• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Surrey Featured Masters Courses
Cranfield University Featured Masters Courses
Birmingham City University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cranfield University Featured Masters Courses
Swansea University Featured Masters Courses
"drug" AND "discovery" AN…×
0 miles

Masters Degrees (Drug Discovery And Development)

We have 108 Masters Degrees (Drug Discovery And Development)

  • "drug" AND "discovery" AND "development" ×
  • clear all
Showing 1 to 15 of 108
Order by 
Help improve human or animal health through creating new or more effective drugs and medicines. Learn the research processes used to identify drug targets and develop new therapeutics. Read more

Help improve human or animal health through creating new or more effective drugs and medicines. Learn the research processes used to identify drug targets and develop new therapeutics.

Your studies will combine the biological sciences with chemistry, giving you the skills to target, design, synthesise, create and assess new drugs. You'll also learn about protecting intellectual property, assessing the financial viability of drugs and the pre-clinical and clinical trial processes.

Tailor your studies to your strengths, interests and career goals. You'll learn a mix of academic and practical skills that are closely aligned to the needs of industry.

The Master of Drug Discovery and Development is best suited to very able students with backgrounds in chemistry or relevant life-science subjects such as biochemistry, biomedical science, pharmacy or pharmacology. It is an intensive one-year taught programme, unique in New Zealand.

Learn from the best

Learn from academics and professionals who are leaders in the field and have experience in successfully taking drugs to market. Each course is taught by at least three academics so you'll be exposed to a wide range of expertise.

Drug Discovery and Development is taught by the Schools of Chemical and Physical Sciences and Biological Sciences in collaboration with the University's Ferrier Research Institute and the Centre for Biodiscovery.

You'll be able to take advantage of the research expertise of the Ferrier Research Institute in drug design and development, and if you're doing a Master's, you'll be working alongside the more than 30 scientists who make up the largest carbohydrate research team in the world. The Institute also has its own manufacturing facility so you'll have the opportunity to observe the drug development process from discovery to product.

You'll also benefit from the programme's links with the Centre for Biodiscovery where you will interact with the research teams that are actively discovering, designing and assessing novel bioactive compounds.

Drugs in the real world

Get wise to the real-world issues facing pharmaceutical development and make the most of the hard-earned experiences of staff who have worked in the local and international biotech industry. Learn not only how to handle chemicals on a large scale, but to develop the mindset to do this in a way that is safe, reliable and robust—so you end up providing medicines that will change people’s lives.

Victoria offers three postgraduate qualifications in Drug Discovery and Development. Choose the one that suits your career goals, time constraints and financial situation.

  • Master of Drug Discovery and Development
  • Postgraduate Diploma in Drug Discovery and Development
  • Postgraduate Certificate in Drug Discovery and Development

If you begin by enrolling in the Certificate or Diploma programme you can continue on to complete your Master's. Or if you enrol in the Master's but can't complete it, for whatever reason, you may have completed enough points to be awarded a Certificate or Diploma.

What you'll study

Each qualification includes the core courses DRGD 401 Chemical Biology and Drug Discovery, and a choice between DRDG 402 Drug Design or CHEM 421 Organic Chemistry and Bio-organic Chemistry.

After that you'll choose from selected courses from the study areas of Drug Discovery and Development, Biomedical Science, Biotechnology, Chemistry, Clinical Research and Microbiology.

All three qualifications give you the opportunity to do at least some research.

Postgraduate Certificate

You'll complete four courses worth 60 points made up of the two core courses and two further choices.

Postgraduate Diploma

You're likely to take seven courses that will include the two core courses, your elective options and the 30-point Research Preparation course.

Master's

You'll study for your Master's in two parts over three trimesters. In Part 1, the first two trimesters, you're likely to take seven courses that will include the core courses and a 30-point Research Preparation course.

In Part 2, you'll complete a full research project. Choose between DRDG 561 Applied Research Project, where you'll complete one or more problem-solving projects, or DRGD 590 Research Project, where you'll focus on medicinal chemistry and the formulation of active pharmaceutical products. In some cases you may be able to replace the research project with the thesis course DRGD 595.

Your Master's may be endorsed with a specialisation in either Drug Discovery, Drug Development or Chemical Biology. Check the requirements to find out what you need to do for these.

Workload and duration

You can expect a workload of 40–45 hours a week for much of your studies.

The MDDD can be completed in 12 months full time, or in two years of part-time study but you'll need to discuss this option with the programme directorfirst. The Diploma will take you two trimesters and the Certificate one trimester.

Location

You'll study at Wellington's Kelburn campus where you will have access to state-of-the-art research facilities. Students doing a research programme will also work in partnership the world-renowned Ferrier Research Institute in Lower Hutt.

Research topics

Be part of a dynamic and collaborative scientific research community. Past students' research areas in drug discovery and development have included:

  • development of a new scaled-up catalytic process for a high value fine chemical
  • isolation and characterisation of a novel bioactive from a New Zealand marine organism
  • formulation of a novel therapeutic for cancer immunotherapy.

