Petroleum Systems
  • Sedimentology
  • Reservoir Geoscience
  • Independent Project

Teaching & assessment

Full details of the assessment process can be found on the University of London International Programmes website.

This course may be studied up to 5 years part-time.

Your future career

Petroleum Geoscience (by Distance Learning) lets you earn a desirable Masters degree while studying part-time alongside employment. You’ll graduate with excellent employment prospects in a sector with many well-paid career opportunities in the UK and abroad, as well as the option to progress into further postgraduate study. 

Royal Holloway, University of London has taught a Petroleum Geoscience programme since 1985, and it’s now recognised as one of the premier training facilities in the hydrocarbon industry. You’ll benefit from strong industry links, and a track record of helping 600 graduates from 32 countries progress to rewarding careers in the Earth Sciences.

  • The MSc is ideal for hydrocarbon industry professionals who wish to develop their knowledge and skills alongside their work;
  • Graduates will be trained in the skills needed to address a range of exploration and production challenges;
  • You'll join a worldwide network of alumni who are successful industry professionals in oil companies, geoscience IT, consultancy, and academia.

PLEASE NOTE: All applications must be made through the University of London International Programmes website University of London application.



Read less
The hydrocarbon industry is one of our most important sectors, helping to cater for needs as diverse as domestic energy, transportation and plastics manufacturing. Read more

The hydrocarbon industry is one of our most important sectors, helping to cater for needs as diverse as domestic energy, transportation and plastics manufacturing. Our flexible MSc in Petroleum Geoscience provides you with the ideal training for a career in the hydrocarbon industry and related sectors. 

Our teaching on Petroleum Geoscience at Royal Holloway, University of London is informed by leading research and links to the international oil industry, meaning that you’ll benefit from the most relevant, up-to-date learning. The programme lets you select from a range of course modules to tailor your learning to your own preferences and ambitions.  

You’ll study in the renowned Department of Earth Sciences, which is consistently ranked among the UK’s top 10 (The Complete University Guide and The Guardian 2016) – contributing towards our leading research culture with your own Independent Research Project. You’ll become a part of a vibrant international graduate community, and make use of our extensive range of modern facilities as you work towards a rewarding future career. 

Our Petroleum Geoscience MSc has run since 1985, and has become recognised as one of the world’s premier training centres for the hydrocarbon industry. We’ve established excellent industry links, and have helped over 600 graduates from 32 countries progress into rewarding careers. Study Petroleum Geoscience at Royal Holloway and you’ll graduate with excellent employment prospects in a well-paid sector with job opportunities across the globe.

  • Benefit from a pioneering research culture, with 94% of Department of Earth Sciences research ranked world-leading or internationally excellent – no.2 in the UK. (REF 2014)
  • Graduate with a Masters degree from a department consistently ranked among the UK’s top 10 (The Complete University Guide and The Guardian 2016).
  • Study a programme internationally recognised as one of the industry’s best.
  • Graduate with excellent employability prospects in the UK and overseas.

Course structure

Core modules

  • Tectonics and Lithosphere Dynamics
  • Geophysical Analysis
  • Structural Analysis
  • Petroleum Systems
  • Independent Project

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

You will take either Sedimentology and Regional Tectonic Analysis or Reservoir Geoscienceand Advanced Structural Analysis.

  • Sedimentology
  • Regional Tectonic Analysis
  • Reservoir Geoscience
  • Advanced Structural Analysis

Teaching & assessment

The taught course units are assessed by a combination of written exams and coursework. Each of the six units comprises 10% of the total assessment for the MSc course. The remaining 40% of the assessment comes from the Independent Research Project.

Your future career

Petroleum Geoscience at Royal Holloway, University of London was first established in 1985, giving us ample time to build valuable links with the international oil industry. We’re now recognised worldwide as one of the hydrocarbon industry’s premier training facilities, having helped more than 600 graduates from 32 countries progress into rewarding careers in the Earth Sciences. 

This flexible Masters programme will equip you with a range of skills and knowledge necessary to achieve a fulfilling career in a sector with many well-paid career opportunities in the UK and abroad. There is huge demand for well qualified petroleum geoscientists, and as we’re considered world leaders in the field, you’ll graduate as a highly desirable candidate for employers in a variety of sectors. 

