• University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Vlerick Business School Featured Masters Courses
OCAD University Featured Masters Courses
University of Leeds Featured Masters Courses
"drug" AND "formulation"×
0 miles

Masters Degrees (Drug Formulation)

We have 37 Masters Degrees (Drug Formulation)

  • "drug" AND "formulation" ×
  • clear all
Showing 1 to 15 of 37
Order by 
The global drug delivery sector is set to attain significant growth over the next five years. This is driven by the introduction of technologies with improved product features. Read more
The global drug delivery sector is set to attain significant growth over the next five years. This is driven by the introduction of technologies with improved product features. As the pharmaceutical industry continues to innovate in order to maintain growth and profitability, the use of new drug delivery technologies is being explored for many treatment areas.

The introduction of new routes of delivery combined with increasing research and development spend, has created a new market for drug delivery and there is a market need for employees with matched skill sets.

What you'll study

The programme provides specialist research training and practical experience in the design and development of effective drug delivery systems, as well as promoting directly applicable skills for career and professional development.

This course is designed to provide a robust postgraduate training and skills development for life science or physical science-based graduate students seeking employment in the pharmaceutical industry or at the life sciences interface.

You'll gain an overview of drug delivery and have hands-on experience of pharmaceutical formulation and drug delivery.

The course aims to:
-Develop your understanding of the biology of specific targets for drug-based intervention
-Develop your understanding of the biopharmaceutical, pharmacokinetic & physicochemical principles important in the design and formulation of drug dosage systems
-Address the latest advances in drug delivery & targeting & develop your understanding of the concept of drug targeting using drug -Carriers & provide an in depth appreciation of the strategies available & utilised for a particular drug & biological barrier
-Enhance your research skills & transferable skills relevant to drug delivery in preparation for a career in the pharmaceutical industry or academia including leadership skills & entrepreneurship
-Develop your understanding of advanced research methodology to enable you to carry out independent work of publishable standard

Major projects

Within your project, you'll have the exciting opportunity to work alongside leading researchers developing the next generation of drug delivery systems. We offer a range of topics from nano to macro drug delivery systems and we consider a wide range of delivery strategies.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences offers an excellent environment for research and teaching. It’s located in a new building with several laboratories. All are fitted with the latest equipment.

The course will also provide students with full experiential learning with facilities including:
-Formulation & manufacturing facilities
-Thermo-analytical facilities
-Particle, microparticle & nanoparticle size & surface analysis
-Dissolution analysis facilities
-Freeze-drying
-In-vitro analysis

The course is also supported by access to the full range of analytical spectroscopic and chromatographic instrumentation for the characterisation of drug and drug delivery components, including:
-Nuclear Magnetic Resonance (NMR)
-Ultra-violet (UV)
-Attenuated total reflectance fourier transform infrared spectroscopy (ATR_FTIR)
-Mass spectrometry (MS)
-High-pressure liquid chromatography (HPLC)
-Gas chromatography (GC)
-Liquid chromatograph/gas chromatography mass spectrometry (LC/GC-MS)

Careers

This Masters programme is designed to support your career journey into the field of drug delivery and pharmaceutical sciences and provide the support for you to take up an exciting role within the pharmaceutical industry or continue your research career into a PhD programme.

Read less
Help improve human or animal health through creating new or more effective drugs and medicines. Learn the research processes used to identify drug targets and develop new therapeutics. Read more

Help improve human or animal health through creating new or more effective drugs and medicines. Learn the research processes used to identify drug targets and develop new therapeutics.

Your studies will combine the biological sciences with chemistry, giving you the skills to target, design, synthesise, create and assess new drugs. You'll also learn about protecting intellectual property, assessing the financial viability of drugs and the pre-clinical and clinical trial processes.

Tailor your studies to your strengths, interests and career goals. You'll learn a mix of academic and practical skills that are closely aligned to the needs of industry.

The Master of Drug Discovery and Development is best suited to very able students with backgrounds in chemistry or relevant life-science subjects such as biochemistry, biomedical science, pharmacy or pharmacology. It is an intensive one-year taught programme, unique in New Zealand.

Learn from the best

Learn from academics and professionals who are leaders in the field and have experience in successfully taking drugs to market. Each course is taught by at least three academics so you'll be exposed to a wide range of expertise.

Drug Discovery and Development is taught by the Schools of Chemical and Physical Sciences and Biological Sciences in collaboration with the University's Ferrier Research Institute and the Centre for Biodiscovery.

You'll be able to take advantage of the research expertise of the Ferrier Research Institute in drug design and development, and if you're doing a Master's, you'll be working alongside the more than 30 scientists who make up the largest carbohydrate research team in the world. The Institute also has its own manufacturing facility so you'll have the opportunity to observe the drug development process from discovery to product.

You'll also benefit from the programme's links with the Centre for Biodiscovery where you will interact with the research teams that are actively discovering, designing and assessing novel bioactive compounds.

Drugs in the real world

Get wise to the real-world issues facing pharmaceutical development and make the most of the hard-earned experiences of staff who have worked in the local and international biotech industry. Learn not only how to handle chemicals on a large scale, but to develop the mindset to do this in a way that is safe, reliable and robust—so you end up providing medicines that will change people’s lives.

Victoria offers three postgraduate qualifications in Drug Discovery and Development. Choose the one that suits your career goals, time constraints and financial situation.