Community

Become part of an active community of scientists. Postgraduate study at Victoria will help you build valuable relationships and networks with peers, university staff and future colleagues. You'll have unprecedented access to world industry leaders who visit as guest lecturers and run seminars with students.

Careers

You'll have the broad skills you need to work in drug discovery in companies, universities, research institutes or with drug regulatory authorities. You might work within the pharmaceutical, bioanalytical or chemical industries, or take your skills into nutraceuticals or agrichemicals.



Read less
The studies in Drug Discovery and Development give you a deep understanding of up-to-date methods applied to identify and validate new drug targets and to generate lead drug molecules. Read more

The studies in Drug Discovery and Development give you a deep understanding of up-to-date methods applied to identify and validate new drug targets and to generate lead drug molecules. It also provides knowledge of technological innovations as well as methods of clinical drug research and development phases, clinical trial design, study planning and biostatistics. In addition, you will learn about drug regulatory science and pharmacovigilance.

After graduation, you will master drug discovery and development processes as well as procedures applied in drug regulatory science. You will also be familiar with the role of drug regulatory authorities during the life-span of a drug. The University of Turku also offers Drug Research Doctoral Programme for post-graduate studies.

You will get comprehensive skills to work in the field of biomedicine and drug discovery in companies, universities, research institutes or drug regulatory authorities. The Programme also gives a good foundation for those interested in entrepreneurship.

Academic excellence and experience

Turku is a great place to study drug discovery and development! Of the Finnish drug innovations, 90 per cent have been made in Turku. To support the future discoveries, the University of Turku has chosen drug development as one of its strategic profiling areas.

The research in biosciences and medicine is internationally ranked among the top in the world. The keys for success lie in long biomedical research traditions and a compact campus area where two universities and a university hospital operate to create an interdisciplinary and innovative study and research environment.

Research focus is on translational medicine, disease modelling and biomedical imaging. Available infrastructure includes the world famous Turku PET Centre and Turku Centre for Disease Modeling, both of which offer services for drug development research.

Turku also has the largest cluster of pharma industry in Finland. Nearby companies not only provide experts for visiting lectures, but also create internship and job opportunities for the graduates.

Master's thesis and topics

The Master’s thesis project is based on independent, experimental research work.

You must always agree on your thesis topic with your thesis examiner who also accepts the topic. You will write a research plan, conduct a research project in a laboratory, analyse obtained results, and demonstrate your ability to interpret results and write a report in a form of a scientific article. The project work is always performed under the guidance of a supervisor.

In order to also practice scientific communication, you will present your results in a seminar and write a press release to stimulate collaboration between the academia and the media.

Examples of thesis topics:

  • Drug development for receptor antagonists and their potential in treating cognitive disorders
  • Pharmacological characterization of ion channels
  • Diagnostics tools for coronary artery diseases – characterization of antibodies
  • Modelling of schizophrenic disorders in rats
  • RNA interference in HSV-virus treatment
  • Optimization of synthesis of indatsole structures for drug development
  • The use of positron emission tomography (PET) to measure the effect of disease modifying therapies in MS disease
  • PET-imaging of molecules targeted in inflammation – preclinical studies with arthritis model

Competence description

The studies in Drug Discovery and Development provide you with a deep understanding of:

  • up-to-date methods applied to identify and validate new drug targets, and to generate lead drug molecules that modulate biological activity of the target
  • technological innovations made in lead optimisation process
  • how new drug candidates are investigated during the non-clinical drug development phase
  • methods of clinical drug research, clinical drug development phases, clinical trial design and biostatistical study planning
  • various aspects of the drug regulatory science and pharmacovigilance

Job options

After graduation, you will be an expert in drug discovery and development processes. You will know the procedures applied in drug regulatory science and the role of drug regulatory authorities during the life-span of a drug.

You will learn comprehensive skills to work in the field of biomedicine and drug discovery in companies, universities, research institutes or drug regulatory authorities. The Programme also gives a good foundation for those interested in entrepreneurship.

  • Possible job titles are:
  • medical liaison
  • medical writer
  • regulatory consulting expert
  • scientific/technical advisor
  • research director
  • project manager
  • drug development pharmacologist
  • university lecturer/researcher

Career in research

The Master of Science degree completed in the Programme qualifies the graduates for PhD studies in Turku, elsewhere in Finland or universities worldwide. Graduates from the Programme are eligible to apply for a position in the University of Turku Graduate School, UTUGS. The Graduate School consists of 16 doctoral programmes which cover all disciplines and doctoral candidates of the University.

Together with the doctoral programmes, the Graduate School provides systematic and high quality doctoral training. UTUGS aims to train highly qualified experts with the skills required for both professional career in research and other positions of expertise.

Several doctoral programmes at University of Turku are available for graduates:



Read less
This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body. Read more

This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body.

About this degree

You will gain hands-on experience of molecular modelling and computer-based drug design, and analytical and synthetic techniques and be exposed to modern platforms for drug discovery and methods of drug synthesis.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (90 credits), two optional modules (30 credits) and a dissertation (60 credits).