  • Jobs fairs, skills workshops and visits from industry representatives provide students with excellent career opportunities.
  • 90% of graduates in work or further education within six months of graduating.
  • Graduate with a desirable Masters degree from a recognised world-leader in the hydrocarbon industry.


Read less
Environmental geology is a growing area of active research, because it provides insights into how the environment has evolved over geological time. Read more
Environmental geology is a growing area of active research, because it provides insights into how the environment has evolved over geological time. Through our modular course structure and use of web-based material for distance learning, we aim to provide up-to-date reviews of research topics across relevant aspects of the earth sciences.

Our teaching is informed by considerable research into environmental issues, which is ongoing in the Department of Earth and Planetary Sciences. Current research focuses on areas such as metal pollution, coastal erosion, mineralogy, earthquake prediction, palaeoclimatology and palaeontology.

Why study this course at Birkbeck?

Can be used as a qualifying year for MRes or PhD study.
Offered as part-time study at Birkbeck or you can study by distance learning, wherever you are in the world (check our distance-learning frequently asked questions for more information).
The Department of Earth and Planetary Sciences has strong links with University College London (UCL) Department of Earth Sciences. Together, the 2 departments form the UCL-Birkbeck Research School of Earth Sciences. The School offers excellent facilities for research in environmental geology and planetary geology, as well as traditional geological and geophysical research.

Read less
Study petroleum and subsurface geoscience in Ireland and benefit from a modern interdisciplinary training delivered by leading researchers and industry specialists at University College Dublin. Read more

Study petroleum and subsurface geoscience in Ireland and benefit from a modern interdisciplinary training delivered by leading researchers and industry specialists at University College Dublin.

UCD School of Earth Sciences provides a one-year full-time Petroleum Geoscience MSc. The course offers bright and motivated geoscience graduates a vocational training in the range of technical fields associated with hydrocarbon exploration and production, as a prelude to a career in the petroleum industry or to further studies at PhD level.

 

The UCD training experience:

·        Covers all aspects of exploration, appraisal and development geoscience from pore to basin scale.

·        Involves substantial field-based instruction (23 days) in classic outcrop locations including the Clare Basin, Ireland; Bristol Channel, UK; Pyrenees, Spain.

·        Provides first-hand experience of typical industry workflows, experience with key industry software and a dedicated workstation for each student during the course.

·        Involves problem-based learning drawing on a wide range of geophysical, subsurface, outcrop and ‘behind-outcrop’ datasets.

·        Includes a three-month applied research project and possible industry placement.

 Scholarships Available

Students accepted on to the course can apply for the Woodside Energy Masters Scholarship in Petroleum Geoscience (€15,000) and MSc Scholarship Opportunities in Petroleum-Related Courses from the Department of Communications, Climate Action and Environment (up to €12,000). Please see here for further details.

Career opportunities

Graduates from the course will be equipped with all the necessary technical and transferable skills for a career in the petroleum industry or further studies at PhD level. Past students have found employment with exploration and production companies (including Shell, Petronas and Providence). Ireland is an EU country, and has a 24-month stay-back option allowing non-EU MSc graduates to remain in Ireland, working or seeking employment, for two years following graduation.

Course Content

Semester 1 covers modules in Petroleum Systems, Basin Analysis and Modelling, Seismic Techniques, Petrophysics, Depositional Systems and Structural Geology.

Semester 2 then focusses on Exploration Geology and Production Geoscience with team-based exercises mimicking industry asset-team projects. Geological field excursions are a key component of the course with three trips to see classic outcrops of the Clare Basin (western Ireland), Bristol Channel and Wessex Basins (southern England) and the Ebro Basin (Pyrenees, Spain).

During the final semester students undertake a three-month independent research project on an exploration or development related theme with opportunities for summer internships working on company data. 

 

Staff

The course builds on significant in-house research expertise in frontier exploration, rift and hyper-extended basin evolution, reservoir sedimentology, geophysical imaging techniques, fault analysis and reservoir and fluid flow modelling. Teaching is delivered by highly experienced academic staff, many of who have previously worked within industry and are recognised international leaders in a variety of petroleum geoscience disciplines.