  • Master of Drug Discovery and Development
  • Postgraduate Diploma in Drug Discovery and Development
  • Postgraduate Certificate in Drug Discovery and Development

If you begin by enrolling in the Certificate or Diploma programme you can continue on to complete your Master's. Or if you enrol in the Master's but can't complete it, for whatever reason, you may have completed enough points to be awarded a Certificate or Diploma.

What you'll study

Each qualification includes the core courses DRGD 401 Chemical Biology and Drug Discovery, and a choice between DRDG 402 Drug Design or CHEM 421 Organic Chemistry and Bio-organic Chemistry.

After that you'll choose from selected courses from the study areas of Drug Discovery and Development, Biomedical Science, Biotechnology, Chemistry, Clinical Research and Microbiology.

All three qualifications give you the opportunity to do at least some research.

Postgraduate Certificate

You'll complete four courses worth 60 points made up of the two core courses and two further choices.

Postgraduate Diploma

You're likely to take seven courses that will include the two core courses, your elective options and the 30-point Research Preparation course.

Master's

You'll study for your Master's in two parts over three trimesters. In Part 1, the first two trimesters, you're likely to take seven courses that will include the core courses and a 30-point Research Preparation course.

In Part 2, you'll complete a full research project. Choose between DRDG 561 Applied Research Project, where you'll complete one or more problem-solving projects, or DRGD 590 Research Project, where you'll focus on medicinal chemistry and the formulation of active pharmaceutical products. In some cases you may be able to replace the research project with the thesis course DRGD 595.

Your Master's may be endorsed with a specialisation in either Drug Discovery, Drug Development or Chemical Biology. Check the requirements to find out what you need to do for these.

Workload and duration

You can expect a workload of 40–45 hours a week for much of your studies.

The MDDD can be completed in 12 months full time, or in two years of part-time study but you'll need to discuss this option with the programme directorfirst. The Diploma will take you two trimesters and the Certificate one trimester.

Location

You'll study at Wellington's Kelburn campus where you will have access to state-of-the-art research facilities. Students doing a research programme will also work in partnership the world-renowned Ferrier Research Institute in Lower Hutt.

Research topics

Be part of a dynamic and collaborative scientific research community. Past students' research areas in drug discovery and development have included:

  • development of a new scaled-up catalytic process for a high value fine chemical
  • isolation and characterisation of a novel bioactive from a New Zealand marine organism
  • formulation of a novel therapeutic for cancer immunotherapy.

Community

Become part of an active community of scientists. Postgraduate study at Victoria will help you build valuable relationships and networks with peers, university staff and future colleagues. You'll have unprecedented access to world industry leaders who visit as guest lecturers and run seminars with students.

Careers

You'll have the broad skills you need to work in drug discovery in companies, universities, research institutes or with drug regulatory authorities. You might work within the pharmaceutical, bioanalytical or chemical industries, or take your skills into nutraceuticals or agrichemicals.



Read less
Our Molecular Biophysics for Medical Sciences MRes offers you the chance to learn about biophysics, molecular biology and bioinformatics, and to undertake an extensive research project. This course is excellent preparation for a PhD or a foundation for high-level entry into the industry. . Read more

Our Molecular Biophysics for Medical Sciences MRes offers you the chance to learn about biophysics, molecular biology and bioinformatics, and to undertake an extensive research project. This course is excellent preparation for a PhD or a foundation for high-level entry into the industry. 

Key benefits

  • Possibility to carry out research projects in biophysics in Singapore
  • 95% of students have gone on to study for PhD at top tier Universities and Institutions over the past 8 years
  •   Students often obtain a publication in a top quality journal (high Impact Facto) from their project research
  • Broad range of research topics to choose from.
  • Up-to-date biophysics expertise is increasingly valued by pharmaceutical and biotechnology laboratories.
  • Located in the heart of London.

Description

This Molecular Biophysics for Medical Sciences MRes programme will give you a thorough exposure to practical biophysics research in a world-leading centre that has been at the forefront of biophysics research since it opened 60 years ago. Our early successes include the elucidation of the structure of DNA and the development of the sliding filament model of muscle. More recently we have pioneered breakthroughs in the areas of muscle and immunoglobulin function, molecular-tweezers development, cell motility, DNA recognition, and the development of new techniques in cellular microscopy.

The research component of your MRes will be complemented by a series of in-depth modules in molecular biophysics and molecular biology.

You will also have the exciting option of carrying out your research project in Singapore to produce outstanding science.

Quantitative skills in biology will be incredibly important for the next generation of professional scientists working in industry and academia. We recognise this, and our MRes offers you an integrated training programme ideally suited to instruct you in the biophysical techniques to meet this challenge.

Our MRes will give you an excellent foundation for a career in academic research, but it also provides a robust foundation for entering industry at a high level, where biophysics has applications ranging from drug formulation and delivery to structure-based drug discovery and the development of medical and scientific imaging techniques.

Course purpose

Acquiring quantitative skills in biology is of paramount importance for the next generation of professional scientists working in industry and academia. The MRes (Master of Research) in Molecular Biophysics at King's College London offers an integrated training programme ideally suited to learn biophysical techniques crucially important to meet this challenge.