Core modules

  • Modern Aspects of Drug Discovery
  • The Process of Drug Discovery and Development I
  • The Process of Drug Discovery and Development II

Optional modules

Students choose two from the following:

  • Anticancer Personalised Medicines
  • New Drug Targets in the CNS
  • Pharmacogenics, Adverse Drug Reactions and Biomarkers
  • Advanced Structure-based Drug Design

Dissertation/report

All students undertake a laboratory-based research project which is assessed at the end of the year by a written report and oral presentation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials and seminars supported by the Blackboard e-learning system and practical classes. Assessment is through a combination of written examination and coursework. The research project is assessed by written report and oral presentation.

Further information on modules and degree structure is available on the department website: Drug Discovery and Development MSc

Careers

Students who complete the Drug Delivery and Development MSc will progress to careers in the various aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs.

Recent career destinations for this degree

  • PhD Medicinal Chemistry, UCL

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

Lectures and seminars from industry-based scientists and visits to industrial and biotechnological research laboratories are key features of this programme.

Our graduates include international students from 24 different countries

The programme covers marketing, licensing and the regulatory affairs that form an integral part of the development process

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: School of Pharmacy

87% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Your programme of study. If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. Read more

Your programme of study

If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. This industry area is rapidly expanding due to new discoveries across biotechnology, biologics, Internet of Things, customised drug treatments and diagnostics at source. This has lead to many new companies being formed, customised and small batch medicines apart from large batch pharmaceutical research and production.

University of Aberdeen is world renowned in this area with the invention of Insulin to treat diabetes which won a Nobel Prize and strengths in medical research areas which also include food and nutrition and disease treatment. You learn about bio-business, how drugs are developed and managed. The university has strong links with GSK, Pfizer, and AstraZeneca plus Novabiotics and others.

In our MSc in Drug Discovery and Development we train students in major areas of biochemical and molecular pharmacology and therapeutics relevant to the drug discovery and development business. This includes training in molecular pharmacology, drug metabolism and toxicology, therapeutics, pharmacokinetics, pharmacovigilance, regulatory affairs and clinical pharmacology.

Courses listed for the programme

Semester 1

  • Introduction to Bio-Business and Commercialisation of Bioscience Research
  • Drug Metabolism and Toxicology
  • Generic Skills
  • Basic Skills - Introduction
  • Small Molecule Drug Discovery

Semester 2

  • Advanced Bio- Business and the Commercialisation of Bioscience Research 2
  • Pharmokinetics
  • Basic Research Methods
  • Biologic Drug Discovery

Semester 3

  • Research Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • We work closely with industry and our research strengths have spanned over 50 years with many coming from the inception of the   University in 1495
  • The degree will give you the skills and knowledge to work in the pharmaceutical industry but you may wish to continue your research towards drug discovery and start up
  • You learn bio-business but you also learn how bio-business is commercialised

Where you study

  • University of Aberdeen
  • 12 Months or 24 Months
  • Full Time or Part Time
  • September start
  • 12 months or 24 months

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
This course will develop your expertise in multidisciplinary drug discovery research, and provide you with a deep understanding of the current global state of drug discovery. Read more

This course will develop your expertise in multidisciplinary drug discovery research, and provide you with a deep understanding of the current global state of drug discovery.

This MRes programme is a one-year stand-alone course that will develop your expertise in multidisciplinary drug discovery research. It will also provide a deep understanding of the current global state of drug discovery together with radical insights into future directions from leaders in the field.

You will graduate from the course with a solid knowledge of the drug discovery process, from emerging technologies and drug target selection through to clinical trials and regulatory aspects.

You will also be challenged to develop your own ideas on how to focus academic and industrial research to meet the pressing challenges of drug discovery.

At its conclusion, you are expected to be ideally placed to apply your knowledge in industry or to undertake doctoral studies in multidisciplinary drug discovery.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/chemistry/drug-discovery-development/

If you have any enquiries you can contact our team at: 



Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
This exciting new programme has been introduced as a spin-off from the very successful Drug Discovery MSc in response to the increasing opportunities which now exist for research scientists who can evaluate the business potential of their science as well as generate the science itself. Read more

This exciting new programme has been introduced as a spin-off from the very successful Drug Discovery MSc in response to the increasing opportunities which now exist for research scientists who can evaluate the business potential of their science as well as generate the science itself.

About this degree

This MSc contains the science core of the Pharmaceutics MSc and combines a broad overview of the drug discovery and development process with specialisation in management training and awareness, and strategic partnering and business development skills.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (120 credits), and a dissertation (60 credits).

Core modules

  • The Process of Drug Discovery
  • The Process of Drug Development
  • Modern Aspects of Drug Discovery
  • Pharma Management

Optional modules

  • There are no optional modules for this programme.

Dissertation/report

All students undertake a business development project based on an aspect of science from drug discovery either at the UCL School of Pharmacy or in industry.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials and seminars and practical classes. Assessment is through a combination of written examination and coursework. The business development project is by written report and oral presentation to the class and a judging panel of scientists and managers.

Further information on modules and degree structure is available on the department website: Drug Discovery and Pharma Management MSc

Careers

Students who complete the Drug Discovery and Pharma Management MSc will progress to careers in the various aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs.