 

UCD School of Earth Sciences

The UCD School of Earth Sciences has an internationally recognised reputation for excellence in teaching and research. It is the lead participant and host for the Irish Centre for Research in Applied Geosciences (iCRAG) which conducts research in hydrocarbons, geophysics, 3D modelling and marine geoscience, as well as in geochemistry, geophysics, groundwater and raw materials.

Founded in 1854, University College Dublin is Ireland’s Global University with 235,000 alumni across 165 countries. The university is ranked number 1 in Ireland for Earth & Marine Sciences (QS World University Subject Rankings 2017‌). 

 

How to Apply?

Application can be made via the UCD webpage here. There is a rolling deadline for this course until such time as all places have been filled; therefore early application is advised. Course entry will generally require a minimum 2.1 Honours degree or equivalent in Geology, Geoscience, Earth Science, Geophysics or a cognate discipline but relevant industrial experience will also be taken into account.

Click here to visit the MSc Petroleum Geoscience page on the University College Dublin website to find out more and apply!



Read less
This MSc provides a broad introduction to geohazards, together with advanced courses in seismology, volcanology, hydrogeological hazards and meteorology. Read more

This MSc provides a broad introduction to geohazards, together with advanced courses in seismology, volcanology, hydrogeological hazards and meteorology. A key goal is to provide an essential grounding in quantitative modelling that can be widely applied to several fields, from pure research to the commercial sector.

About this degree

The programme provides an introduction to the spectrum and impact of geophysical hazards, and a focus on quantitative models for hazard forecasting and assessment. Selected case studies illustrate how these models are essential for improving decision-making during emergencies, for raising the awareness of vulnerable populations, and for evaluating and implementing mitigation strategies.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits) and a research dissertation (60 credits).

Core modules

  • Geological and Geotechnical Hazards
  • Meteorological Hazards
  • Research Methods
  • Earthquake Seismology and Earthquake Hazard
  • Physical Volcanology and Volcanic Hazard
  • Meteorological, Climate and Hydrogeological Hazard

Optional modules

There are no optional modules for this programme.

Dissertation/report

All students undertake an independent research project in geophysical hazards, which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, directed reading and practical exercises. There are excellent opportunities for field investigations in the UK and abroad. Assessment is through unseen written examinations, practical problem-solving exercises and essays. The independent research report is assessed through the dissertation and an oral presentation.

Fieldwork

Field sites for field trips are normally in Italy. The department pays for accommodation and transport in the field. Students pay to get to the field and subsistence.

Further information on modules and degree structure is available on the department website: Geophysical Hazards MSc

Careers

On graduation from this programme about one-third of students have followed careers in global insurance and re-insurance and another third have pursued research with a PhD in hazard-related studies. The remaining third have developed careers in a wide range of sectors, from non-governmental organisations, through teaching, to the fields of emergency planning and environmental management.

Recent career destinations for this degree

  • Aggregate and Catastrophe Modeller, Advent
  • Catastrophe Analyst, Talbot Underwriting
  • Graduate Trainee Reinsurance Broker, Aon
  • Catastrophe Model Analyst, Aon Benfield
  • Policy Adviser, Department for the Environment, Food and Rural Affairs

Employability

The MSc in Geophysical Hazards will provide essential training for careers in hazard assessment and risk evaluation, including: industry, from engineering to insurance; academic research; civil protection agencies and government organisations; and NGOs related to aid and development. 

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Earth Sciences is engaged in world-class research into the processes at work on and within the Earth and planets.

Graduate students benefit from our lively and welcoming environment and world-class facilities. The department hosts UCL Hazard Centre, Europe's leading multidisciplinary hazard research centre, and engages in extensive collaborative work with the Royal Institution and the Natural History Museum.

This MSc aims to include a short field trip to locations that illustrate the impact of natural hazards. Previous trips have included the Neapolitan volcanic district, the Italian Alps and the Po Delta, and the Cádiz region in south-western Spain.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Earth Sciences

92% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. Read more
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. The course is designed to provide specialist postgraduate professional development in this emerging discipline, encompassing areas traditionally within civil engineering, earth sciences and biology.

Geoenvironmental engineering is an inclusive discipline which recognises that many environmental challenges cannot be solved by one traditional discipline alone. The solutions to environmental challenges relating to human interaction with soil, groundwater and surface water require engineers to possess a broad range of knowledge and expertise. Cardiff University's MSc in Civil and Geoenvironmental Engineering prepares you to meet these challenges.