We deliver an excellent foundation for students wishing to pursue careers in academic research. Equally, our MRes provides a robust foundation for high level entry into industry where biophysics has applications ranging from drug formulation and delivery, structure-based drug discovery, and the development of medical and scientific imaging techniques.

Our Master is designed for outstanding graduates in the Life and Physical sciences (Biology, Biochemistry, Chemistry, Physics) who want to apply their knowledge to biological problems at the research level. Taught modules cover biophysics and molecular biology techniques with elements of bioinformatics.

Course format and assessment

Teaching

We will provide you with seven hours of lectures and seminars each week. In your first semester you’ll also have 10 to 12 hours of lab work and 35 hours in your second semester. We will expect you to undertake 15 to 20 hours of self-study.

Typically, one credit equates to ten hours of work.

Assessment

We will assess you through a combination of exams, coursework and practical assessment for your first two modules. For the Molecular Biophysics Research Project, we will assess you through a thesis, a viva and a presentation.

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However they are subject to change. 

Career prospects

Many of our graduates continue to study PhDs. Others transfer their skills and knowledge to careers in the pharmaceutical and biotechnology industry, cancer research, medicine, scientific administration within research councils and scientific publishing.



Read less
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics). Read more
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics).

You’ll gain a thorough understanding and awareness of your chosen area of pharmacy, the research methods required to complete a final supervised research project and an overview of the drug discovery process.

These courses are primarily designed to prepare you for an academic or industrial career in the relevant area. You may be a scientist already working within the pharmaceutical industry or a recent science graduate.

You will undertake a variety of compulsory modules and a research project. This project will last approximately four months and you will work under the supervision of recognised experts in their field. The project allows you to undertake a detailed investigation and develop practical expertise in a specialist pharmaceutical sciences area. The University also has strong links with numerous pharmaceutical companies - there may be the opportunity to undertake your project in collaboration with one of these companies.

You will gain an overview of the drug development process from concept to market, gaining hands-on experience of pharmaceutical formulation and drug delivery.

What you will study

All students studying one of our three pharmacy MSc courses will take the following core modules:
-Research Methods 1: Professional Development
-Research Methods 2: Communication Skills
-Research Project
-Drug Discovery

Depending upon the course you chose, you will also undertake the following modules:
-Chemotherapy & Selective Toxicity
-Drug Dosage Form & Design
-Principles of Product Analysis and Validation
-Drug Delivery and Targeting

Learning, teaching & assessment

Ranked in the UK's top 10 in the 2017 Complete University Guide, Aston Pharmacy excellent links with the profession. In addition, our research profile ensures relevant, expertise-led teaching for the students who enrol onto our courses each year. We have a long history of proving sector-leading courses - did you know that Aston Pharmacy School can trace its roots back to 1841?

You will learn in lectures, seminars, workshops and tutorials. Some modules may also use computer modelling and simulation sessions.

Our courses are assessed by a mixture of coursework, examinations, practical work and oral and written presentations. The research project module will be assessed on the basis of a submitted project report and an oral defence of a poster.

Your future career prospects

Graduates from our MSc programmes have taken up careers within the Pharmaceutical Industry in various disciplines such as analytical sciences, formulation development and project management. Our programmes provide the wider context and practical laboratory experience for pursuing careers in regulatory affairs, scientific writing and further studies.

Recent graduates have entered roles such as:
-Assistant Lecturer, University of Sulaimaniyah
-Associate Product Manager, AstraZeneca
-Business Development Manager, Crete Designs Limited
-Clinical Technician / Worker, Bridgewater Hospital
-Compound Technician, Sterling Pharmaceuticals
-Drug Designer, Unspecified Drug Company
-Drug Safety Specialist, PPD
-Drug Store Manager, Qaiwan group company
-Inhalation R & D Analyst, Aesica Pharmaceuticals Ltd (R5)
-Lecturer, University of Lagos, Nigeria
-Locum Pharmacist, various
-Molecular Modeller / Community Pharmacist, Verax Care Pharmacy
-OSD Technologist, GSK
-Pharma Benefit Associate, UnitedHealth Group
-Pharmacist, Government of India
-Pharmacist, Kerbala University
-Pharmacologist, Unspecified
-PhD Research Scholar, NIRMA University
-Recruitment Consultant, SRG
-Regulatory affairs trainee, PharmaLeaf India Pvt Ltd
-Research assistant, University of Leeds
-Research Scientist, Pluss Polymers
-Research Scientist, Wintean
-Researcher, Sunny Pharmtech Inc.
-Sales Relationship Coordinator, Wesley Assurance Society
-Science Teacher, Perry Beeches School
-Senior Regulatory officer, Roche Pharmaceuticals

Read less
Overview. The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. Read more
Overview
The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. The aim is to prepare graduates to make contributions, as individuals and members of a team, to research-oriented activities in the biomedical industries and related service sectors, or academia. The courses are also well-suited to students wishing to upgrade a first degree, change field, or gain valuable laboratory experience before employment or a PhD. The Strathclyde Institute of Pharmacy and Biomedical Sciences represents the largest Pharmacy research group in the UK, with 55% of its staff rated as either world-leading or internationally excellent in terms of originality, significance and rigour (data: Research Assessment Exercise 2008). The University of Strathclyde has invested £30M in a world-class, pioneering centre for biomedical and pharmaceutical sciences teaching and research, opened Aug 2010. Students will find themselves in stimulating, unique environment on account of the strongly multidisciplinary nature of the Institute. Combining fundamental and applied research across the areas of bioscience and pharmacy, SIPBS builds on its record of success in drug and vaccine discovery and development. The Institute engages with industry and the health services, ensuring that its excellent fundamental research is translated into products that are of benefit to health and society. For more information on SIPBS go to http://www.strath.ac.uk/sipbs

