• University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Leeds Featured Masters Courses
"drug" AND "innovation"×
0 miles

Masters Degrees (Drug Innovation)

  • "drug" AND "innovation" ×
  • clear all
Showing 1 to 15 of 34
Order by 
This programme focuses on interdisciplinary research in the field of innovation and usage of drugs, for example vaccines, gene therapeutics, medical nutrition and antibodies. Read more

DRUG INNOVATION: A UNIQUE PROGRAMME

This programme focuses on interdisciplinary research in the field of innovation and usage of drugs, for example vaccines, gene therapeutics, medical nutrition and antibodies.

Typical research questions addressed in the field of Drug Innovation include:
* How do we make new drugs against resistant microorganisms?
* Which proteins can we target for personalized cancer medicine?
* Can we differentiate stem cells by means of proteomics?
* How can we imprint the immune system to become tolerant?
* What is the connection between gut microbes and brains disease?
* Can we deliver proteins and gens to diseased cells, by learning from viruses and bacteria?
* How can we innovate and speed up the regulatory process of weighing benefit and risk?
* Which biomarkers predict for quality adjusted life years?

As a graduate you will be eligible for many PhD programmes and be able to contribute to drug innovation within research institutes, pharmaceutical and biotechnology companies or health care organisations.

Our programme offers a diverse suite of elective courses. This means you can concentrate on the topics of most interest to you.

Read less
This interdisciplinary programme aims to develop and equip students with a broad understanding of various concepts and techniques. Read more
This interdisciplinary programme aims to develop and equip students with a broad understanding of various concepts and techniques. The class will be made up of students coming from a diverse range of educational backgrounds all of whom will have graduated in the top 10% of their year group, leading to the fostering of an atmosphere in which advanced levels of discussion and knowledge exchange can take place.

As a student of this program you will benefit from:
- The guidance and supervision of scientists at the forefront of their fields
- Modern and extensive facilities
- Interactive, individualized and intensive tuition
- The opportunity to design your own PhD project

As we aspire to provide a hands-on experience to complement the theoretical basis, there are plenty of opportunities available to you in order to advance your research skills.
- Two obligatory research projects form part of the curriculum
- Theoretical classes are provided to advance knowledge and techniques
- Opportunities for further research within the research institute GUIDE which focuses on Chronic Diseases and Drug Exploration

The result of these features combined is a program that you are able to tailor to meet your personal research interests and aspirations, leading to a gradual specialization into your research area of choice. What sets this course apart is its strong focus on the development of scientific skills, rather than mere knowledge retention. We aim to facilitate the development of a critical and analytical scientific mindset, preparing our students to become leaders in their field.

Job perspectives

Upon completion of this programme you are fully prepared to become a PhD student in an international research programme. Currently, most graduates have continued their research activities in PhD projects. Many stay at the UMCG, however, others have gone to a selection of other prestigious institutions.

Job examples

- Academia
- Clinical Chemistry
- Medical Consultancy
- Nutrigenomics Scientist
- Researcher
- Entrepreneur

Read less
- https://www.kent.ac.uk/locations/medway/. This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company.

It was designed and conceived by pharmaceutical industry experts in drug discovery and will be delivered and assessed by experts in this field at the School of Pharmacy.

The MSc covers how fundamental science is applied to the discovery and development of medicines and the main aims are to:

- provide you with the experience of critically appraising the research questions and techniques that are routine in the pharmaceutical industry workplace

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- provide expert preparation for students who wish to pursue a career in drug discovery, or wish to proceed to a PhD.

Visit the website https://www.kent.ac.uk/courses/postgraduate/736/applied-drug-discovery

Duration: One year full-time (campus based), two years part-time (distance learning)

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

This programme is taught as either a classic one year full-time programme with attendance required on Mondays and Tuesdays for 48 weeks plus an additional study day off-campus, or delivered through distance e-learning using an interactive virtual learning environment on a two-year part-time basis.

The programme comprises 60 credits at certificate level, 60 credits at diploma level and 60 credits at Master’s level. You may choose to end your study at any one of these stages.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by 100% coursework; including scientific reports, assignments, essays, a research project and portfolio entries.

Programme aims

This programme aims to:

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- teach you an understanding of the drug discovery process

- provide you with expanded training in the biological sciences technical skills that underpin the processes of drug discovery

- provide you with the experience of critically appraising the research questions and techniques they use routinely in the workplace

- develop a variety of postgraduate level intellectual and transferable skills

- equip you with lifelong learning skills necessary to keep abreast of developments in drug discovery

- provide you with opportunities for shared multidisciplinary learning in drug discovery

- give you the experience of undertaking an independent research project

- provide expert preparation for students who wish to pursue and/or further a career in drug discovery, or wish to proceed to a higher degree (PhD) in topics related to the drug discovery process

- provide access to as wide a range of students as practicable irrespective of race, background, gender or physical disability from both within the UK and from overseas.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career. While the MSc in Applied Drug Discovery produces elite drug discovery personnel, who can pursue a career in the pharmaceutical industry or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Unique in Europe, this course combines biomedicine and pharmaceutical science to prepare you for a rewarding career in the pharmaceutical, bioscience or healthcare sectors. Read more
Unique in Europe, this course combines biomedicine and pharmaceutical science to prepare you for a rewarding career in the pharmaceutical, bioscience or healthcare sectors.