Civil engineering, earth sciences and the life sciences are all part of the discipline of geoenvironmental engineering. As a geoenvironmental engineer you could be involved in a wide range of activities, including contaminated land management, hydrogeology, water resource management, geochemical analysis, groundwater and surface water contamination fate and transport prediction, environmental impact assessment, environmental risk assessment, and habitat management. Geoenvironmental engineers frequently work in multidisciplinary project teams and developments.

Distinctive features

• Professional practice issues are integrated with the scientific and engineering foundation of the MSc through a series of short, workshop-style training courses covering practical aspects. These short courses are delivered by recognised professional practitioners in the industry.

• The course involves an innovative partnership between the Cardiff School of Engineering, the School of Earth, Ocean and Planetary Sciences and the Cardiff School of Biosciences.

• The MSc in Civil and Geoenvironmental Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The degree programme is available on a one year full-time basis or on a three year part-time basis. The full-time programme is delivered over two taught semesters followed by a research period and preparation of a dissertation. The part-time course is taught over three years. On successful completion of Part 1, the taught part of the course, you will proceed to the research project and dissertation stage.

This MSc is a partnership between the School of Engineering, the School of Earth, Ocean and Planetary Science and the School of Biosciences, and is administered by the School of Engineering.

For a list of the modules taught on the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc

For a list of the modules taught on the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc-part-time

Teaching

Part 1 of your course involves taught classes such as lectures, laboratory sessions and tutorials. You will be taught by leading international researchers in the fields of civil and geoenvironmental engineering.

A feature of the MSc in Civil and Geoenvironmental Engineering is the series of short, workshop style training courses covering practical applications, integrating professional practice issues with the scientific and engineering foundation of the course. These workshops are delivered by recognised professional practitioners in the industry.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Geoenvironmental Engineering is excellent, with the majority of graduates joining engineering consultants. A small number of graduates each year go on to further study, typically a PhD.

Substantial industrial involvement with the design and delivery of the course ensures the continuing relevance of the MSc as preparation for professional employment work in this area.

Read less
Research profile. This programme's emphasis on independent research allows you to work closely with scholars who are leaders in their field. Read more

Research profile

This programme's emphasis on independent research allows you to work closely with scholars who are leaders in their field.

Research may be in any area of social, urban, environmental, development, political, economic, historical or cultural geography that is supported by the Human Geography Research Group. It is co-delivered with the University’s Graduate School of Social Science.

The programme can stand alone as a masters degree, or form the first year of a ‘1+3’ ESRC-backed PhD programme.

Students who successfully complete this programme will:

  • acquire transferable skills relevant to advanced researchers
  • develop skills in data acquisition and analysis
  • understand wider methodological and epistemological debates relevant to their research

This programme is affiliated with the University's Global Environment & Society Academy.

Programme structure

We offer a balance between general and specialist research training. The programme combines lectures, practical work, workshops, essays, seminars and one-to-one supervision of independent research leading to delivery of a dissertation.

Compulsory courses:

  • Research Design in Human Geography
  • Methodological Debates in Human Geography
  • Core Quantitative Data Analysis 1 and 2
  • Research Skills in the Social Sciences: Data Collection
  • Dissertation in Human Geography

Option courses:

In consultation with the Programme Director, you will choose from a range of option courses. We particularly recommend:

  • Conducting Research Interviews
  • Contemporary Social Theory
  • The Documents of Life
  • Explanation and Understanding in Social and Political Research
  • Intermediate Inferential Statistics: Testing and Modelling
  • Listening to Children: Research and Consultation
  • Political Ecology
  • Qualitative Methods and Ethnographic Fieldwork
  • Survey Methods and Data
  • Values and the Environment

Independent research

The emphasis on independent research allows you to work closely with scholars at the cutting edge in order to advance your own research passions. A highlight of the programme is the postgraduate conference where you present your research to colleagues.

The University of Edinburgh has an unbroken record of teaching and research in the earth sciences going back to 1770, when Robert Ramsay became the first Professor of Natural History.

James Hutton and Arthur Holmes were prominent among those who set an academic tradition in Edinburgh that continues today with the University achieving top ratings in earth sciences teaching and research.