Course outline

An MRes degree is focussed on research and students will spend 8 months undertaking a laboratory-based project.
To support their chosen research project, students choose advanced-level taught courses in a named specialisation, from the following areas:

Taught classes delivered through lectures, workshops and practical classes in four areas:
1. Transferable skills training in data mining, interpretation and presentation; experimental planning, personal effectiveness, ethics in research
2. Commercialisation and entrepreneurship
3. MRes-specific classes relevant to subject area

Biomedical Sciences

Example research projects:
1. Antileishmanial activity of extracts and compounds from Monodora myristica
2. Imaging and modelling of cancer development
3. Endothelial progenitor cell expression and differentiation
4. Targeted radiotherapy for cancer
5. The involvement of pulmonary veins in atrial fibrillation: electrical properties
6. Reducing bacterial resistance to antibiotics
7. Development of neural stem cells with increased levels of the autophagy cell survival pathway
8. Investigating the role of Sigma 54 in Pseudomonas aeruginosa virulence
9. Transcriptional network analysis of the Escherichia coli core stress response.
10. Identification of novel anti-microbial compounds targeted at biofilm formation

Drug Delivery systems

Example research projects
1. Nanoparticulate formulations of insulin and their analysis
2. Mesoporous silicas for oral delivery of cyclosporine
3. Bioprocessing of biopharmaceuticals
4. Modified and time-delayed oral solid-dose release formulations
5. Nasal formulations of poorly soluble compounds
6. Reducing bacterial resistance to antibiotics: establishing, optimising and implementing a high throughput assay to discover natural product derived inhibitors of metallo beta-lactamase.
7. Imaging of dermal formulations using Raman microscopy techniques
8. Antileishmanial activity of extracts and compounds from Monodora myristica
9. Anti-trypanosomal active triterpenoids from some African Propolis
10. Investigation into the potential therapeutic properties of marine organisms
11. Photo-triggered adhesion of mammalian cells

Drug Discovery

Projects in the areas of :
1. Drug Delivery
2. Molecular Biology
3. Pharmacology
4. Pharmaceutical Materials and Formulation
5. Toxicology

Neuroscience

Projects in the areas of:
1. Electrophysiology
2. Stem cell biology for regenerative purposes
3. Cell biology
4. Inflammation
5. In vitro culture systems
6. Functional genetics

How to Apply
Applicants should apply through the University of Strathclyde on-line application form: http://pgr.strath.ac.uk indicating "Masters by Research", and named specialisation as appropriate. Applicants are not required to submit a detailed research proposal at this stage.

Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
This course is designed for graduates of chemistry, pharmacy and other related sciences who are contemplating a career in the pharmaceutical industry, academia, the NHS or with government agencies such as drug licensing authorities. Read more
This course is designed for graduates of chemistry, pharmacy and other related sciences who are contemplating a career in the pharmaceutical industry, academia, the NHS or with government agencies such as drug licensing authorities.

The programme provides a good background in basic pharmaceutical sciences followed by advanced training in drug discovery, drug product design, drug delivery, pharmacology, microbiology and regulatory processes. It also offers advanced practical experience and supervised training, together with an opportunity to undertake an in-depth research project as part of an active research group.

This course is suitable for both UK and non-UK graduates, and international students benefit from our excellent support networks.

Scholarships

Scholarships are available for this course. Please click the link below for more information.
https://www.brighton.ac.uk/studying-here/fees-and-finance/postgraduate/index.aspx

Course structure

This course is one calendar year, full-time, involving 30 weeks of taught modules divided into two 15-week semesters, and a project which is largely carried out during the remaining time.

Students may have the opportunity to undertake a short industrial placement (optional) during their second semester. A four-month research project is integrated into the second semester, on completion of which you will be required to submit a 10,000 word dissertation. The assessment of each taught module includes coursework and a written examination paper at the end of semester two.

Past research project topics include the development of novel transdermal formulations containing naturally occurring antioxidants as sunscreen agents, and the use of mucoadhesive gels for vaginal drug delivery.

Syllabus

During the course you will:

• develop knowledge and understanding of the role of drug discovery; biological processes involved in drug action; drug product design; quality assurance, quality control and regulatory affairs
• develop knowledge and understanding of the chemical principles underlying the design, action and disposition of drug molecules
• appreciate aspects of drug ADME and the underlying mathematical principles, mechanisms of action and adverse effects of drug treatments and the phenomenon of drug interactions
• develop an understanding of the microbiological processes involved in the development and quality assurance of non-sterile and sterile medicines and devices including biotechnology products
• develop knowledge and understanding of the basic principles and current trends in the formulation design and manufacture of pharmaceutical dosage forms
• deveop an appreciation of the physicochemical and biological factors which affect uniformity, performance, stability and bioavailability of pharmaceutical products.

