• Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Coventry University Featured Masters Courses
University of Dundee Featured Masters Courses
"earth"×
0 miles

Masters Degrees (Earth)

We have 420 Masters Degrees (Earth)

  • "earth" ×
  • clear all
Showing 1 to 15 of 420
Order by 
STUDY PROCESSES BELOW THE EARTH'S SURFACE. In the Master in Earth Structure and Dynamics programme, you will explore the composition, structure, and evolution of the Earth’s crust, mantle, and core. Read more

STUDY PROCESSES BELOW THE EARTH'S SURFACE

In the Master in Earth Structure and Dynamics programme, you will explore the composition, structure, and evolution of the Earth’s crust, mantle, and core. During this two-year programme, you will learn to link geological, geophysical, geochemical, and geodetic observations made at the Earth’s surface to physical processes operating within the planet.

Specialise in any aspect of Solid Earth Science

The programme combines geology, geophysics, mathematics, physics, chemistry and field studies to address how the solid Earth works. It allows you to specialise in virtually any aspect of solid Earth science, ranging from theoretical geophysics to pure geology or geochemistry. Many students choose a combined geology-geophysics focus.

Core areas of teaching and research

The main subject areas you will study consist of seismology, tectonophysics, mantle dynamics, structural geology, metamorphism, magmatic processes, basin evolution, hydrocarbon and mineral deposits, and the properties of Earth materials. You will examine processes ranging from slow geodynamic processes – such as mantle convection, plate tectonics, sedimentary basins formation and evolution, and mountain building – to those that can have an impact during a human lifetime. These include active crustal deformation, seismicity, and volcanism as well as subsidence, uplift induced seismicity and geo-resources.

In the programme, you will address questions such as:

  • How do mountain belts and sedimentary basins form? 
  • How can we image the internal structure of the crust and mantle? 
  • How does plate tectonics really work and how can we model it? 
  • What controls volcanic eruptions and earthquakes? 
  • Can CO2 be safely stored in reservoir rocks in the Earth’s crust? 

You can choose one of three specialisation tracks based on your interests in the field:

  • Earth Materials
  • Deformation and metamorphic and igneous processes operating in the crust and upper mantle
  • Physics of the Deep Earth and Planets
  • An in-depth geophysical approach to understand the deep interior of the Earth and other planets
  • Basins, Orogens, and the Crust-Lithosphere System
  • Understand the processes at the scale of the crust and lithosphere such as the formation and evolution of sedimentary basins or mountain chains. This is a combined track for a hybrid Geology-Geophysics (Solid Earth specialist) profile.  

PROGRAMME OBJECTIVE

  • The Earth Structure and Dynamics programme focuses on all aspects of the solid Earth as a key component of system Earth – and therefore of Earth system science. This encompasses the structure, dynamics, and evolution of the solid Earth over the full range of spatial and temporal scales as well as the role of solid Earth structure and processes in societally relevant issues such as energy, geo-resources, and geohazards. Examples include understanding the physics of tectonically – or human – induced earthquakes, volcanic hazards or petroleum, mineral, sustainable or unconventional resources. Knowledge of these aspects has direct relevance for professional profiles and future job opportunities.


Read less
EXPLORE PROCESSES AT OR NEAR THE EARTH'S SURFACE. The Master’s programme in Earth Surface and Water involves the study of natural and human-induced physical and geochemical processes, patterns, and dynamics of the Earth’s continental and coastal systems. Read more

EXPLORE PROCESSES AT OR NEAR THE EARTH'S SURFACE

The Master’s programme in Earth Surface and Water involves the study of natural and human-induced physical and geochemical processes, patterns, and dynamics of the Earth’s continental and coastal systems. This two-year programme provides you with knowledge that is essential to manage the planet sustainably, guarantee the availability of natural resources for future generations, and understand and avert natural hazards.

The main subject areas you will study consist of the dynamics of coastal and river systems, (geo-)hydrological processes, groundwater remediation, land degradation in dry lands and mountainous regions, natural hazards, and delta evolution on centennial and longer time scales.

You can choose one of four http://www.uu.nl/masters/en/earth-surface-and-water/tracks" target="_blank">tracks based on your interests in the field:

CORE AREAS OF RESEARCH

The Earth Surface and Water programme trains students to quantitatively study the natural and human-induced physical and chemical processes, patterns, and dynamics of Earth’s continental and coastal systems as well as their responses to global change. Students explore and understand the modelling capabilities of the past, present, and future as well as the evolution of Earth’s environment, including human impact on this evolution.