Our interactive and interdisciplinary research environment allows us to tackle difficult research questions, from causes of past glaciations to interactions of earth, climate and society. The ambition and quality of our research was reflected in the latest Research Assessment Exercise: 66 per cent of our research was rated within the top two categories – world-leading and internationally excellent.

Our location at the King’s Buildings campus – home to most of the University’s science and engineering research – benefits our work too. Our King’s Buildings neighbours include external institutes such as the British Geological Survey; our proximity to them strengthens these research links.

Training and support

As a research student, you will be affiliated to one of our research institutes, benefiting from an excellent peer-supported network.

As groupings of researchers with related interests, the institutes provide a forum for development of ideas, collaboration, and dissemination of results, and an environment for training, development and mentoring of research students and early career researchers.

Backed by industry

The School receives strong backing from industry, particularly in areas such as hydrocarbons and carbon capture and storage. We receive support from the EU and from major UK research councils, including the Engineering and Physical Sciences Research Council and the Economic and Social Research Council.



Read less
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines. genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few. Read more
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines: genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few.

In 2014 the school relocated to a new £54 million, state-of-the-art Life Sciences building. Our new laboratory facilities are among the best in the world, with critical '-omics' technologies and associated computing capacity (bioinformatics) a core component. The new building is designed to foster our already strong collaborative and convivial environment, and includes a world-leading centre for evolutionary biology research in collaboration with key researchers from earth sciences, biochemistry, social medicine, chemistry and computer sciences. The school has strong links with local industry, including BBC Bristol, Bristol Zoo and the Botanic Gardens. We have a lively, international postgraduate community of about 150 research students. Our stimulating environment and excellent graduate school training and support provide excellent opportunities to develop future careers.

Research groups

The underlying theme of our research is the search for an understanding of the function, evolution, development and regulation of complex systems, pursued using the latest technologies, from '-omics' to nanoscience, and mathematical modelling tools. Our research is organised around four main themes that reflect our strengths and interests: evolutionary biology; animal behaviour and sensory biology; plant and agricultural sciences; and ecology and environmental change.

Evolutionary Biology
The theme of evolutionary biology runs through all our research in the School of Biological Sciences. Research in this theme seeks to understand organismal evolution and biodiversity using a range of approaches and study systems. We have particular strengths in evolutionary genomics, phylogenetics and phylogenomics, population genetics, and evolutionary theory and computer modelling.

Animal Behaviour and Sensory Biology
Research is aimed at understanding the adaptive significance of behaviour, from underlying neural mechanisms ('how', or proximate, questions) to evolutionary explanations of function ('why', or ultimate, questions). The approach is strongly interdisciplinary, using diverse physiological and biomechanical techniques, behavioural experiments, computer modelling and molecular biology to link from the genetic foundations through to the evolution of behaviour and sensory systems.

Plant and Agricultural Sciences
The global issue of food security unifies research in this theme, which ranges from molecular-based analysis of plant development, signal transduction and disease, to ecological studies of agricultural and livestock production systems. We have particular strengths in functional genomics, bioinformatics, plant developmental biology, plant pathology and parasite biology, livestock parasitology and agricultural systems biology. Our research is helped by the LESARS endowment, which funds research of agricultural relevance.

Ecology and Environmental Change
Research seeks to understand ecological relations between organisms (plant, animal or microbe) at individual, population and community levels, as well as between organisms and their environments. Assessing the effect of climate change on these ecological processes is also fundamental to our research. Key research areas within this theme include community ecology, restoration ecology, conservation, evolutionary responses to climate change and freshwater ecology. Our research has many applied angles, such as ecosystem management, wildlife conservation, environmental and biological control, agricultural practice and informing policy.

Careers

Many postgraduate students choose a higher degree because they enjoy their subject and subsequently go on to work in a related area. An Office of Science and Technology survey found that around three-quarters of BBSRC- and NERC-funded postgraduates went on to a job related to their study subject.

Postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and for work in some public bodies or private companies. Around 60 per cent of biological sciences doctoral graduates continue in research. Academic research tends to be contract-based with few permanent posts, but the school has a strong track record in supporting the careers of young researchers by helping them to find postdoctoral positions or develop fellowship applications.

Read less

Show 10 15 30 per page



Cookie Policy    X