Modules:

Research Project
Research Methods
Pharmacology and Drug Development
Regulatory Affairs
Industrial Pharmacy, QA and QC
Current Research in Pharmacy and Pharmacology

Options:

Industrial Placement
Advanced Pharmaceutical Analysis
Advanced in Biochemical and Clinical Analysis
Quality Issues in Complementary Therapies That Utilise Plants
New Medicinal Products: From Inception to Market
Industrial Manufacturing Processes
Advanced Drug Delivery

Careers and Employability

This course will equip you for a career in the pharmaceutical industry, NHS, academic centres, research institutions or with government agencies such as drug licensing authorities. Our graduates are also well placed to apply for a PhD.

Read less
The Drug Sciences MRes is for graduates wishing to pursue a career in research. The programme provides a flexible opportunity for high-level research-based training and acquiring a range of academic skills that will prepare students for PhD-level study or a career in biotech and pharmaceutical industries. Read more
The Drug Sciences MRes is for graduates wishing to pursue a career in research. The programme provides a flexible opportunity for high-level research-based training and acquiring a range of academic skills that will prepare students for PhD-level study or a career in biotech and pharmaceutical industries.

Degree information

This programme includes taught and research components and runs for 12 months. The research project begins immediately when students join their chosen laboratory. Project work continues throughout the whole year. The taught component is tailored to individual research programmes. Students select the appropriate modules for their chosen research discipline. There is also core training in research methods and transferable skills.

Students undertake modules to the value of 180 credits.

The programme consists of both a taught component (30 credits) and a larger research component (150 credits). The taught component will be drawn from a range of specialist options taught by the School of Pharmacy. Students will study either one 30-credit or two 15-credit modules. Not all modules will be available every year.

Core modules
-Dissertation

Optional modules - students select either one or two modules from a wide range including:
-Medicinal Natural Products
-New Drug Targets in the CNS
-Anticancer Personalised Medicines
-Modern Aspects of Drug Discovery
-Analysis and Quality Control
-Preformulation
-Formulation of Small Molecules
-Personalised Medicines
-Natural Product Discovery
-Adverse Drug Reactions and Biomarkers
-Advanced Structure Based Drug Design
-Pharmaceutical Biotechnology
-Clinical Pharmaceutics
-Nanomedicines
-Formulation of Natural Products and Cosmeceuticals
-Developmental Neurobioloy
-Neurobiology of Degeneration and Repair
-Cognitive Systems Neuroscience
-Systems and Circuit Neuroscience
-Medicinal Chemistry

Dissertation/report
All students undertake a programme of full-time research equivalent to approximately 10 months' duration. This research will be written up as a dissertation at the end of the period of study.

Teaching and learning
The programme is delivered through a combination of lectures and seminars, laboratory work, participation in the research training programme. Assessment is through written examination, research dissertation, oral presentation and viva voce examination.

Careers

Graduates of this programme can expect to become proficient research scientists equipped for a career in research, in the pharmaceutical industry, or with a government regulatory body.

Why study this degree at UCL?

This MRes in Drug Sciences is conducted primarily as an in-depth and novel research project at the forefront of research in the area of medical and pharmaceutical sciences within the internationally recognised UCL School of Pharmacy.

Thus students gain research experience and training in their chosen research laboratory and also importantly, they have the opportunity to interact with expert researchers in all aspects of the drug discovery and delivery process.

Read less
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics). Read more
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics).

You’ll gain a thorough understanding and awareness of your chosen area of pharmacy, the research methods required to complete a final supervised research project and an overview of the drug discovery process.

These courses are primarily designed to prepare you for an academic or industrial career in the relevant area. You may be a scientist already working within the pharmaceutical industry or a recent science graduate.

You will undertake a variety of compulsory modules and a research project. This project will last approximately four months and you will work under the supervision of recognised experts in their field. The project allows you to undertake a detailed investigation and develop practical expertise in a specialist pharmaceutical sciences area. The University also has strong links with numerous pharmaceutical companies - there may be the opportunity to undertake your project in collaboration with one of these companies.

Pharmacokinetics is a key aspect of drug safety and investigates the fate of a drug in the body, and how the substance is absorbed, distributed, metabolised and eliminated. Develop your skill and knowledge in the application of pharmacokinetics to the design and optimisation of new therapeutics. This course has been developed with an emphasis on describing mechanistic approaches to assessing and predicting the pharmacokinetics of drugs throughout the drug development process. You will encounter a broad range of experiences in the application of pharmacokinetics from early discovery and development, through to market authorisation and clinical applications.

What you will study

All students studying one of our three pharmacy MSc courses will take the following core modules:
-Research Methods 1: Professional Development
-Research Methods 2: Communication Skills
-Research Project
-Drug Discovery

Depending upon the course you chose, you will also undertake the following modules:
-Chemotherapy & Selective Toxicity
-Drug Dosage Form & Design
-Pharmacology

Learning, teaching & assessment

Ranked in the UK's top 10 in the 2017 Complete University Guide, Aston Pharmacy excellent links with the profession. In addition, our research profile ensures relevant, expertise-led teaching for the students who enrol onto our courses each year. We have a long history of proving sector-leading courses - did you know that Aston Pharmacy School can trace its roots back to 1841?

You will learn in lectures, seminars, workshops and tutorials. Some modules may also use computer modelling and simulation sessions.

Our courses are assessed by a mixture of coursework, examinations, practical work and oral and written presentations. The research project module will be assessed on the basis of a submitted project report and an oral defence of a poster.