In the programme, you will address questions such as:

  • How do river floods affect delta systems and their inhabitants?
  • How can we use natural processes under climate change to maintain safe - yet attractive and dynamic - coastlines?
  • How can satellite images be used to estimate erosion losses?
  • Will we have enough water to sustain the world’s rapidly increasing population in 2050?
  • What is the most efficient way to clean an oil spill that enters the soil and groundwater? 

The programme trains students to combine field observations and laboratory experiments with the latest developments in remote sensing and computational methods. Research developed by our staff and students has a strong international profile, encompasses scales ranging from microscopic to global, and concerns both past and contemporary processes.

PROGRAMME OBJECTIVE

Physical geographers, geochemists, and hydrologists are necessary to identify nature’s actions in our modern world, especially with society’s ever-increasing pressure on the natural environment. The Earth Surface and Water programme therefore focusses on imminent societal problems, such as society’s increased vulnerability to climate and environmental changes and to natural hazards such as flooding, storms, and mass movements. It also addresses the threats and opportunities resulting from human activity on our physical environment, including the hydrological cycle.



Read less
The School of Earth Sciences has strong international links and the presence of researchers from all over the world makes for an exciting and stimulating environment. Read more
The School of Earth Sciences has strong international links and the presence of researchers from all over the world makes for an exciting and stimulating environment. Research involves the full breadth of the earth sciences and has benefited from major investment in new laboratories and equipment in the past few years. Important initiatives include experimental and theoretical studies of physical, chemical and biological processes of the Earth.

Please note: If you are applying for this programme, you need to select Geology as the programme choice when completing your online application form.

Research groups

The research programme at Bristol is characterised by an expanding range of exciting subject areas. Research in the School of Earth Sciences encourages interdisciplinary collaboration between its five research groups, which in turn nurtures revolutionary research.

Geochemistry
The Geochemistry group uses fundamental chemical techniques to understand natural processes on a range of temporal and spatial scales. This can be from single atoms on mineral surfaces and the environmental geochemistry of the modern Earth to the large-scale chemical structure of planets and the birth of the solar system. The group has considerable expertise in isotopic measurements, spectroscopy and first-principles calculations.

Geophysics
Geophysics uses physical properties of the solid Earth to measure structure and processes on scales from the single crystal to the entire planet. Members of the Bristol Geophysics group use gravity, seismic and satellite data to image the Earth in a variety of different contexts. These include the Earth's core, mantle and tectonic processes, volcanoes, oil and gas reservoirs and mines.

Palaeobiology
The Palaeobiology group uses the fossil record to study the history of life. Research focuses on major diversifications, mass extinctions, dating the tree of life, phylogenomics and molecular palaeobiology, morphological innovation, biomechanics, and links between evolution and development; the organisms of interest range from foraminifera to dinosaurs.

Petrology
The Petrology group uses a combination of high-pressure and high-temperature experiments, petrology, geochemistry and mineral physics to attack a wide range of problems in the solid Earth - from the core to the surface.

Volcanology
The Volcanology group at Bristol aims to understand the physical processes underlying volcanic phenomena and develop methods of hazard and risk assessment that can be applied to volcanoes worldwide.

Recent case studies and collaborators include the Met Office, Montserrat Volcano Observatory, Eyjafjallajökull, Iceland and INGEOMINAS in Columbia.

Research centres

The School of Earth Sciences is involved in a number of collaborative research groups on an international level. Inter-faculty research centres such as the Biogeochemistry Research Centre and the Cabot Institute involve collaboration across several departments and faculties.

Centre for Environmental and Geophysical Flows
This interdisciplinary research centre brings together expertise from the Schools of Earth Sciences, Geographical Sciences, Mechanical Engineering and Mathematics. This creates diverse research activities and interests, from traffic flow to explosive volcanic flows, meteorology to oceanography.

Biogeochemistry Research Centre
The Biogeochemistry Research Centre involves staff from the Schools of Earth Sciences, Geographical Sciences and Chemistry. The research aims to develop our understanding of the biogeochemistry of modern-day and ancient environments and the way that it is affected by natural processes and the actions of mankind.

Bristol Isotope Group
The Bristol Isotope Group is a world-class research facility for isotope measurements directed at understanding natural processes, from the formation of the solar system, the origin of Earth - its deep structure and atmosphere, through to the evolution of that atmosphere and contemporary climate change.