Recent career destinations for this degree

  • Clinical Research Associate, Qualitis
  • Consultant, Prescient Healthcare Group
  • Data Analyst, ABPI (Association of the British Pharmaceutical Industry)
  • International Clinical Trial Co-ordinator, Ferring Pharmaceuticals
  • MRes in Molecular Plant and Microbioscience, Imperial College London

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The Pharma Management component of this MSc is led by Dr Nigel Ratcliffe, formerly Vice-President for regulatory and commercial affairs at Astra Zeneca.

Students visit a leading research laboratory e.g. GlaxoSmithKline to look at computer-based molecular modelling, how physico-chemical properties are determined, the robotic compound library, and high throughput screening. The visit is supplemented by material and instruction and the discovery process of a drug will be worked through in detail.

Students attend a one-day research conference on an aspect of drug discovery and development organised by the Society for Medicines Research where there is opportunity to interact with leading industrialists and researchers in the field.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: School of Pharmacy

87% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
* We still have a position on the course starting in September 2018 – this will lead to a placement in Synthetic Organic Chemistry. Read more

* We still have a position on the course starting in September 2018 – this will lead to a placement in Synthetic Organic Chemistry. Please apply by Tuesday 31 July*

Overview

Our pioneering two-year MSc programme is unique in the UK, and builds on the foundations of our very successful one-year programme in Drug Discovery and Pharmaceutical Sciences, to equip students with an in-depth knowledge of all aspects of drug discovery, and industry standard training. 

The course is designed to develop graduates who have exceptional scientific understanding and a host of transferable skills, including leadership skills. It is therefore especially recommended to high-achieving and ambitious students seeking an opportunity to gain extensive hands-on training in an industrial environment, working as part of a multidisciplinary team.

The course blends the two fundamental disciplines underpinning drug discovery and provides students with the opportunity to practise background theory within the productive, research-led environments offered by the School of Pharmacy. This school has world-leading expertise in the areas of drug discovery and pharmaceutical science, and students on this course will have the chance to learn directly from staff at the forefront of the field.

The course is technology-rich, using online learning packages to supplement face-to-face teaching and innovative assessment methods.

Placement year

The second year of the course has been developed in conjunction with the pharmaceutical industry to ensure currency and relevance, and to increase the future employability of graduates. Our aim is to train future leaders in the pharmaceutical sector.

The placement year with one of our industrial partners is arranged and guaranteed upon completion of a successful application and interview process. You will pay reduced tuition fees for the second year of the course, as you focus on your industrial training.

Due to limited places available, students who are unable to join the two-year programme will automatically be considered for our Royal Society of Chemistry accredited one-year programme, which includes the same disciplines underpinning drug discovery and research-led environment in which to practise the theory. 

Develop your skills

The overall aim of the MSc is to develop knowledge and understanding, cognitive skills, key skills and practical and professional skills in the area of Drug Discovery and Pharmaceutical Science. The overall drug discovery process from ‘concept to clinic’ provides the reference point for the education and training delivered in the more specific scientific and regulatory aspects.

Students will, therefore, be able to develop an understanding of the scientific principles underlying the main topic areas housed within the arena of drug discovery. In addition, upon completing the degree students will be able to make effective use of electronic communication and information search and retrieval to facilitate development of key critical skills with which to assess and analyse a broad array of scientific literature.

When taken together, the ethos of the programme is therefore to:

  • instil, develop and encourage an independent approach to learning, through initiative and self-motivation
  • provide the education and training required to become a translational scientist; with pertinent knowledge of basic and clinical science that can be applied to drug discovery and development
  • instil a critical understanding of disease/disorder biology and how it impacts upon human health
  • provide the necessary knowledge of chosen areas of normal and abnormal pharmacology and bodily function to equip the student with an understanding of how and why drugs are either rejected or taken forward for future development
  • present physicochemical and pharmacological principles alongside the regulatory processes necessary for new medicine discovery and entry into the clinic
  • contextualise this knowledge and principles to the process of drug design and development and therefore equip the graduate to apply knowledge to practical problems in pharmacology, drug discovery and pharmaceutical science
  • provide students with the practical skills and experience via a year-long training placement to excel in future leadership roles

Please visit the online prospectus for detailed module information.

Application process

Applicants who meet the eligibility criteria will be shortlisted for interview based on their whole application, including the personal statement. Your personal statement should include:

  • Why you are applying for this course, and why to the University of Nottingham in particular
  • Why you wish to pursue a career in drug discovery
  • How this course will help you achieve your long-term career goals, and why the industrial placement is key to this
  • What makes you suitable for this course compared to other applicants

The interview will include a technical component, which will involve questions relating to theoretical organic chemistry, synthesis and retrosynthesis. The final offer of a place will depend on the availability of placements.

To secure your place, you will need to pay a £2000 deposit. This will form part of your conditional offer as there are a limited number of placements offered in advance by providers. Once the deposit is paid and any other offer conditions are met, your place on the course is guaranteed. The deposit will be used to offset your tuition fee for the first year.

If you are unable to secure a place on the two-year course, after meeting initial eligibility criteria, you will be guaranteed an offer for the one-year course (which is accredited by the Royal Society of Chemistry). This course incorporates the same high quality taught module component but replaces the industrial placement year with a three-month research project at the University. 