If you're interested in a career in the fascinating and challenging world of drug design, this is the course that will take you there.

Rather than presenting just one of the disciplines used in the field, this postgraduate degree, unique in Europe, blends the subjects you need - biomedicine and pharmaceutical science - into one comprehensive course that focuses on the integration of modern organomedicinal chemistry and molecular biology.

You’ll study various steps involved in developing and creating effective drugs, from concept to clinic, including the theories and practical applications of chemical drug design and immunology, pharmacology and molecular biology. Learning will be based on emergent technology from academic research and how it is applied to the drug development process, identification of drug targets, and development of effective drugs via reference to the relevant biological systems and pathways.

See the website http://www.napier.ac.uk/en/Courses/MSc-Drug-Design-and-Biomedical-Science-Postgraduate-FullTime

What you'll learn

This course provides the knowledge, understanding and practical experience you’ll need to forge a rewarding career in research and development in the pharmaceutical, bioscience or healthcare sectors. You’ll develop in-depth understanding of disease processes and molecular targets and an ability to apply this knowledge and theory to key aspects of drug design and biomedical science.

Equipped with the ability to follow developments in the field, you’ll learn to apply them to your work and make innovative contributions to the industry that will benefit others. Complex issues often arise in this field: you’ll acquire the skills necessary to make informed judgements and effectively communicate decisions.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices. In your final trimester you’ll undertake an independent project within a vibrant biomedical or drug design research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or industry in the UK or overseas.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This programme is also available as a Masters by Research: http://www.napier.ac.uk/research-and-innovation/research-degrees/courses

Modules

• Current practice in drug development
• Advanced immunology
• Molecular pharmacology and toxicology
• Research skills
• Quality Control and Pharmaceutical Analysis or Biotechnology and Drug Discovery
• Drug design and chemotherapy
• Research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

The rapidly developing pharmaceutical, bioscience and healthcare sectors all need qualified drug discovery or biomedical scientists. This course is your fastest and most effective route to a successful career in drug design.

You could establish a laboratory-based career with global pharmaceutical companies, developing biotechnology companies, contract drug testing, hospitals, NHS, local government or health and safety divisions.

Alternatively, further studies to PhD level are available at institutions all over the world leading to an academic career.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
The programme is designed for graduates with a biological background and builds on existing core biosciences modules in the area of applied biotechnology. Read more
The programme is designed for graduates with a biological background and builds on existing core biosciences modules in the area of applied biotechnology. It gives a grounding in the early stage drug discovery process for those interested in careers in biotechnology or the pharmaceutical industry.

The MSc covers application of technologies to early stage drug discovery focusing on target identification, target validation, and lead discovery and design follow-up through understanding protein ligand interactions and biophysics at a molecular level in order to produce good drug candidate molecules via rational drug design.

The programme also includes site visits to biotechnology companies and industry, plus workshops/lectures from invited industrial experts.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/227/drug-design

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

The MSc in Drug Design involves studying for 120 credits of taught modules, as indicated below. The taught component takes place during the autumn and spring terms, while a 60-credit research project take place over the summer months.

The programme is taught by staff from the Biosciences, Industrial Biotechnology Centre and industrial scientists who all have experience of working with the drug industry (both large pharma and biotech).

In additional to traditional scientific laboratory reports, experience is gained in a range of scientific writing styles relevant to future employment.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI827 - Advanced Drug Design (30 credits)
BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI852 - Advanced Analytical and Emerging Technologies for Biotechnology and Bio (30 credits)
BI857 - Cancer Research in Focus (15 credits)
CB612 - New Enterprise Startup (15 credits)
BI845 - MSc Project (60 credits)

Assessment

Assessment is by coursework and the dissertation.