Interface Analysis Centre
The Interface Analysis Centre specialises in the application of a wide range of analytical techniques and is used by the Schools of Chemistry, Earth Sciences and Physics.

The Cabot Institute
The Cabot Institute carries out fundamental and responsive research on risks and uncertainty in a changing environment. Interests include climate change, natural hazards, food and energy security, resilience and governance, and human impacts on the environment.

Read less
Are you interested in working on solutions for environmental issues like water scarcity and quality, soil degradation, food supply, loss of biodiversity… Read more

Are you interested in working on solutions for environmental issues like water scarcity and quality, soil degradation, food supply, loss of biodiversity, vulnerability to severe weather and climate change? Join the master's Earth & Environment in Wageningen to help the next generations of scientists to find solutions for these issues confronting the way we look after our planet, now and in the future!

Study programme

During the two-year master programme, you become a well-rounded specialist in the fields of (a) hydrology and water resources; (b) meteorology and air quality; (c) biological and chemical aspects of soil and water; or (d) soil geography and earth surface dynamics. Furthermore, you also gain a broad view of the interactions in the critical zone where the different spheres meet. Subjects studied range from micro to global scale; they are closely related to the innovative research and applications of ten leading research groups. Read more about the Background of the programme.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Student experiences

The best way to get to know a place is by getting to know the people. Students share their experiences with you about the master's programme and student life in Wageningen on the page student experiences.

Future career

Graduates from this programme are well equipped with the knowledge and skills to continue their academic training as a PhD student, or to start a career as a scientific professional at universities, research institutes and consultancies. Depending on their specialization, graduates may take up positions as meteorologists, hydrologists, water quality scientists or soil scientists in the public or private sector. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Environmental Sciences

MSc Management, Economics and Consumer Studies

MSc Biology

MSc Climate Studies

MSc International Land and Water Management

MSc Plant Sciences.



Read less
EXPLORE PROCESSES AFFECTING THE EARTH'S LIFE AND ITS ENVIRONMENT. In our Master's programme in Earth, Life, and Climate, you will explore the fundamental processes which regulate the past, present, and future dynamics of sedimentary systems, biodiversity, and climate, as well as their evolution. Read more

EXPLORE PROCESSES AFFECTING THE EARTH'S LIFE AND ITS ENVIRONMENT

In our Master's programme in Earth, Life, and Climate, you will explore the fundamental processes which regulate the past, present, and future dynamics of sedimentary systems, biodiversity, and climate, as well as their evolution. This two-year programme will provide you with the knowledge you need to understand climate change and its impact on natural environments such as soils, sediments, lakes, groundwater, wetlands, estuaries, and oceans.

The main topics you will study include the evolution of life, the development of sedimentary basins, carbon sources and sinks, biogeochemical and geochemical fingerprinting of sedimentary processes/environments, and climate reconstruction.

You can choose one of four tracks based on your specific interests:

SOCIETAL AND SCIENTIFIC CHALLENGES

On this programme, you will learn state-of-the-art reconstruction methods, modelling techniques, and laboratory experiments used in a wide range of earth and beta science disciplines. These disciplines include biogeology, palaeontology, palynology, sedimentology, stratigraphy, environmental geochemistry, organic geochemistry, hydrology, physical geography, geology, biology, climate dynamics, marine sciences and palaeoceanography. You will utilise these skills in your own research project or on the traineeships you can take in preparation for an international career in applied or fundamental research. 

The programme focuses on the following societal and scientific questions:

  • How does the Earth’s climate system respond to higher levels of atmospheric CO2?
  • How fast do ice sheets respond to global warming?
  • How are regional patterns of precipitation controlled by changes in monsoon strength or El Niño?
  • How resilient is the ocean to chemical perturbations?
  • How sensitive are ecosystems and biodiversity to environmental change?
  • How and when did life originate on Earth?
  • How are resources, such as fossil fuels and metal deposits, formed?


Read less
Apply your knowledge to real-world issues. You will gain skills in dealing with often-complex Earth systems, evaluate current research and and apply your knowledge to real-world issues, as well as get to work in some really amazing places around the world!. Read more

Apply your knowledge to real-world issues

You will gain skills in dealing with often-complex Earth systems, evaluate current research and and apply your knowledge to real-world issues, as well as get to work in some really amazing places around the world!

Find out more about the Master of Science parent structure.

The Master of Science (Earth Science) at Massey University will develop your skills in a field and laboratory environment that is focussed on solutions to Earth science-based issues facing society.