Careers

Graduates can expect to move into a range of scientific careers, particularly with global pharmaceutical companies and pharmaceutical SMEs. Strong industrial links to the course will further enhance students’ employability.

The MSc also provides a strong grounding for students wishing to subsequently study for a PhD in a related subject area.



Read less
OVERVIEW. The. Oncology Drug Discovery MSc. course is designed to provide an insight into how existing and future drug targets are identified from biological samples isolated from the cancer clinic. Read more

OVERVIEW

The Oncology Drug Discovery MSc course is designed to provide an insight into how existing and future drug targets are identified from biological samples isolated from the cancer clinic. This will include an industrial viewpoint into what makes an interesting target and how, through an iterative process, this target is validated. In addition, lectures will be provided to discuss how ‘hit’ compounds are identified, in both the academic and industrial setting, using compound screen assays and fragment based screening technologies. We will also provide an insight in computational methods for generating chemical ‘hits’. The module will also cover how these ‘hit’ compounds are prosecuted into tool compounds or Lead Optimisation candidates (LO), both historic and modern, that are used to further validate a potential drug target.

During this second module we will provide an insight into the challenges of moving a compound from an LO candidate to a pre-clinical candidate. How bio-marker companion tests are developed, validated and are used to underpin clinical trials. The lectures will also provide a keen insight into novel formulation strategies currently under development within Queen’s University Belfast. In addition, we will also provide an insight into the development of bio-therapeutics, such as antibodies, that are proving to be a powerful alternative to small molecule based therapeutics.

For further information email  or send us a message on WhatsApp

ONCOLOGY DRUG DISCOVERY HIGHLIGHTS

The strong links between us and the biotech and bio-pharmaceutical sectors provides a stimulating translational environment, while also expanding your career opportunities.

GLOBAL OPPORTUNITIES

INDUSTRY LINKS

  • Research projects will be provided by both academic staff and local biotech companies in ground-breaking research areas with a strong focus on clinical applications.

WORLD CLASS FACILITIES

  • The Oncology Drug Discovery course will be taught and mentored within the Centre for Cancer Research and Cell Biology: a purpose-built institute at the heart of the Health Sciences Campus, boasting state-of-the-art research facilities.

INTERNATIONALLY RENOWNED EXPERTS

  • We have an international reputation in this area, achieved through: high-impact peer review publications significant international research funding, the establishment of successful spin-out companies.

 

COURSE STRUCTURE

Research Project

  • You will undertake a lab based project in a number of different facets of the drug development, such as hit identification, hit compound development and therapeutic antibody development pathway working with both academic and biotech groups.Semester 1

Research Translational: from Concept to Commercialisation (Full Year)

  • This module covers the principles of disease biology and new technological developments that increase our understanding of disease processes. It develops an appreciation of the importance of innovation, business awareness and leadership skills in the translation of discovery science to clinical implementation.

Diagnosis and Treatment of Cancer

  • This module provides a comprehensive overview of the diagnosis and treatment of the common solid and haematological malignancies, including breast, ovarian, genitourinary and gastrointestinal cancers as well as the leukaemias

Cancer Biology

  • This module provides a comprehensive overview of the fundamental principles of carcinogenesis, highlighting how normal control processes are bypassed during tumour formation. The pathogenic mechanisms to be discussed will range from genomic alterations in key gene families, to epigenetic mechanisms of gene control, alterations in kinase activities or protein turnover, or activation of aberrant phenotypes such as invasion and angiogenesis.Semester 2

Target Identification and Development in Drug Discovery

  • This module describe how novel drug targets are identified and validated and identifies how biochemical assays are developed and employed in the drug discovery process. It also evaluates the alternative approaches used in the drug discovery to identify new chemical matter. It describes and defines chemical approaches used in developing ‘hit’ chemical compounds and identifies drug target classes and their drug-like pharmacophores.

Drug optimization, drug delivery and clinical trials

  • This module evaluates the issues associated the drug development process and describes the development, validation and use of bio-markers in the drug discovery process. It discusses the practices employed in clinical trials and defines the processes employed in licensing of new chemical equity and the role it plays in the drug discovery process.

For further information email  or send us a message on WhatsApp



Read less
Overview. This course is designed to equip students with an in-depth knowledge of all aspects of drug discovery, integrating teaching in chemistry and biology to develop graduates who have exceptional scientific understanding and a host of transferable skills. Read more

Overview

This course is designed to equip students with an in-depth knowledge of all aspects of drug discovery, integrating teaching in chemistry and biology to develop graduates who have exceptional scientific understanding and a host of transferable skills.

The course is accredited by the Royal Society of Chemistry and satisfies the academic requirements for Chartered Chemist (CChem). RSC accreditation requires rigorous evaluation and denotes a high quality degree programme that is recognised by future employers in both the academic and industrial sectors.

The course blends the two fundamental disciplines underpinning drug discovery and provides students with the opportunity to practise background theory within the productive, research-led environments offered by the Schools of Pharmacy and Life Sciences. These schools have world-leading expertise in the areas of drug discovery and pharmaceutical science, and students on this course will have the chance to learn directly from staff at the forefront of the field.