Programme aims

This programme aims to:

- provide students with an academic framework to underpin your career in the pharmaceutical, biotechnology industry or applied translational research in an academic environment

- give you an understanding of the process of academic investigation in a range of academic disciplines relevant to drug design

- provide a stimulating, research-active environment for teaching and learning in which you are supported and motivated to achieve your academic and personal potential

- facilitate a valuable learning experience through a variety of teaching and assessment methods that will promote the assimilation, comprehension, analysis application, synthesis and evaluation of the knowledge base

- give you the experience of undertaking an independent research project or dissertation

- prepare students for further training and employment both in science and non-science based careers by developing transferable and cognitive skills

- develop the qualities needed for employment in situations requiring the exercise of professionalism, independent thought, personal responsibility and decision-making in complex and unpredictable circumstances

- provide access to as wide a range of students as practicable irrespective of race, background, gender or physical disability from both within the UK and from overseas.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/227

Read less
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. Read more
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. This new taught postgraduate Masters programme draws on the current and future needs of the Life Sciences sector, to create a highly skilled workforce and is being developed in conjunction with the industrial partners of the Stratified Medicine Scotland Innovation Centre (SMS-IC). It harnesses Scotland’s strengths in Stratified Medicine, Clinical Trials, Bioinformatics and Pharmacogenomics to provide focused training which integrates basic and clinical sciences, and equips students with grounding in the essential skills required to design, execute and evaluate modern clinical interventions.

Why this programme

-Students will be given the unique opportunity to undertake an industry placement as their main project. This fantastic opportunity will be offered by partner commercial organisations/companies and universities.
-The programme will cover aspects of commercial innovation and entrepreneurial skills, together with the principles which underpin the emerging science at the interface between genetics and pharmacology.
-Students on the programme will undergo theoretical and practical training in state-of-the-art research processes, enabling an appreciation of how to applynovel stratified approaches, together with clinical pharmacological, regulatory and ethical principles to the optimisation of future clinical research and therapeutic practice.
-Students will also gain an understanding of statistical methods used to evaluate the efficacy and cost-effectiveness of new treatments, and direct experience of how all of these techniques are applied by academic and industrial researchers in the development of new medicines.
-Following successful completion of the programme a joint master’s degree will be awarded.
-The five stakeholder universities, Glasgow, Aberdeen, Strathclyde, Dundee and Edinburgh are internationally recognised as leaders in biomedical research, hosting highly collaborative and productive groups with the requisite expertise in pharmacology, clinical trial methodology, pharmacogenomics, and life sciences. This vibrant environment, coupled with Scotland’s tradition of excellence in clinical research and significant recent investment in the new science of Stratified Medicine make it the ideal place to acquire the transferrable skills required for a successful and fulfilling career in 21st century biomedicine.

Programme structure

This MSc degree is awarded jointly by the Universities of Glasgow, Aberdeen and Strathclyde. Courses included in this programme are delivered by these three institutions as well as the Universities of Dundee and Edinburgh. Students will be offered a choice of base institution, either Glasgow or Aberdeen. Each base campus has its own programme structure; however students from both campuses will study courses covering three themes totalling 120 credits. Sample course are included below. For the most up to date information on the courses available at each campus please contact

Scientific basis of stratified medicine
-Small molecule drug discovery
-Biological drug discovery
-Pharmacogenomics and molecular medicine.

Commercialisation of science
-Introduction to bio-business
-Advanced bio-business
-New venture creation
-Regulation and governance of new therapies

Application of research and evaluation of new technologies
-Clinical trials: principles and methods
-Applied statistics with routine health datasets
-Spatial epidemiology
-Applied health economics

Project and Assessment
The project will account for the remaining 60 credits. All projects will either have an industrial placement or a project which addresses an industrial need. The programme will include an opportunity for all students to present the outcomes of their projects to an audience of other students, academics and industry representatives. Assessment will consist of submission of a dissertation and presentation.

Career prospects

Graduates will be able to pursue careers in a variety of academic and industrial areas including clinical research, preclinical lab-based research, business development with expert knowledge in life sciences and bioinformatics/biostatistics.

Read less
- https://www.kent.ac.uk/locations/medway/. The Medway School of Pharmacy’s innovative postgraduate distance-learning programme in Medicines Management equips healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

The Medway School of Pharmacy’s innovative postgraduate distance-learning programme in Medicines Management equips healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions.

The programme emphasises clinical and costeffective prescribing in the context of holistic consideration of patient needs, and one of its pathways offers you the chance to qualify as an independent/supplementary prescriber.

Visit the website https://www.kent.ac.uk/courses/postgraduate/738/medicines-management

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

You can register for the full MSc programme or undertake stand-alone modules. Modules can be put together to form a short course programme. Module length varies from five to 15 credits.

For the PCert, you must complete 60 credits, of which at least 20 must be from core modules. Diploma students must complete 120 credits, of which at least 40 credits must be from core modules. To gain the MSc, you must complete a 60-credit research project, write a dissertation and present the results as a poster.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment includes case study analysis, critical appraisal of literature, assignments including short essays, a research project and dissertation.

Programme aims

This programme aims to:

- equip healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions in primary and secondary care.