Explore the world around you

Field work could find you on a volcano top in Vanuatu, exploring ancient volcanoes on Chatham Island or assessing real-time hazards from an erupting volcano. You might find yourself exploring the back country of the Wanganui Basin or its marine terraces, sampling rivers and aquifers to determine groundwater recharge/discharge, or investigating erosion and land use employing both field and remote sensing techniques. 

You will also gain transferable skills that will be useful in many different careers. These include observation skills, advanced ability in data collection, analysis and interpretation, problem-solving and lateral thinking skills, self-motivation and resilience, teamwork as well as developing high-level written and verbal communication skills.

Let our expertise become yours

Massey University Earth science staff are actively researching and are members of internationally-relevant related groups. Many also have extensive industry experience, through either employment or consultancy. They bring this expertise to your teaching.

Examine the environmental impact

Massey’s expertise in environmental geochemistry includes remediation of contaminated sites, phytomining, mine site and land reclamation.

You can learn from – and build on – our expertise in the societal impacts of Earth events, such as volcanic activity. These include social, economic, infrastructure and the impact on local communities including iwi.

Specialised equipment

We have a range of specialised equipment which is available to you for your research and study. This includes:

  • A microprobe for spatial geochemical analysis of geological materials. Able to focus down to two microns, it allows measurement of changes in composition across crystals (which record pre-eruption processes in magmas)
  • Laser particle size analyser for measuring grain-size distributions of materials such as tephra
  • FTIR (Fourier Transform Infra-red) microscope. This measures water and CO2 contents in volcanic materials (related to eruption dynamics), but has also been used for analysing compositional differences in horse bones and carbon nanoparticles
  • Pyroclastic Flow simulator
  • Hyperspectral analyser for remote sensing soil,rock and plant materials (an example of use includes detecting mineralised ground by remote sensing)
  • FLYSPEC analyser for measuring SO2 in volcanic eruption plumes
  • XRD analyser for determining mineralogical compositions of a wide range of materials, especially clay minerals
  • TGA/DSC (Thermogravimetric Analyser/Differential Scanning Calorimeter) for uses such as thermal behaviour in volcanic glasses to characterise biochar
  • OEM (Optical Emission Analyser) for geochemical analysis with particular application to environmental geochemistry

In-depth research

This master’s includes an in-depth research project, where you will be able to explore an aspect of Earth science that interests you.

Why postgraduate study?

Postgraduate study is hard work but very rewarding and empowering. The Master of Science (Earth Science) will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Our experts are there to guide but you will find that postgraduate study demands more in-depth and independent study.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. It takes you to a new level in knowledge and expertise especially in planning and undertaking research.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Earth Observation at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Earth Observation at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Earth Observation enables students to pursue a one year individual programme of research. The Earth Observation programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research-led University and the Department makes a significant contribution, meaning that as a postgraduate Geography student you will benefit from the knowledge and skills of internationally renowned academics.

In the latest Research Assessment Exercise, 95% of Geography research at Swansea was judged to be of international quality, and 60% was regarded as World-leading or internationally excellent.

Facilities

As a student of the Earth Observation programme you will have access to:

Computer laboratory with 24 computers providing general IT software and programmes dedicated to Geographic Information Systems (GIS) and Remote Sensing Computer laboratory with 10 high-performance Linux workstations delivering software tools for advanced GIS and remote sensing applications

Specialist laboratory suites for stable isotope ratio analysis; tree ring analysis; extraction and identification of organic compounds; pollen extraction and analysis; rainfall simulation; tephra analysis; soil and sediment characterisation

In addition, the computing facilities include 15 dual-processor workstations for Earth Observation, a 20-node multiprocessor Beowulf cluster, and the Department’s IBM ‘Blue Ice’ Supercomputer, used mainly for climate and glaciological modelling.

Research

All academic staff in Geography are active researchers and the department has a thriving research culture and a strong postgraduate community.

The results of the Research Excellence Framework (REF) 2014 show that Geography at Swansea University is ranked joint 9th in the UK for research impact and 11th in the UK for research environment.

Research groups include:

Environmental Dynamics

Glaciology

Global Environmental Modelling and Earth Observation

Migration, Boundaries and Identity

Social Theory and Urban Space



Read less
This course will provide you with the opportunity to carry out an independent research project under the supervision of our leading academics. Read more
This course will provide you with the opportunity to carry out an independent research project under the supervision of our leading academics.