Your future career prospects

Graduates from our MSc programmes have taken up careers within the Pharmaceutical Industry in various disciplines such as analytical sciences, formulation development and project management. Our programmes provide the wider context and practical laboratory experience for pursuing careers in regulatory affairs, scientific writing and further studies.

Recent graduates have entered roles such as:
-Assistant Lecturer, University of Sulaimaniyah
-Associate Product Manager, AstraZeneca
-Business Development Manager, Crete Designs Limited
-Clinical Technician / Worker, Bridgewater Hospital
-Compound Technician, Sterling Pharmaceuticals
-Drug Designer, Unspecified Drug Company
-Drug Safety Specialist, PPD
-Drug Store Manager, Qaiwan group company
-Inhalation R & D Analyst, Aesica Pharmaceuticals Ltd (R5)
-Lecturer, University of Lagos, Nigeria
-Locum Pharmacist, various
-Molecular Modeller / Community Pharmacist, Verax Care Pharmacy
-OSD Technologist, GSK
-Pharma Benefit Associate, UnitedHealth Group
-Pharmacist, Government of India
-Pharmacist, Kerbala University
-Pharmacologist, Unspecified
-PhD Research Scholar, NIRMA University
-Recruitment Consultant, SRG
-Regulatory affairs trainee, PharmaLeaf India Pvt Ltd
-Research assistant, University of Leeds
-Research Scientist, Pluss Polymers
-Research Scientist, Wintean
-Researcher, Sunny Pharmtech Inc.
-Sales Relationship Coordinator, Wesley Assurance Society
-Science Teacher, Perry Beeches School
-Senior Regulatory officer, Roche Pharmaceuticals

Read less
Why choose this course?. Read more

Why choose this course?

Pharmaceutical Science is a relatively new discipline and is concerned with fostering a multi-disciplinary approach towards the study of exciting new developments in the chemical, biological and biomedical science areas focusing upon the biochemistry, pharmacology, design, methods of analysis and delivery of pharmaceutical substances.

The course aims to produce high quality pharmaceutical science graduates with the generic, subject-specific and transferable knowledge and skills suited to a career in the pharmaceutical industry or other related laboratory based scientific discipline.

The course provides two routes, leading to a named award in Pharmaceutical Science, appropriate for students already in, or planning a career in the Pharmaceutical Sciences profession.

What happens on the course?

Your modules will include:

  • Pharmaceutical Analysis
  • Research Methods
  • Sources of Drugs and Drug Actions
  • Formulation Science
  • Strategies and Methods in Drug Discovery, Design and Development
  • Natural Products and Medicinal Chemistry
  • Research Project

Why Wolverhampton?

The course will provide you with a thorough grounding in the basic principles of Pharmaceutical Science and will equip you with the skills necessary for successful postgraduate study.

Pharmaceutical science is well established at Wolverhampton and benefits from a long tradition of teaching and research in the chemical and biological sciences.

This course gives students an excellent opportunity to study core science as well as the modern developments that are occurring at the boundaries between biology, chemistry and clinical practice.

Career Path

The Pharmaceutical Science course is attractive if you are seeking an academic research career and/or wish to make yourself highly employable as a pharmaceutical scientist, enabling you to specialize in the key area of drug discovery and design.

What skills will you gain?

Specialist modules offer you the opportunity to gain knowledge in key and emerging areas of Pharmaceutical Science, focusing on drug discovery and design.

Join us on Social Media

Faculty of Science and Engineering on Facebook

https://www.facebook.com/wlvsae/

Faculty of Science and Engineering on Twitter

https://twitter.com/WLVsci_eng



Read less
This course is one of our three specialist pharmacy MSc courses (MSc in Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics). Read more
This course is one of our three specialist pharmacy MSc courses (MSc in Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics).

You’ll gain a thorough understanding and awareness of your chosen area of pharmacy, the research methods required to complete a final supervised research project and an overview of the drug discovery process.

These courses are primarily designed to prepare you for an academic or industrial career in the relevant area. You may be a scientist already working within the pharmaceutical industry or a recent science graduate.

You will undertake a variety of compulsory modules and a research project. This project will last approximately four months and you will work under the supervision of recognised experts in their field. The project allows you to undertake a detailed investigation and develop practical expertise in a specialist pharmaceutical sciences area. The University also has strong links with numerous pharmaceutical companies - there may be the opportunity to undertake your project in collaboration with one of these companies.

During this course, you will gain the skills and knowledge required as a pharmacist - the ability to provide effective pharmaceutical formulation strategies for current and future drug therapies and medicinal products.

What you will study

All students studying one of our three pharmacy MSc courses will take the following core modules:
-Research Methods 1: Professional Development
-Research Methods 2: Communication Skill
-Research Project
-Drug Discovery

Depending upon the course you chose, you will also undertake the following modules:
-Chemotherapy & Selective Toxicity
-Drug Dosage Form & Design
-Principles of Product Analysis and Validation
-Pharmacology

Learning, teaching & assessment

Ranked in the UK's top 10 in the 2017 Complete University Guide, Aston Pharmacy excellent links with the profession. In addition, our research profile ensures relevant, expertise-led teaching for the students who enrol onto our courses each year. We have a long history of proving sector-leading courses - did you know that Aston Pharmacy School can trace its roots back to 1841?