- enable you to incorporate your learning directly into your workplace and to rise to the challenges presented by the new, patient-centred NHS.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Developed in conjunction with the industrial partners of the Stratified Medicine Scotland Innovation Centre (SMS-IC).Stratified Medicine holds huge potential to enhance timely development of new treatments for human disease. Read more
Developed in conjunction with the industrial partners of the Stratified Medicine Scotland Innovation Centre (SMS-IC).Stratified Medicine holds huge potential to enhance timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new medicines.

COURSES
Science Basis to Stratified Medicine
Commercialisation of Science
Application of Research and Evaluation Technologies

Options
Pharmaceutical Medicine
Drug Disposition
Advanced Bio-Business
New Venture Creation
Applied Health Economics
Clinical Trials: Principles and Methods
Developing Research and Evaluation Skills
Spatial Epidemiology
Quantitative Research Methods
Systemic Reviews
Genome Enabled Medicine
Pharmacokinetics and Toxicokinetics
Biologic Drug Discovery

Read less
- https://www.kent.ac.uk/locations/medway/. This programme, approved by the appropriate professional/regulatory bodies, provides a distance learning option for qualification as a non-medical prescriber. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme, approved by the appropriate professional/regulatory bodies, provides a distance learning option for qualification as a non-medical prescriber.

Eight contact days cover communication and diagnostic skills. Other topics on the syllabus include the legal, policy, professional and ethical aspects of prescribing, plus pharmacology and patient assessment and monitoring.

Visit the website https://www.kent.ac.uk/courses/postgraduate/740/independent-supplementary-prescribing

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

You can take the Master’s programme as a stand-alone PCert in Independent/Supplementary Prescribing, or as one pathway into the Medicines Management programme, by studying prescribing as either the first or second year of the Medicines Management PDip.

On successful completion, the School will notify the appropriate professional/regulatory body that you have qualified as an independent/supplementary prescriber.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by Objective Structured Clinical Examination (OSCE), assignments, case-study analysis, multiple-choice questions, short answer paper, narrative based on portfolio entries and attendance at a period of learning in practice.

Programme aims

This programme aims to:

- prepare pharmacists to practice as supplementary prescribers

- prepare nurses and midwives to practice as supplementary/independent prescribers

- develop the knowledge and skills required by an allied health professional to practice as a supplementary prescriber

- meet the standards set by the respective professional or regulatory body as required within the legislative framework.

Research areas

Chemistry and drug delivery
This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

Biological sciences
This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

Pharmacy practice
This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
This programme teaches advanced experimental approaches to dissecting the mechanisms of drug action (pharmacology), a science that has seen innovative theoretical and technical development at UCL for over a century. Read more
This programme teaches advanced experimental approaches to dissecting the mechanisms of drug action (pharmacology), a science that has seen innovative theoretical and technical development at UCL for over a century.

Degree information

In addition to providing experience of both classical and modern pharmacological techniques, the programme will help develop skills for literature search-based data acquisition and analysis; written and verbal communication of science; abstract writing; poster preparation; graphical processing; image preparation for publication; writing a scientific paper; and giving research presentations.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (75 credits), one optional module (15 credits), and a research project (90 credits).

Core modules
-Investigative Pharmacology
-Molecular Pharmacology
-Practice of Science

Optional modules - students choose one of the following:
-Advanced Clinical Pharmacology and Therapeutics
-Clinical Pharmacology and Therapeutics
-Drug Design and Development
-Neuropharmacology
-New Drug Targets in the CNS
-Pharmacology of Inflammation
-Receptor Mechanisms
-Synaptic Pharmacology

Dissertation/report
Students undertake an original research project which culminates in a 15,000-word dissertation and an oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, journal clubs, practicals, tutorials and a laboratory project. Student performance is evaluated through formal examination, coursework, and the research project.

Careers

This programme is likely to lead to careers in biomedical sciences, the pharmaceutical and biotechnology industry and clinical laboratories, and extend to clinicians interested in moving towards a scientific career. Students will obtain a thorough knowledge of and practice in pharmacological assessment, drug design and development pathways. It is anticipated that graduates will move onto PhD programmes and/or build careers in industry or clinical investigations through employment as research associates/scientists in the pharmaceutical industry or academia.

Employability
The knowledge and transferable skills developed on this programme will be advantageous for those considering employment in any pharmaceutical or healthcare setting, or contemplating further studies in related fields. The programme will also provide excellent training in critical appraisal of complex data, which will transfer well to other disciplines.

Why study this degree at UCL?

The programme is jointly taught by UCL Neuroscience, Physiology & Pharmacology (Division of Biosciences), and the Research Department of Pharmacology at the UCL School of Pharmacy. Both departments are historically and currently internationally leading in this field, and together provide cutting-edge education in theory, research practice and innovation in pharmacology.