You will receive training in research methods and take a taught course unit in a relevant subject area. The research topic for your project is agreed with a supervisor in advance and can be in any area of the expertise in the department research groups. The project outline will be developed in consultation with your supervisor and project work is carried out in parallel with the taught courses, becoming full-time during the third term.

This Master’s by Research will provide you with a suitable background to work as a research assistant or as the grounding for further study towards a PhD.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscearthsciencesbyresearch.aspx

Why choose this course?

- This course is ideal for graduates in geology and related sciences who wish to carry out independent research over a shorter time period than is possible in a doctorate (PhD) programme. It allows you study at Master's level an aspect of the geological sciences which may not be catered for by specialist MSc programmes.

- You will be involved at every step of the research project - from planning and sample collection, laboratory work, result analysis, to writing your dissertation.

- It is ideal preparation if you are interested in studying for a PhD, but would like to have further preparation and training.

- In the 2008 Research Assessment Exercise (RAE), the Department of Earth Science’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

- The Department has up-to-date computer interpretation facilities, a full range of modern geochemical laboratories including XRF, quadrupole and multicollector ICP Mass Spectrometry, atmospheric chemistry and a new excimer laser ablation facility, excellent structural modelling laboratories, palaeontology and sedimentology laboratories.

Course content and structure

The course consists of the following three components:

A Research Study Skills Course Unit
- Personal research skills (e.g. safety, time and project management, teamwork)
- IT skills (e.g. literature retrieval, web authoring, databases, modelling)
- Data analysis skills (e.g. statistical methods, GIS systems, sampling techniques)
- Communication skills (e.g. posters, oral presentation, writing papers, web pages)
- Subject-specific skills and techniques. These amount to 55% of the research skills assessment, and for example may include parts of specialist taught courses (see below), a training course on the theory and practice of chemical and isotopic analysis, or other training arranged by the project supervisor. This will include training for research in the general field of the research project, not solely what is needed to carry out the project.

A Specialist Taught Course Unit
You will choose an advanced taught course unit relevant to the subject area of your research project. The following taught units are currently offered:
- Applied Sedimentology and Stratigraphy
- Pollution Sources and Pathways
- Oceans and Atmospheres
- Risk and Environmental Management
- Geographical Information Systems
- Environmental Inorganic Analysis
- Contaminants in the Environment
- Advanced Igneous Petrogenesis
- Seismic Processing and Interpretation
- Geodynamics and Plate Tectonics
- Interpretation of Structural Settings
- Coal Geology
- Petroleum Geology and Evaluation
- Terrestrial Palaeoecology
- Palaeoclimates

Research Project
The project may be on any topic which is within the broad research themes of the Department. You will be linked to a potential supervisor at the application stage and, in consultation with the supervisor, you will develop a detailed project outline during the first half of the first term. Project work is then carried out in parallel with taught courses during terms one and two, becoming the full-time activity after Easter. A bound dissertation is submitted for examination in early September.

On completion of the course graduates will have:

- an advanced knowledge and understanding of a variety of analytical, technical, numerical, modelling and interpretive techniques applicable to the specific field of earth sciences

- the articulation of knowledge and the understanding of published work, concepts and theories in the chosen field of earth sciences at an advanced level

- the acquisition of knowledge from published work in the chosen area of earth sciences to a level appropriate for a MSc degree.

Assessment

Research Study Skills: this is assessed by coursework and theory examination and will include short written assignments, a seminar, worksheets and practical tests. These assessments contribute 12.5% of the course marks.

Specialist Taught Course Units: these are mostly assessed by a written, theory examination and coursework. The unit assessment contributes 12.5% of the course marks.

Research Project: the project dissertation must be submitted in early September. It will be marked by both an internal and an external examiner, and will be defended at an oral examination with both examiners. The project assessment contributes 75% of the course marks.

Employability & career opportunities

Subject to agreement and suitable funding, MSc by Research students can transfer to the MPhil/PhD programme at Royal Holloway. They may use the research carried out for the MSc towards the PhD, and count the time spent towards MPhil/PhD registration requirements, provided that the MSc research forms a coherent part of the PhD, and that the transfer is approved prior to submission of the MSc research dissertation.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
The MPhil in Earth Sciences is a 12 month full-time programme of research that introduces students to research skills and specialist knowledge. Read more
The MPhil in Earth Sciences is a 12 month full-time programme of research that introduces students to research skills and specialist knowledge. It involves carrying out an original piece of research and is examined on the basis of a dissertation; there are no taught courses.