You will learn in lectures, seminars, workshops and tutorials. Some modules may also use computer modelling and simulation sessions.

Our courses are assessed by a mixture of coursework, examinations, practical work and oral and written presentations. The research project module will be assessed on the basis of a submitted project report and an oral defence of a poster.

Your future career prospects

Graduates from our MSc programmes have taken up careers within the Pharmaceutical Industry in various disciplines such as analytical sciences, formulation development and project management. Our programmes provide the wider context and practical laboratory experience for pursuing careers in regulatory affairs, scientific writing and further studies.

Recent graduates have entered roles such as:
-Assistant Lecturer, University of Sulaimaniyah
-Associate Product Manager, AstraZeneca
-Business Development Manager, Crete Designs Limited
-Clinical Technician / Worker, Bridgewater Hospital
-Compound Technician, Sterling Pharmaceuticals
-Drug Designer, Unspecified Drug Company
-Drug Safety Specialist, PPD
-Drug Store Manager, Qaiwan group company
-Inhalation R & D Analyst, Aesica Pharmaceuticals Ltd (R5)
-Lecturer, University of Lagos, Nigeria
-Locum Pharmacist, various
-Molecular Modeller / Community Pharmacist, Verax Care Pharmacy
-OSD Technologist, GSK
-Pharma Benefit Associate, UnitedHealth Group
-Pharmacist, Government of India
-Pharmacist, Kerbala University
-Pharmacologist, Unspecified
-PhD Research Scholar, NIRMA University
-Recruitment Consultant, SRG
-Regulatory affairs trainee, PharmaLeaf India Pvt Ltd
-Research assistant, University of Leeds
-Research Scientist, Pluss Polymers
-Research Scientist, Wintean
-Researcher, Sunny Pharmtech Inc.
-Sales Relationship Coordinator, Wesley Assurance Society
-Science Teacher, Perry Beeches School
-Senior Regulatory officer, Roche Pharmaceuticals

Read less
Competent Pharmaceutical and Analytical Scientists are presently in demand in the pharmaceutical and related industries. This course has been designed with input from Pharmacists and Pharmaceutical Scientists with a wide range of industrial and research experience. Read more
Competent Pharmaceutical and Analytical Scientists are presently in demand in the pharmaceutical and related industries. This course has been designed with input from Pharmacists and Pharmaceutical Scientists with a wide range of industrial and research experience. Pharmaceutical analysis involves the testing of drug substances and the formulation of pharmaceutical drugs as they are utilized. This course will provide you with a comprehensive overview of the most recent technological developments and applications in Pharmaceutical and Analytical Science. The different methods of drug formulation currently being used, and being developed, are described alongside the instrumental techniques which can be used in the analysis of drug components. The modules are taught by enthusiasts who are experts in their fields. The course is two thirds taught material and one third project.

Read less
Designed with industry input, and with industry placement opportunities available, this programme prepares you for a career in the pharmaceutical industry or in academic research. Read more
Designed with industry input, and with industry placement opportunities available, this programme prepares you for a career in the pharmaceutical industry or in academic research.

About the programme

The programme – which reflects the approaches taken by modern pharmaceutical companies – provides theoretical and practical training in the strategies and techniques by which novel drugs are designed. This involves the study of synthetic chemistry, medicinal chemistry, pharmacology, and chemical analysis. The latest strategies and technologies involved in the discovery and testing of novel
drug candidates are explored.

Practical experience

You may take a work-based learning module involving industry placement for approximately one day per week during the second trimester. Placements will be with pharmaceutical, chemical or bioscience companies.

Your learning

The MSc consists of six taught modules over two trimesters followed by a substantial research project.

Core modules include:
• Drug Discovery and Development
• Drug Research Methods
• Computer-Aided Drug Design
• Preclinical Drug Testing
• MSc Science Research Project
• Pharmaceutical Synthesis

Optional modules:
• Placement Learning
• Drug Design and Development

MSc

You will conduct a research project to complete the MSc, involving the application of knowledge and practical techniques covered in the modules. There are various exciting research projects ongoing in this area, including testing of potential anti-tumour agents, and enkephalin analogs, design and synthesis of opioidmimetics, and compounds used against Alzheimer’s disease.

Our Careers Adviser says

UWS graduates possess expert knowledge and practical experience of the most relevant techniques used in drug design and discovery, preparing you for a career in the pharmaceutical industry. Graduates will find employment in drug synthesis, computer-aided drug design, drug formulation and regulatory affairs.

Financial support

In session 2015/16 the Postgraduate Diploma element of this programme carried SAAS postgraduate loan funding for eligible students. Check http://www.saas.gov.uk for 2016/17 loan info.

Note: To obtain the MSc, students will usually take 9 months to gain the Postgraduate Diploma and then normally an additional 3 months of study to gain the MSc, from the date of commencement of the project.

First-class facilities

Get the hands on experience you need to succeed. We have excellent specialist facilities which support our research students and staff. These include an advanced chemical analysis lab: with state-of-theart chemical analysis for isotopic and elemental analysis at trace concentrations using ICPMS/OES and the identification of organic compounds using LCMS; and the Spatial and Pattern Analysis (SPAR) lab: providing high specification workstations, geographical information system (GIS) software, geochemical and image processing facilities to support data management in science research.