The course content covers all aspects of drug discovery, and includes a 12-week (60 credit) research project based in our laboratories, encouraging the practical application of the theory taught within the programme. 

The course is technology-rich, using e-learning packages to supplement face-to-face teaching and innovative assessment methods.

Develop your skills

The overall aim of the MSc is to develop knowledge and understanding, cognitive skills, key skills and practical and professional skills in the area of Drug Discovery and Pharmaceutical Science. The overall drug discovery process from ‘concept to clinic’ provides the reference point for the education and training delivered in the more specific scientific and regulatory aspects.

Students will, therefore, be able to develop an understanding of the scientific principles underlying the main topic areas housed within the arena of drug discovery. In addition, upon completing the degree students will be able to make effective use of electronic communication and information search & retrieval resources to facilitate development of key critical skills with which to assess and analyse a broad array of scientific literature.

When taken together, the ethos of the programme is therefore to:

  • instil, develop and encourage an independent approach to learning, through initiative and self-motivation
  • provide the education required to become a translational scientist; with pertinent knowledge of basic and clinical science that can be applied to drug discovery and development
  • instil a critical understanding of disease/disorder biology and how it impacts upon human health
  • provide the necessary knowledge of chosen areas of normal and abnormal pharmacology and bodily function to equip the student with an understanding of how and why drugs are either rejected or taken forward for future development. 
  • present physicochemical and pharmacological principles alongside the regulatory processes necessary for new medicine discovery and entry into the clinic
  • contextualise this knowledge and principles to the process of drug design and development and therefore equip the graduate to apply knowledge to practical problems in pharmacology, drug discovery & pharmaceutical science.

Please visit the online prospectus for detailed module information.

Careers

Graduates can expect to move into a range of scientific careers, particularly with global pharmaceutical companies and pharmaceutical SMEs. Strong industrial links to the course will further enhance students’ employability.

The MSc also provides a strong grounding for students subsequently wishing to study for a PhD in a related subject area.



Read less
- https://www.kent.ac.uk/locations/medway/. This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company.

It was designed and conceived by pharmaceutical industry experts in drug discovery and will be delivered and assessed by experts in this field at the School of Pharmacy.

The MSc covers how fundamental science is applied to the discovery and development of medicines and the main aims are to:

- provide you with the experience of critically appraising the research questions and techniques that are routine in the pharmaceutical industry workplace

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- provide expert preparation for students who wish to pursue a career in drug discovery, or wish to proceed to a PhD.

Visit the website https://www.kent.ac.uk/courses/postgraduate/736/applied-drug-discovery

Duration: One year full-time (campus based), two years part-time (distance learning)

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

This programme is taught as either a classic one year full-time programme with attendance required on Mondays and Tuesdays for 48 weeks plus an additional study day off-campus, or delivered through distance e-learning using an interactive virtual learning environment on a two-year part-time basis.

The programme comprises 60 credits at certificate level, 60 credits at diploma level and 60 credits at Master’s level. You may choose to end your study at any one of these stages.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by 100% coursework; including scientific reports, assignments, essays, a research project and portfolio entries.

Programme aims

This programme aims to:

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- teach you an understanding of the drug discovery process

- provide you with expanded training in the biological sciences technical skills that underpin the processes of drug discovery

- provide you with the experience of critically appraising the research questions and techniques they use routinely in the workplace

- develop a variety of postgraduate level intellectual and transferable skills

- equip you with lifelong learning skills necessary to keep abreast of developments in drug discovery

- provide you with opportunities for shared multidisciplinary learning in drug discovery

- give you the experience of undertaking an independent research project

- provide expert preparation for students who wish to pursue and/or further a career in drug discovery, or wish to proceed to a higher degree (PhD) in topics related to the drug discovery process

- provide access to as wide a range of students as practicable irrespective of race, background, gender or physical disability from both within the UK and from overseas.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career. While the MSc in Applied Drug Discovery produces elite drug discovery personnel, who can pursue a career in the pharmaceutical industry or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Your programme of study. If you want to discover a cure for a major disease or lesser known disease this programme will help you towards that goal. Read more

Your programme of study

If you want to discover a cure for a major disease or lesser known disease this programme will help you towards that goal. Aberdeen is well know for drug discovery as Insulin was developed at the university and there has always been a strong research focus within the medical sciences to continue finding major innovations in health sciences. You learn how to formulate drugs to understand how they are regulated and the bio-business area. This area has been in rapid growth since the discovery of customised drugs which rely on individual genetic make up to define, small batch drugs which larger drug companies don't manufacture for reasons of scale and economy, and the understanding of biologics to treat diseases.

Drug Discovery is one of the few areas which have continued to expand over the last 5 years, in fact there is a major revolution in treating disease processes with other disciplines assisting. The pharmaceutical industry in the UK is one of the largest contributors of income and it is being disrupted by a combination of easy process and scale up using innovation centre facilities, and customised treatments. Drug discovery involves multidisciplinary teams working in academia, biotechnology and pharmaceutical industries. Our MRes in Drug Discovery provides training in across all aspects of drug discovery and development, clinical pharmacology and medical biotechnology. The degree programme consists of one term of taught courses (3 months) followed by 2 individual research projects lasting 16 weeks each.