Most of our graduate students apply for PhD admission. We would not normally admit more than 2-3 MPhil applicants per year and if you are interested in applying, please get in touch directly with the Department to ascertain if you would be a suitable candidate before making an application.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/eaesmpmea

Course detail

If you are exploring the possibility of postgraduate work in the Cambridge Earth Sciences Department you will:

- have either done an undergraduate degree in an earth science subject, or perhaps want to use your degree from another science subject such as physics, chemistry, mathematics or biological sciences.

- probably be looking for a PhD or MPhil research course (we do not offer a taught masters course).

- relishing the stimulus of one of the UK's premier research departments.

Format

Students will meet with supervisors frequently and formal progress meetings will be arranged at least once a term.

Formal feedback will be provided under the University graduate supervision reporting system, students can expect one online report a term.

Assessment

The assessment for this MPhil is solely based on the 15,000 word dissertation which is examined by viva.

Continuing

After completing this MPhil you will be able to apply for a PhD in this or other departments.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Programme description. This interdisciplinary programme will equip you with the analytical and communication skills to work in this important and growing field. Read more

Programme description

This interdisciplinary programme will equip you with the analytical and communication skills to work in this important and growing field.

This programme suit students with a background in environmental or geographical sciences who have already come across remote sensing, or those with a background in physics, computer science or engineering looking for a career in an applied area.

Graduates from the programme will be well prepared to pursue a research degree or find relevant employment. This programme builds on the successful Edinburgh Geographical Information Science (GIS) degree, which was the first of its type in the world, with a heritage of almost 30 years.

Applicants who applied after 12 December 2016 receiving an offer of admission, either unconditional or conditional, may be required to pay a tuition fee deposit. Please see the fees and costs section for more information.

Programme structure

This programme consists of two semesters of taught courses followed by individual dissertation project work.

Compulsory courses typically will be:

  • Spatial Modelling and Analysis
  • Research Practice and Project Planning
  • Passive Earth Observation or
  • Active Remote Sensing
  • Dissertation

Option courses may include:

  • Principles and Practice of Remote Sensing
  • Atmospheric Quality and Global Change
  • Object Orientated Software Engineering: Spatial Algorithms*
  • Principles of Geographical Information Science
  • Sustainable Energy Technologies 4
  • Marine Systems and Policies
  • Technologies for Sustainable Energy
  • Introduction to Three Dimensional Climate Modelling
  • Geology for Earth Resources
  • Encountering Cities
  • Soil Protection and Management
  • Understanding Environment and Development
  • Advanced Spatial Database Methods
  • Data Integration and Exchange
  • Data Mining and Exploration
  • Environmental Impact Assessment
  • Forests and Environment
  • ICT for Development
  • Land Use/Environmental Interactions
  • Querying and Storing XML
  • Water Resource Management
  • Participation in Policy and Planning
  • Introduction to Environmental Modelling
  • Management of Sustainable Development
  • Communicable Disease Control and Environmental Health
  • Political Ecology
  • Epidemiology for Public Health

Courses are offered subject to timetabling and availability and are subject to change.

In addition, this programme typically includes a residential field-skills weekend in Scotland.

*Please note, Principles and Practice of Remote Sensing would usually be a prerequisite for Passive Earth Observation and Active Remote Sensing unless equivalent background knowledge is demonstrated.

Career opportunities

Graduates have entered employment with well-known organisations such as Amey Infrastructure Services, British Airways, ESRI, General Electric, Google, Hewlett-Packard, Intergraph, Microsoft, Oracle, Royal Bank of Scotland, Scottish Water, Sopra Group, SLR Consulting, Food and Agricultural Organisation of the United Nations and the World Bank, as well as continuing in academia. Graduates will benefit from our proven track record in placing students with such a diverse range of employers.

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.



Read less
The Department of Earth & Space Sciences offers a 36-credit Master of Science degree in Geoscience designed for the professional development of geologists and precollege teachers. Read more
The Department of Earth & Space Sciences offers a 36-credit Master of Science degree in Geoscience designed for the professional development of geologists and precollege teachers. Students may also obtain Pennsylvania teaching certification in Earth and Space Science and/or General Science with the appropriate selection of courses. Employment and advancement opportunities for MS Geoscience graduates are excellent due to the hundreds of environmental firms, government agencies, and school districts within the greater Philadelphia area.