The programme is designed to impart extensive experimental expertise applied to drug development and subsequent therapeutics. The combination of traditional and experimental approaches in pharmacology, coupled with current innovation in therapeutics and drug discovery and development, fosters a unique set of skills, which will enable graduates of the programme to engage in various aspects of pharmaceutical research globally.

Read less
This Masters in Sensor and Imaging Systems (SIS) focuses on the technologies and techniques that underpin a vast range of societal, research and industrial needs. Read more
This Masters in Sensor and Imaging Systems (SIS) focuses on the technologies and techniques that underpin a vast range of societal, research and industrial needs. It is delivered and awarded jointly by the Universities of Glasgow and Edinburgh. Sensing and sensor systems are essential for advances in research across all fields of physics, engineering and chemistry and are enhanced when multiple sensing functions are combined into arrays to enable imaging. Industrial applications of sensor systems are ubiquitous: from mass-produced sensors found in modern smart phones and every modern car to the state-of-the-art, specialist high-value sensors routinely used in oil and gas recovery, scientific equipment, machine tools, medical equipment and environmental monitoring. This is an industry-focused programme, designed for people looking to develop skills that will open up opportunities in a host of end applications.

Why this programme

-This is a jointly taught and awarded degree from the University of Glasgow and the University of Edinburgh, developed in with conjunction with CENSIS.
-CENSIS is a centre of excellence for Sensor and Imaging Systems (SIS) technologies, CENSIS enables industry innovators and university researchers to collaborate at the forefront of market-focused SIS innovation, developing products and services for global markets.
-CENSIS, the Innovation Centre for Sensor and Imaging Systems, is one of eight Innovation Centres that are transforming the way universities and business work together to enhance innovation and entrepreneurship across Scotland’s key economic sectors, create jobs and grow the economy. CENSIS is funded by the Scottish Funding Council (£10m) and supported by Scottish Enterprise, Highlands and Islands Enterprise and the Scottish Government.
-CENSIS has now launched its collaborative MSc in Sensor and Imaging Systems, designed to train the next generation of sensor system experts.
-This programme will allow you to benefit from the commercial focus of CENSIS along with the combined resources and complementary expertise of staff from two top ranking Russell Group universities, working together to offer you a curriculum relevant to the needs of industry.
-The Colleges of Science and Engineering at the University of Glasgow and the University of Edinburgh delivered power and impact in the 2014 Research Excellent Framework. Overall, 94% of Edinburgh’s and 90% of Glasgow’s research activity is world leading or internationally excellent, rising in Glasgow’s case to 95% for its impact.

Programme structure

The programme comprises a mix of core and optional courses. The curriculum you undertake is flexible and tailored to your prior experience and expertise, your particular research interests, and the specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme.

Graduates receive a joint degree from the universities of Edinburgh and Glasgow.

Programme timetable
-Semester 1: University of Glasgow
-Semester 2: University of Edinburgh
-Semester 3: MSc project, including the possibility of an industry placement

Core courses
-Circuits and systems
-Detection and analysis of ionising radiation
-Fundamentals of sensing and imaging
-Imaging and detectors
-Technology and innovation management
-Research project preparation

Optional courses
-Biomedical imaging techniques
-Biophysical chemistry
-Biosensors and instrumentation
-Chemical biology
-Digital signal processing
-Electronic product design and manufacture
-Electronic system design
-Entrepreneurship
-Lab-on-chip technologies
-Lasers and electro-optic systems
-Microelectronics in consumer products
-Microfabrication techniques
-Nanofabrication
-Physical techniques in action
-Waves and diffraction

Industry links and employability

-This is an industry-focused programme, developed in conjunction with CENSIS, an Innovation Centre established to maximise the growth potential of Scottish companies operating in the sensor systems market. It will appeal to graduates seeking to develop sensor and imaging systems (SIS) skills that can be used in a range of end markets and applications.
-SIS is key enabling technology to achieve quality, efficiency and performance across all key markets – from transport, security and oil and gas, through to agriculture, the built environment and life sciences. The underlying requirement across of these sectors is the same: to sense, measure, process, communicate and visualise in a way that provides valuable and actionable information based on data.
-Sensing is essential for advances in research across all fields of physics, engineering and chemistry, and is enhanced when multiple sensing functions are combined into arrays to enable imaging. Industrial applications of SIS are ubiquitous: from mass-produced sensors found in smart phones and cars, to the state-of-the-art, specialist high-value sensors routinely used in oil and gas recovery, scientific equipment, machine tools, medical equipment and environmental monitoring.
-Increasingly, sensor systems – along with their underpinning device, signal processing, networking, information dissemination and diagnostics technologies - are being tightly integrated within the products and services of a wide range of Scottish businesses. There are endless opportunities within this emerging global market (worth £500Bn) to develop fundamental changes to benefit society and commercialise sensor lead products over wide market areas.
-Markets that need graduates with SIS skills include include defence and security, renewables, aerospace, subsea, intelligent transport, environmental science, built environment, energy and the smart grid, healthcare and drug discovery, medical diagnostics, and food and drink.