Courses listed for the programme

Semester 1

  • Molecular Pharmacology
  • Small Molecule Drug Discovery
  • Introduction to Bio-Business and the Commercialisation of Bioscience Research
  • Basic Skills-Induction
  • Generic Skills

Optional

  • Introduction to Molecular Biology
  • Applied Statistics
  • Drug Metabolism & Toxicology

Semester 2

  • Research Project

Optional

  • Advanced Bio-Business and the Commercialisation of Bioscience Research
  • Biologic Drug Discovery
  • Basic Research Methods

Semester 3

Why study at Aberdeen?

  • The university is highly regarded and known as a 'centre for excellence' in drug discovery and commercialisation
  • Researchers that teach are active opinion leaders and regulators with further interdisciplinary researchers in other countries and two British Pharmacological Society Wellcome Gold Medal winners on staff
  • The university won the Nobel Prize for the treatment of diabetes and invention of insulin

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months or 24 Months
  • September

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
The Pharmacology and Drug Discovery MSc course has been designed to react to the increasing demand for suitably trained professional pharmacologists. Read more
The Pharmacology and Drug Discovery MSc course has been designed to react to the increasing demand for suitably trained professional pharmacologists. This is essential to speed up the critical task of translating basic laboratory medical research into commercially-ready medical biotechnology and drugs that can be used to diagnose and treat patients.

The Pharmacology and Drug Discovery course also encompasses an emerging area of science that is known as ‘Translational Medicine’ and needs a new breed of Pharmacologist who can apply basic science knowledge and skills to experimental study design, management and data analysis, and who understands the legislation and other regulatory procedures surrounding disease treatment.

The course will also cover relevant biotechnical innovations associated with pharmacology and drug discovery, as well as both classical clinical trial design and health-outcomes research.

Our course is designed to provide such specialists by applying basic and clinical science to topics including diagnosis, understanding and treatment of disease, supported by our excellent staff, research expertise and laboratory facilities.

The MSc Pharmacology and Drug Discovery with Professional Experience, is an extended full-time Masters programme with a substantive professional experience component. Within the professional experience modules, students have the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

Internships are subject to a competitive application and selection process and the host organisation may include the University. Internships may be paid or unpaid, and this will depend on what is being offered and agreed with the host organisation. Students who do not wish to undertake an internship or are not successful in securing an internship will undertake campus-based professional experience, which will deliver similar learning outcomes through supervised projects and activities designed to offer students the opportunity to integrate theory with an understanding of professional practice.

WHY CHOOSE THIS COURSE?

-Strong links with the pharmaceutical industry
-Emphasis on vocational skills development
-Excellent preparation for a wide range of careers in extensive and varied health industry
-Hands-on experience of a wide range of research methods in well-equipped laboratories
-Innovative curriculum combining basic and clinical sciences
-High levels of employability on graduation

WHAT WILL I LEARN?

The pharmacology and drug discovery postgraduate programme is composed of a combination of modules depending on whether you undertake the PgDip or Masters programme of study and includes the following:
-Research methods and project
-Pharmaceutical discoveries
-Advanced pharmacology and drug discovery and development
-Genomes and DNA technology
-Biotechnology in the diagnosis of disease
-Current topics in biotechnology and drug discovery

The course is designed for a national and international audience.

Additionally, the understanding gained from these modules will be demonstrated and applied in either the University-based project (12 months full-time or 24 months part-time, on course HLST088), or the professional experience modules, giving students the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The PgDip/MSc Pharmacology and Drug Discovery programme is specifically designed to equip you with the skills and knowledge required for a career within the Pharmacology and drug development arena and there are many opportunities, both the UK and internationally.

A large number of Pharmacologists are employed by companies in the pharmaceutical industry, where they are involved in discovering and developing drugs and carrying out clinical trials. Pharmacologists may also work for contract research organisations (CROs) or academic departments within universities on research projects.

There are also opportunities within government laboratories (including environmental agencies), charity-funded research organisations, such as the Medical Research Council (MRC), and with other research institutes. The scientific knowledge and skills students will acquire during the course can also be a useful basis for a career in teaching; technical and scientific writing (such as medical writing or writing for the media); clinical trials; drug registration, patenting or monitoring; medical publishing or other information services, regulatory affairs or sales and marketing.

A wide range of job opportunities exist, including:
-Clinical research manager
-Clinical scientist
-Human resources manager
-Patent attorney
-Pharmacologist
-Project manager/director
-Public relations officer
-Regulatory affairs associate
-Research scientist
-Sales representative
-Medical writer

GLOBAL LEADERS PROGRAMME

Centre for Global Engagement logoTo prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Why this course?. This course will enhance your knowledge and understanding of cancer therapies and provide you with the skills to assess, analyse, critically appraise and evaluate current and emerging anti-cancer therapies and the drug discovery cascade, from target evaluation and engagement to clinical trials. Read more

Why this course?