The Curriculum

All students complete a 19-credit core with the following courses: ESS 523 Field Geology, ESS 521 Geometrics, ESS 596 Earth Systems Science, ESS 547 Geoscience Seminar, and ESS 602 Directed Research. The core also includes choosing 2 of the following 4 courses: ESS 530 Oceanography, ESS 570 Meteorology, ESS 536 Environmental Geology, and ESS 549 Advanced Hydrogeology. The remaining 17 credits may be fulfilled by electives, of which at least 8 must be ESS or SCE courses. The MS Geoscience degree requires completion of a non-thesis, final project with a faculty advisor involving original, independent scientific or education research.

Benefits of the Program

• Evening, summer, and weekend courses
• Designed for completion in two years
• State-of-the-art equipment and facilities
• Focus on enhancing knowledge and skills needed by geologists and science teachers
• Meet and work with geologists and science teachers from throughout the greater Philadelphia area
• Affordable tuition
• Hundreds of alumni in the region employed as geologists and teachers

Read less
We recommend that you study the modules in the order listed below. You must have successfully completed Earth science. a systems approach (S808) before studying the project module, which we expect you to take as the final module for this qualification. Read more

Modules

We recommend that you study the modules in the order listed below. You must have successfully completed Earth science: a systems approach (S808) before studying the project module, which we expect you to take as the final module for this qualification.

To gain this qualification, you need 180 credits as follows:

30 credits from the following optional modules:

• Environmental monitoring and protection (T868)
• Making environmental decisions (T891)

plus

150 credits from the following compulsory modules:

• Developing research skills in science (S825)
• Earth science: a systems approach (S808)
• MSc project module (S810)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

If you’ve successfully completed some relevant postgraduate study elsewhere, you might be able to count it towards this qualification, reducing the number of modules you need to study. Please note that credit transfer will not be given for the MSc project module (S810). You should apply for credit transfer as soon as possible, before you register for your first module.

Read less
This MSc is a uniquely broad and flexible programme that suits students' aspirations, background and experience. UCL Earth Sciences has strengths in geophysics, geochemistry, palaeobiology, mineral physics, geodynamics, geohazards, climate science, environmental geosciences and policy, and other areas. Read more

This MSc is a uniquely broad and flexible programme that suits students' aspirations, background and experience. UCL Earth Sciences has strengths in geophysics, geochemistry, palaeobiology, mineral physics, geodynamics, geohazards, climate science, environmental geosciences and policy, and other areas. Students choose from a wide range of optional modules from within the department and more widely across UCL, building an MSc tailored to their interests.

About this degree

The programme aims to integrate theoretical studies with essential practical skills in the Earth sciences, both in the field and in the laboratory. Students develop the ability to work on group projects, prepare written reports, acquire oral skills and gain training in the methods of scientific research.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), six optional modules (75 credits) and a research dissertation (60 credits).

Core modules

  • Research Methods
  • Project Proposal
  • Earth and Planetary Systems Science

Optional modules

  • Earth and Planetary Materials
  • Melting and Volcanism
  • Physical Volcanology and Volcanic Hazard
  • Earthquake Seismology & Earthquake Hazard
  • Tectonic Geomorphology
  • Palaeoceanography
  • Palaeoclimatology
  • Biodiversity and Macroevolutionary Patterns
  • Deep Earth and Planetary Modelling
  • Geodynamics and Global Tectonics
  • Crustal Dynamics, Mountain Building and Basin Analysis
  • Advanced Biodiversity and Macroevolutionary Studies

Students can also choose relevant elective modules from UCL Geography.

Dissertation/report

All MSc students undertake an independent research project which culminates in a dissertation of approximately 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, and laboratory and fieldwork exercises. Student performance is assessed through coursework, written assignments, unseen written examination and the dissertation.

Fieldwork

Crustal Dynamics, Mountain Building and Basin Analysis is a fieldwork only module without a classroom element.

Further information on modules and degree structure is available on the department website: Geoscience MSc

Careers

Geoscience students have gone on to pursue careers in many varied areas, such as planning and surveying, governmental organisations, academic research.

Recent career destinations for this degree

  • PhD in Climatology, Cardiff University (Prifysgol Caerdydd)
  • PhD in Geoscience, UCL
  • Engineer, Geo-Info
  • Lecturer in Geology, University of Benin
  • Oil and Gas Analyst, EIC (Energy Industries Council)

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Earth Sciences is engaged in world-class research into the processes at work on and within the Earth and planets.

Graduate students benefit from our lively and welcoming environment and world-class facilities, which include the UK's only NASA Regional Planetary Image Facility and access to the University of London Observatory in north London.