Career prospects

You will gain an understanding of sensor-based systems applicable to a whole host of markets supported by CENSIS.

Career opportunities are extensive. Sensor systems are spearheading the next wave of connectivity and intelligence for internet connected devices, underpinning all of the new ‘smart markets’, e.g., grid, cities, transport and mobility, digital healthcare and big data.

You will graduate with domain-appropriate skills suitable for a range of careers in areas including renewable energy, subsea and marine technologies, defence, automotive engineering, intelligent transport, healthcare, aerospace, manufacturing and process control, consumer electronics, and environmental monitoring.

Globally, the market for sensor systems is valued at £500Bn with an annual growth rate of 10%. The Scottish sensor systems market is worth £2.6Bn pa. There are over 170 sensor systems companies based in Scotland (SMEs and large companies), employing 16,000 people in high-value jobs including product R&D, design, engineering, manufacturing and field services.

Read less
As a researcher in the School of Pharmacy, you have the opportunity to liaise with leaders in the pharmaceutical and biotechnology industries and to develop strong national and international collaborations. Read more
As a researcher in the School of Pharmacy, you have the opportunity to liaise with leaders in the pharmaceutical and biotechnology industries and to develop strong national and international collaborations.

Research in the School is diverse and multidisciplinary and is generally grouped around two distinct strands: 1) pharmacy education and community engagement with prescribing, and 2) physical pharmaceutics and drug development and delivery. Subsequently, there are opportunities for research students to work with academics across varied topics, including solid-state drug development and biologics delivery.

As a postgraduate student, you can benefit from specialist laboratory space and equipment, a wide range of training programmes designed to enhance your research and transferable skills, as well as support from dedicated academic supervisors.

All of our research students are encouraged to submit papers to scientific journals, present their findings at conferences in the UK and overseas, and share knowledge with colleagues across the University.

Research Areas, Projects & Topics

The School’s research is diverse and multidisciplinary and it includes the following areas:
-Solid state drug development
-Crystal engineering of salts/polymorphs/co-crystals
-Biologics delivery
-Nanomedicine and targeted drug delivery
-Mucosal delivery of biologics
-Mucosal models to study drug delivery
-Antimicrobials and vaccines
-Organic chemistry
-Bioconjugations and Bio-inspired chemistry
-Development of sequence selective DNA cross-linking agents
-Health education
-Personalised care
-Data-based medicine and assessment of individual risks/benefits
-Application and use of evidence, and pharmacy-led clinical medication reviews

How You Study

Our research environment aims to support students through a specific framework. This covers all aspects of the postgraduate experience, including supervisor interaction, training and access to the facilities and allied support through the Directors of Research and Postgraduates Studies, from initial application to final completion.

All postgraduates are actively encouraged to prepare submission to scientific journals in their field. Students are expected to present their findings to national and international conferences, and also to participate in internal research meetings.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor(s), with the regularity of these varying depending on your own individual requirements, subject area and the stage of your programme.

How You Are Assessed

A PhD is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic to a group of academics. You are also expected to demonstrate how your research findings have contributed to knowledge or developed existing theory or understanding.

Facilities

Our Science and Innovation Park, home to the Joseph Banks Laboratories, provides specialist teaching suites and laboratories for study and research. It is a regional hub for science industry innovation and development.

Career and Personal Development

Graduates may progress to careers in the pharmaceutical, cosmetics or food industries, while others may choose to work within academia.

Read less
As well as giving a solid scientific understanding, the course also addresses commercial, ethical, legal and regulatory requirements, aided by extensive industrial contacts. Read more
As well as giving a solid scientific understanding, the course also addresses commercial, ethical, legal and regulatory requirements, aided by extensive industrial contacts.

Students who successfully complete the course will have acquired skills that are essential to the modern biomedical and healthcare industry, together with the expertise required to enter into management, product innovation, development and research.

Programme Structure

The MSc programmes in Biomedical Engineering are full-time, one academic year (12 consecutive months). The programmes consist of 4 core (compulsory) taught modules and two optional streams. Biomedical, Genetics and Tissue Engineering stream has 3 modules, all compulsory (see below). The second option, Biomedical, Biomechanics and Bioelectronics Engineering stream consists of 5 modules. Students choosing this option will be required to choose 60 credit worth of modules. See individual course pages.

