• University of Cambridge Featured Masters Courses
  • Durham University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
Middlesex University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Pennsylvania Featured Masters Courses
"drug" AND "design"×
0 miles

Masters Degrees (Drug Design)

We have 182 Masters Degrees (Drug Design)

  • "drug" AND "design" ×
  • clear all
Showing 1 to 15 of 182
Order by 
This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Read more
This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Our graduates have progressed to undertake or obtain PhDs or medical studentships, or have found employment in both the private and public sector.

Degree information

The programme covers all aspects of drug design, including genomics, bioinformatics, structural biology, cheminformatics, molecular modelling and fragment-based drug design, drug target selection, intellectual property and marketing. New therapies and research areas such as antibodies, siRNA, stem cells and high throughput screening are covered. Students will develop essential skills such as research methods and techniques of drug design.

Students undertake modules to the value of 180 credits. The programme consists of eight core modules (120 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits) is also offered. A Postgraduate Certificate (60 credits) is also offered. There are no optional modules for this programme.

Core modules
-Bioinformatics and Structural Biology
-Target Identification and High Throughput Screening
-Cheminformatics and Computer Drug Design
-Biological Molecules as Therapeutics - Antibodies, siRNA, and Stem Cells
-Biophysical Screening Methods, Protein NMR and Phenotypic Screening
-Fragment Based Drug Design (FBDD)
-Target Selection - Scientific Grounds
-Target Selection - Commercial and Intellectual Property

Dissertation/report
All MSc students undertake an independent research project which can take the form of a literature project, wet lab/computer modelling based project or an external project with an industrial sponsor.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, self study, practical sessions and discussion groups. The research project forms one third of the programme. Each of the taught modules is assessed by unseen written examination (50%) and coursework (50%). The research project is assessed by the dissertation and viva.

Careers

The programme will provide a good background for students looking to establish a career in drug design/discovery and related industries (biotech, pharma, national research laboratories and NHS agencies), and for industry professionals seeking to gain a greater understanding of new methodology. The knowledge and transferable skills delivered will also be useful for those intent on further PhD or medical studies.

Top career destinations for this degree:
-Industrial Chemistry, University of Oxford
-PhD Researcher (Molecular Biology), EMBL (European Molecular Biology Laboratory)
-Cancer Research, Imperial College London
-PhD Drug Design, University College London (UCL)
-PhD Oncology, Tianjin University

Employability
Graduates from this programme have progressed to PhD/medical studentships at different universities and research institutes around the world, including Oxford, UCL, Grenoble, EMBL, and in the USA and China. Many alumni have secured positions in research teaching and technical sales in the private and public sectors.

Why study this degree at UCL?

UCL is listed among the top five universities in the TImes Higher Education QS World University Rankings 2015/16 and is located in the centre of one of the world's finest cities. UCL is one of Europe's best and largest centres for biomedical research.

At the Wolfson Institute for Biomedical Research, we have pioneered multidisciplinary research with a particular emphasis on translating that research into useful clinical benefit. Our research expertise includes: medicinal chemistry, computational drug design, neuronal development and signalling, cell cycle control, intensive care medicine, stem cells, mitochondrial biology and cancer.

Read less
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing Drug Design MSc. Read more
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing Drug Design MSc. Conducting cutting-edge research within the drug industries and UCL's academic group, it offers opportunities for networking and future career development.

Degree information

This programme teaches students the latest methodologies and approaches and covers all aspects of drug design: drug discovery, computational and structural biology, screening, assay development, medicinal chemistry, and most importantly the industrial practices involved in modern drug design technology.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a dissertation/report (105 credits).

Optional modules - students will select three from the following Drug Design MSc modules:
-Bioinformatics and Structural Biology as applied to Drug Design
-Biological Molecules as Therapeutics
-Biophysical Screening Methods, X-ray Crystallography, Protein NMR and Phenotypic Screening
-Cheminformatics and Modelling for Drug Design
-Fragment-based Drug Design
-Target Selection – Commercial and Intellectual Property Aspects
-Target Selection – Scientific Grounds

Core modules - plus two taught transferable skills modules delivered by CALT (UCL Centre for the Advancement of Learning and Teaching):
-Investigating Research
-Researcher Professional Development

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 to 20,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and problem classes, critical journal clubs and a research project. Assessment is through coursework, practicals, laboratory work, examination, dissertation and oral presentation.

Careers

We expect students graduating from this programme to take leading roles in drug discovery and development worldwide or to undertake further PhD level research. The first cohort of students on the Drug Design MRes graduating in 2015 have found jobs in the pharmaceutical industry as well as PhD studentships in leading universities.

Employability
The advanced knowledge and skill set acquired by taking this programme will enable students to find employment in the pharmaceutical and biotech industries in a global market.

Why study this degree at UCL?

The division hosts research groups in the areas of medicine, pharmaceutical research, cell cycle, neurobiology, mitochondrial function, stem cells and cancer. Underpinning the translational aspects of the biomedical research, we have a medicinal chemistry group which conducts research where chemistry and biology intersect, using the latest techniques and developing new ones for the study of biological systems.