This course will enhance your knowledge and understanding of cancer therapies and provide you with the skills to assess, analyse, critically appraise and evaluate current and emerging anti-cancer therapies and the drug discovery cascade, from target evaluation and engagement to clinical trials.

The programme was developed in response to the increasing demand for a course which focuses on current and emerging cancer therapies. It is the only programme in the UK which combines a focus on cancer biology with the practical, ethical and economic implications of personalised cancer therapy, along with its biology and the discovery and development of drugs.

It has been constructed to produce world-class graduates with the skills to contribute to the global drive in advancing cancer treatment through research, teaching, industry and public sector employment.

What you'll study

You'll focus on anti-cancer treatment therapies, with a particular emphasis on personalised medicine, covering the therapeutic target and the biological mechanisms of current and emerging anti-cancer therapies. You'll also explore radiotherapy as a diagnostic and as a single or combinational treatment with drugs in anti-cancer therapy.

You'll be introduced to the discovery and development of new drugs and the challenges associated with this process. You'll be able to evaluate the drug discovery pipeline including medicinal chemistry, screening, secondary assays and other drug discovery and development technologies. Through a virtual drug discovery programme, you'll have the opportunity to develop anti-cancer agents and progress these through the drug discovery cascade, from target engagement to clinical trials.

The programme will equip you with a range of skills including scientific writing, critical analysis, problem-solving, teamworking, as well as advanced data set analysis and interpretation. You'll experience a wide range of scientific topics from molecular biology, to cell biology and genetics, medicinal chemistry to formulation and radiobiology to nuclear medicine. You'll have the opportunity to conduct independent research and working as part of a multidisciplinary team you'll gain an appreciation of the contributions other disciplines make to cancer drug discovery.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences is recognised as one of the foremost departments of its kind in the UK. It's a leading research centre in the search for new and improved medicines. You'll benefit from the advanced facilities of a new £36 million building. The Institute is ranked no 2 in the UK in the Complete University Guide 2018 and the University of Strathclyde has recently been one of the few UK institutes to be awarded the status of 'Emerging Centre of excellence for radiobiology research' in the UK.

Learning & teaching

The course is delivered through lectures, workshops, tutorials and hands-on practical sessions.

If you successfully complete the required taught classes you may undertake a laboratory project on the subject of cancer therapies for the MSc.

Assessment

Written examinations, course work with formative and summative approaches are taken in different aspects of the course. Written reports, oral presentations, scenario-based learning and moderated peer assessment are all included in the course.

Careers

Graduates will have a number of potential employment opportunities: large and small pharma companies, SMEs, within health services and providers, their home institutions and as academics in UK, EU or international Universities.

The course will enable careers in research, academia industry and the health sector and offers you a unique exposure to the entire drug discovery and development cascade while keeping patients' needs at the forefront of the learning process.



Read less
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing the Drug Design MSc. Read more

This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing the Drug Design MSc. Conducting cutting-edge research within the drug industries and UCL's academic group, it offers opportunities for networking and future career development.

About this degree

This programme teaches students the latest methodologies and approaches and covers all aspects of drug design: drug discovery, computational and structural biology, screening, assay development, medicinal chemistry, and most importantly the industrial practices involved in modern drug design technology.

Students undertake modules to the value of 180 credits.

The programme consists of one core modules (15 credits), four optional modules (60 credits) and a dissertation/report (105 credits).

Core module

  • Ethics and Regulation of Research

Optional modules

Students select four of the following.

  • Practical Laboratory Research Skills
  • Bioinformatics and Structural Biology as applied to Drug Design
  • The Biology of Drug Discovery Programmes 1
  • Biological Molecules as Therapeutics - Antibodies, siRNA, and Stem Cells
  • The Biology of Drug Discovery Programmes 2: Latest Advances
  • Fragment-based Drug Design
  • Target Selection - Commercial and Intellectual Property Aspects
  • Target Selection - Scientific Grounds
  • Cheminformatics and Computer Drug Design

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 15,000 to 20,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials and problem classes, critical journal clubs and a research project. Assessment is through coursework, practicals, laboratory work, examination, dissertation and oral presentation.

Further information on modules and degree structure is available on the department website: Drug Design MRes

Careers

We expect students graduating from this programme to take leading roles in drug discovery and development worldwide or to undertake further PhD-level research. Drug Design MRes graduates have found jobs in the pharmaceutical industry as well as PhD studentships in leading universities

Employability

The advanced knowledge and skill set acquired by taking this programme will enable students to find employment in the pharmaceutical and biotech industries in a global market.

Why study this degree at UCL?

The division hosts research groups in the areas of medicine, pharmaceutical research, cell cycle, neurobiology, mitochondrial function, stem cells and cancer. Underpinning the translational aspects of the biomedical research, we have a medicinal chemistry group which conducts research where chemistry and biology intersect, using the latest techniques and developing new ones for the study of biological systems.

The division collaborates extensively within industry and academia to develop biological tools and therapeutic agents. There are plenty of opportunities to conduct translational research that has an impact on drug discovery.

Pharmaceutical and biotech companies, well established in the West, have been transferring their research and development to the East. Given these substantial developments, particularly in China and India, the programme will have a broad international appeal.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X