The taught modules are delivered to students over two terms; Term 1 (September – December) and Term 2 (January – April) of each academic year. The taught modules are examined at the end of each term, and the students begin working on their dissertations on a part-time basis in term 2, then full-time during the months of May to September.

Core Modules
Biomechanics and Biomaterials (15 credit)
Design and Manufacture (15 credit)
Biomedical Engineering Principles (15 credit)
Innovation, Management and Research Methods (15 credit)

Additional Compulsory Programme Modules
Tissue Engineering and Regenerative Medicine (15 credit)
Genomic Technologies (15 credit)
Molecular Mechanisms of Human Disease (30 credit)
Dissertation (60 credit)

Module Descriptions

Biomechanics and Biomaterials

Main topics include: review of biomechanical principles; introduction to biomedical materials; stability of biomedical materials; biocompatibility; materials for adhesion and joining; applications of biomedical materials; implant design.

Biomedical Engineering Principles

Main topics include: bone structure and composition; the mechanical properties of bone, cartilage and tendon; the cardiovascular function and the cardiac cycle; body fluids and organs; organisation of the nervous system; sensory systems; biomechanical principles; biomedical materials; biofluid mechanics principles, the cardiovascular system, blood structure and composition, modelling of biofluid systems.

Design and Manufacture

Main topics include: design and materials optimisation; management and manufacturing strategies; improving clinical medical and industrial interaction; meeting product liability, ethical, legal and commercial needs.

Genomic Technologies

Main topics: General knowledge of genomic and proteomic technology; Microarrary technology; Transgenic technology. Drug discovery technology; Translational experiment-design and interpretation; Sequencing in microbiology research

Innovation and Management and Research Methods

Main topics include: company structure and organisation will be considered (with particular reference to the United Kingdom), together with the interfacing between hospital, clinical and healthcare sectors; review of existing practice: examination of existing equipment and devices; consideration of current procedures for integrating engineering expertise into the biomedical environment. Discussion of management techniques; design of biomedical equipment: statistical Procedures and Data Handling; matching of equipment to biomedical systems; quality assurance requirements in clinical technology; patient safety requirements and protection; sterilisation procedures and infection control; failure criteria and fail-safe design; maintainability and whole life provision; public and environmental considerations: environmental and hygenic topics in the provision of hospital services; legal and ethical requirements; product development: innovation in the company environment, innovation in the clinical environment; cash flow and capital provision; testing and validation; product development criteria and strategies.

Molecular Mechanisms of Human Disease

Main topics: The module will focus on the following subject material with emphasis on how these processes are altered in a variety of human diseases. Where appropriate, therapeutic intervention in these processes will be highlighted. Signalling pathways resulting from activation of membrane, intracellular or nuclear receptors will be discussed. Examples include: Mammalian iron, copper and zinc metabolism, G-Protein coupled receptor signalling, Wnt signalling, JAK/STAT signalling and cytokine signalling, Steroid signalling

Tissue Engineering and Regenerative Medicine

Main topics: Fundamentals of tissue structure, function and pathology. Tissue regeneration. Tissue engineering substitutes. Cells, cell culture, stem cells, cell and gene therapy. Extracellular matrix, structure, scaffolds. Cell signalling, growth factors, cytokines, neurotransmitters, receptors and other signalling molecules. Bioreactors, ex-vivo and in-vivo. Engineering host tissue responses.

Dissertation

The choice of Dissertation topic will be made by the student in consultation with academic staff and (where applicable) with the sponsoring company. The topic agreed is also subject to approval by the Module Co-ordinator. The primary requirement for the topic is that it must have sufficient scope to allow the student to demonstrate his or her ability to conduct a well-founded programme of investigation and research. It is not only the outcome that is important since the topic chosen must be such that the whole process of investigation can be clearly demonstrated throughout the project. In industrially sponsored projects the potential differences between industrial and academic expectations must be clearly understood.

Read less
The MSc in Biotherapeutics educates students on the practical uses of molecular advances in the discovery of protein and other biomolecular drug candidates and their development into biotherapeutics. Read more

Programme Description

The MSc in Biotherapeutics educates students on the practical uses of molecular advances in the discovery of protein and other biomolecular drug candidates and their development into biotherapeutics. It will provide students with a comprehensive understanding of the development of biotherapeutics, beginning with pre-clinical modelling and target identification together with antibody engineering, biochemical and biophysical characterisation, and development issues for bioprocessing. Systems biology of biotechnological processes and approaches to the analysis of proteomics-based discovery data will be covered in detail together with mathematical modelling, bioinformatics analysis and data integration strategies. Regulatory issues, and innovation and commercialisation strategies, will also be covered. Mammalian cell culture and bioprocess laboratory structure will be comprehensively covered in addition to novel approaches to therapeutic development. A practical drug discovery laboratory project will form a significant component of the experience of how candidates are identified and brought through the development pipeline.