Read less
Accelerated training for the Biopharmaceutical Industry. This unique professional training programme has been designed and developed in collaboration with the multinational Contract Research Organisation, . Read more

Accelerated training for the Biopharmaceutical Industry

This unique professional training programme has been designed and developed in collaboration with the multinational Contract Research Organisation, Covance.

The course is 20 months long, covering campus-based taught modules in the first six months, followed by a 12-month guaranteed paid placement in industry where you can expect to earn around £20,000.

During your training you’ll gain an integrated understanding of the full biological drug development pathway and the regulatory framework. The focus will be on large molecule drugs: monoclonal antibodies like Herceptin, bio-similars and antibody-drug conjugates; gene therapies and the technologies that underpin the discovery and development pathway.

You’ll be taught by leading industrialists and internationally renowned academics working at the forefront of their fields in the areas of science that support drug development. The curriculum is delivered primarily via project work in teams, and is assessed with outputs that are commonplace in industry, including presentations and reports to clients, regulators, investors/sponsors etc.

To prepare you for work in industry, you’ll also have access to cutting-edge practical technologies and gain hands-on practical training in protein purification, characterisation, formulation and assessment of binding function. In addition, you’ll use cell-based assays to look at drug potency, all performed in a strict regulated environment.

This course will help give you the experience and skills to become highly employable. Many pharmaceutical companies are expanding their biopharmaceutical capability, which is creating demand and opportunities for talented, well-trained people. At the same time, these companies report difficulties in recruiting employees with relevant skill sets and those with broad industrial experience are greatly sought after.

Course content

This course will provide you with an understanding of biological drug development focusing on each of the major steps of the process:

  • discovery
  • manufacturing
  • pre-clinical testing
  • clinical trials
  • market access and
  • the regulatory and legal aspects framework that ensure safe practice and the development of safe and effective medicines.

Course structure

The course is 20 months long, covering the campus-based taught elements in six to seven months, followed by a 12-month guaranteed paid work placement involving a research project where you’ll experience at first hand the working environment of this industry.

Work placement: an integral part of your training

An integral part of this course is your first paid job in industry. This is a 12-month guaranteed work and research experience in industry or placement hosted within the university research laboratories developed and co-supervised with industry. Students can expect to earn up to £20,000 over the duration of their placement.

The placements will all include a practical research project where you will gain in-depth practical experience of at least one technical function of the drug development process (discovery, manufacturing, pre-clinical testing, clinical safety and efficacy).

You will commence your project in May, six-months after the start of the programme and will be completed by the following April. Graduation is scheduled immediately thereafter, making you available for employment immediately after your placement.

These are typical modules/components studied and may change from time to time. Read more in our Terms and conditions.

Year 1

Over the first six to seven months starting in September you will study 100 credits worth of taught modules.

Compulsory modules:

  • Biopharmaceutical Development Pathway 5 credits
  • Biopharmaceutical Drug Discovery and Pre-Clinical Testing 20 credits
  • Manufacturing Biopharmaceuticals 20 credits
  • Integrated Drug Development Plan 10 credits
  • Biopharmaceutical Development: Clinical 10 credits
  • Commercialising Biopharmaceutical Products 10 credits
  • Practical Skills for a Regulatory Environment 25 credits

Year 2

Seven months after the start of the course (April/May), you will start a 12-month industrial placement where you will undertake a research project worth 80 credits.

Compulsory modules:

  • Industrial Placement & Research Project 80 credits

For more information on typical modules, read Biopharmaceutical Development MSc in the course catalogue

Learning and teaching

The learning and teaching on the course has been constructed to align with activities performed in industry, preparing you to be work-ready immediately after you finish.

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

This course will challenge you to think creatively, solve problems and develop strong communication and teamwork skills. You’ll experience a wide range of teaching methods, including formal lectures, interactive workshops, practical classes and industry site visits.

You’ll extensively use of real-life, industry specific case studies to illustrate theoretical and practical concepts and multiple opportunities to work in teams, including the opportunity to lead a team. A wide range of ‘authentic’ assessments will be used that students will experience in the workplace including submissions to regulatory authorities, client reports and presentations to industry panel members.

Career opportunities

Your first steps into an industrial career

The course is designed to train talented scientists wishing to pursue a career in drug development in the international biopharmaceutical industry.

You’ll be exposed to senior industrialists working as tutors throughout the course and can take this opportunity to obtain career advice. You’ll also work in industry full time for 12 months, which is an outstanding opportunity for you to develop a competitive career plan.

With this degree, you’ll have the relevant knowledge and experience to fast-track your career as, for example, an analytical scientist, project manager, or coordinator, in areas such as research, quality control, manufacturing, project management, non-clinical, clinical, and market access.

As a student on this course you’ll have unique access to an industry-mentor and a personal tutor (academic member of staff) for the duration of your studies. You’ll also get support in planning your career through sessions that develop your CVs and applications.



Read less
This course will help you to understand scientific principles of drug delivery and be able to design novel formulations to address current market needs and business strategy. Read more

This course will help you to understand scientific principles of drug delivery and be able to design novel formulations to address current market needs and business strategy. After completion of the course, you will have the skills to start-up new businesses in pharmaceutical formulation or join the pharmaceutical industry's formulation development team.



Read less

Show 10 15 30 per page



Cookie Policy    X