The department also hosts the UCL Hazard Research Centre, Europe's leading multidisciplinary hazard research centre, and engages in extensive collaborative work with the Royal Institution and the Natural History Museum.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Earth Sciences

92% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The College of Liberal Arts and Sciences is a thriving center of intellectual excellence that encompasses 14 academic departments and 80 degree programs. Read more
The College of Liberal Arts and Sciences is a thriving center of intellectual excellence that encompasses 14 academic departments and 80 degree programs. Its more than 2,500 students are engaged in a wide variety of challenging courses and hands-on learning experiences that extend across all areas of the humanities and sciences – from the great philosophers and classic literature to the world economy and environmental sustainability.

At the core of each department are faculty members who have garnered national acclaim for their best-selling books, ground-breaking research and creative endeavors. Together, students and their professors explore globally significant subjects and work towards the goal of improving every aspect of the way in which human beings live. To learn more about a specific area of study, click on the left-hand navigation bar for a full listing of academic departments.

M.S. in Earth Science

The Master of Science in Earth Science prepares teachers, geologists, environmental leaders, planners, industry consultants, and others in the public and private sectors to management community and natural resource concerns, from groundwater and recycling to pollution and global warming. Advanced coursework ranges from astronomy, meteorology, conservation of natural resources, and geographic information systems to oceanography, groundwater geology, environmental geochemistry, and global climate change.

The program is designed for working professionals who wish to obtain an advanced degree in the field and also for teachers who hold initial certification but need a master’s degree to secure permanent teacher certification in the State of New York. The program may also benefit fully certified teachers who wish to expand their fields of expertise. Students may use the degree as a stepping stone to a Ph.D. program.

The 32-credit program allows for flexibility in meeting certification requirements, geotechnical and government agency employers’ needs, and individual career interests. The graduate courses are offered during the evening to accommodate working students. Our department’s past graduate students are working across Long Island and beyond as teachers and as environmental scientists and consultants.

Read less
Planetary Science is an exciting area of study, as new data returning from current planetary probes and rovers expands and deepens our understanding of the geology of other planets. Read more
Planetary Science is an exciting area of study, as new data returning from current planetary probes and rovers expands and deepens our understanding of the geology of other planets. If you have an undergraduate degree in earth sciences or geology, but want to increase your knowledge of planetary sciences, then this course will bring you up to date with developments in the field. The specialist knowledge you acquire could help you change career, or build a career within the planetary sciences and education, or enable you to progress onto doctoral research at PhD level.

You will be taught by academics who are actively engaged in cutting-edge planetary research that is expanding the boundaries of knowledge. We cover planetary surfaces and remote sensing, volcanic activity on Earth and other planets, the nature of comets, asteroids and meteorites, and the internal structure and origin of planets, as well as offering advanced modules in astronomy, scientific computing, and the design of, and participation in, an analogue field mission. You can choose from a range of modules and put together a programme that matches, expands and deepens your particular interests.

The course can be taken via distance-learning or face-to-face evening study.

Why study this course at Birkbeck?

This programme will teach you about cutting-edge developments in this exciting, constantly expanding field.
This programme is ideal if you have studied earth sciences or geology at undergraduate level and want to deepen your understanding of planetary sciences.
Our Department of Earth and Planetary Sciences has been offering evening study courses for over 70 years and is ranked 6th in the UK.
You will learn in an environment of active research and be taught by lecturers who are working at the forefront of their specialisms.
Studying with us will give you access to world-class research facilities.
We retain close links with UCL's Department of Earth Sciences, sharing expertise, facilities and events across the 2 institutions, including live streaming of lectures and digital lecture notes.
We are part of the joint UCL-Birkbeck Institute of Earth and Planetary Sciences (IEPS).

Our research

Birkbeck is one of the world’s leading research-intensive institutions. Our cutting-edge scholarship informs public policy, achieves scientific advances, supports the economy, promotes culture and the arts, and makes a positive difference to society.

Birkbeck’s research excellence was confirmed in the 2014 Research Excellence Framework, which placed Birkbeck 30th in the UK for research, with 73% of our research rated world-leading or internationally excellent.

In our joint submission with UCL, Earth Systems and Environmental Sciences at Birkbeck were rated 6th the UK in the 2014 Research Excellence Framework (REF), while we achieved 100% for an environment conducive to research of the highest quality.

Read less

Show 10 15 30 per page



Cookie Policy    X