Key Fact

This programme is the culmination of close collaboration between the UCD School of Biomolecular and Biomedical Science, Systems Biology Ireland and the Biopharmaceutical Industry in Ireland and across the world.

Course Content and Structure

The structure of the programme is as follows:

Semester 1
• Biotherapeutic Discovery and Development I
• Professional Career Development
• Recombinant DNA Technology
• Business of Biotechnology & Science
• Biomedical Diagnostics
• High Content Screening Microscopy
• Pharmacology & Drug Development

Semesters 2 & 3
• Biotherapeutic Discovery and Development II
• Systems Biology in Drug Development
• Professional Career Development
• Bioprocessing Laboratory
• Emerging Issues in Biotechnology
• Regulatory Affairs
• Microbial & Animal Cell Products
• Project – Biotherapeutic Development

Career Opportunities

This advanced graduate degree in Biotherapeutics has been developed in consultation with the Biopharmaceutical industry and is recognised and valued by them. A key feature is the undertaking of a significant drug discovery and development laboratory project which is reviewed by industry partners. This engagement is designed to help graduates identify opportunities in the industry at the earliest stage. Prospective employers include: Novartis, Glaxo SmithKline, Eli Lilly, Johnson & Johnson, Pfizer, Janssen Biologics, AstraZeneca, MSD, Bristol Myers Squibb, Abbott, Sanofi.

Facilities and Resources

Students on this programme will benefit from the use of a research skills laboratory in the prestigious UCD Conway Institute, as well as state-of-the-art teaching and laboratory facilities
in the new O'Brien Centre for Science.

Read less
This graduate entry master course enables science graduates to become registered pharmacists. It will provide you with a comprehensive theoretical base, including chemical, biological, physiological, pharmaceutical and pharmacotherapeutics studies. Read more
This graduate entry master course enables science graduates to become registered pharmacists. It will provide you with a comprehensive theoretical base, including chemical, biological, physiological, pharmaceutical and pharmacotherapeutics studies.

In this course you’ll complete two additional study periods over the summer period, as well as two usual semesters each year. The first study period is an intensive six-week training program involving 30 hours weekly contact and continuous assessment. In this period you’ll be introduced to important concepts in pharmaceutics, pharmaceutical chemistry and pharmaceutical practice.

The rest of your first year will focus on pharmaceutical science, pharmaceutical chemistry, pharmacology and pharmaceutical practice. At the end of your first year you’ll complete a community pharmacy placement under the supervision of a practicing pharmacist to develop skills in the clinical setting.

In your second year you’ll focus on pharmacotherapy and develop research skills. You’ll also complete a hospital placement to cement your practical skills.

Throughout this course you’ll use high quality laboratories and facilities designed to enhance teaching and provide you with essential practical skills. The school laboratories include a model dispensary, a manufacturing laboratory, an asepsis suite and laboratories for microbiological, chemical and pharmacological investigations.

Professional recognition

This course is accredited by the Australian Pharmacy Council.

Graduates are required to complete a preregistration training period and register as a pharmacist before being able to commence practice in most areas of the profession. Graduates are able to register to practice in all states and territories in Australia and New Zealand.

This course provides a great stepping stone to registration in other countries throughout Asia and in the United Kingdom and the Republic of Ireland. Some countries may require fulfilment of additional practical training programs.

Career opportunities

Graduates are both highly employable and sought after. As a graduate, you may seek a career in health care working in the fields of community, hospital or consult pharmacy.

The role of the pharmacist within community pharmacy has expanded to include assisting patients with the management of their chronic diseases, such as obesity, asthma and diabetes. In the future, pharmacists in the primary care setting are going to become increasingly involved in the care of patients through multidisciplinary teams. The setting of practice of pharmacy will expand from the community pharmacist to include medical clinics and the patient’s home. The role of pharmacists as prescribers is currently under investigation.

Within hospitals, pharmacists provide a diverse range of services from drug distribution and dispensing, provision of drug information and education, through to ward-based clinical pharmacy services where they participate in patient care as part of a team. Hospital pharmacists may also engage in quality assurance programs and clinical research.

Consultant pharmacists provide medication management review services. They work in collaboration with patients and their doctors to ensure the patient achieves the best outcomes from their drug therapy. Such pharmacists work in aged care facilities and/or patients’ homes.

Graduates may also develop a career in the pharmaceutical industry which employs pharmacists in a number of areas including research roles in the development of medicines, production of pharmaceuticals, quality assurance, regulatory services, marketing and drug information.

Graduates may also work for the State or Federal Government in regulatory and policy roles.

Credit for previous study

Applications for credit for recognised learning (CRL) are assessed on an individual basis.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X