The division collaborates extensively within industry and academia to develop biological tools and therapeutic agents. There are plenty of opportunities to conduct translational research that has an impact on drug discovery.

Pharmaceutical and biotech companies, well established in the West, have been transferring their research and development to the East. Given these substantial developments, particularly in China and India, the programme will have a broad international appeal.

Read less
IN BRIEF. Train for a career in the newly emerging industries of the post-genomic eraWork at the interface between biology and chemistryExcellent career prospectsPart-time study optionInternational students can apply. Read more

IN BRIEF:

  • Train for a career in the newly emerging industries of the post-genomic eraWork at the interface between biology and chemistryExcellent career prospectsPart-time study optionInternational students can apply

COURSE SUMMARY

Following completion of the Human Genome Project, the pharmaceutical industry is preparing for a revolution in cancer and inherited disorder therapies. This course is training a new generation of bioscientists to meet challenges at the interface between biology and chemistry, and to apply pharmaceutical and analytical knowledge directly to improve quality of life.

The course develops a broad knowledge and conceptual base in the field of drug design and discovery, with an emphasis on new developments and advances in drug identification, understanding drug pharmacology and novel therapeutics, and appreciating how these topics interact with bioscience businesses and enterprise.

This programme is designed to enable you to gain systematic knowledge and critical awareness of current problems and new insights regarding the analysis of biomolecules. There is particular reference to drug design and discovery, along with a comprehensive and critical understanding of applied techniques and their current application in research in the field of biomolecule analysis and drug design.

This course is aimed at students who wish to acquire the specialised skills needed to design drugs for the 21st century. It is ideal for anyone with primarily either a chemistry or biochemistry based undergraduate degree wishing to broaden their knowledge base. The part-time route is well suited to those who already work in industry as it is possible to carry out research projects within the place of work. Prospective students must be committed to developing their skills and knowledge for a career in the pharmaceutical or biotechnology sectors.

TEACHING

Teaching is through:

  • Lectures to provide thorough grounding in the techniques of biomolecule characterisation and drug design.
  • Practical sessions and workshops to demonstrate techniques and methods used in biomolecule characterisation and drug design, and provide a structured opportunity for you to practice techniques and methods in analytical biosciences and drug design.
  • Guided reading that will recommend texts, key articles and other materials in advance of, or following, lecture classes.  
  • The research project which will enable you to practice the application of appropriate, and selected, bioscientific techniques in an academic or industrial context, and demonstrate research methodologies and skills appropriate to and valuable with biomolecule characterisation and drug design. During your research project You will be supervised by expert staff who are actively engaged in international research programmes.

ASSESSMENT

There are eight taught 15 credit modules each of which have only one assessment (100%). Each exam is 2 hours.

EMPLOYABILITY

Although particularly relevant to those looking for a career in the pharmaceutical and biotechnology industries, this course will also equip you for a career in research, teaching and many other professions including cosmetic science, animal health, food science, medical laboratory research, patent law, scientific journalism and health and safety.

LINKS WITH INDUSTRY

Research projects may be carried out at other institutions (recently Universities in Bremen or France and the Paterson Institute, UK). We also invite visiting lecturers to share their expertise on the subject areas.

FURTHER STUDY

After completion of this course you may wish to specialise in a chosen subject area in one of the School’s two main research centres: Ecosystems and Environment Research Centre (EER) or Biomedical Research Centre (BRC).



Read less
Unique in Europe, this course combines biomedicine and pharmaceutical science to prepare you for a rewarding career in the pharmaceutical, bioscience or healthcare sectors. Read more
Unique in Europe, this course combines biomedicine and pharmaceutical science to prepare you for a rewarding career in the pharmaceutical, bioscience or healthcare sectors.

If you're interested in a career in the fascinating and challenging world of drug design, this is the course that will take you there.

Rather than presenting just one of the disciplines used in the field, this postgraduate degree, unique in Europe, blends the subjects you need - biomedicine and pharmaceutical science - into one comprehensive course that focuses on the integration of modern organomedicinal chemistry and molecular biology.

You’ll study various steps involved in developing and creating effective drugs, from concept to clinic, including the theories and practical applications of chemical drug design and immunology, pharmacology and molecular biology. Learning will be based on emergent technology from academic research and how it is applied to the drug development process, identification of drug targets, and development of effective drugs via reference to the relevant biological systems and pathways.

See the website http://www.napier.ac.uk/en/Courses/MSc-Drug-Design-and-Biomedical-Science-Postgraduate-FullTime

What you'll learn

This course provides the knowledge, understanding and practical experience you’ll need to forge a rewarding career in research and development in the pharmaceutical, bioscience or healthcare sectors. You’ll develop in-depth understanding of disease processes and molecular targets and an ability to apply this knowledge and theory to key aspects of drug design and biomedical science.

Equipped with the ability to follow developments in the field, you’ll learn to apply them to your work and make innovative contributions to the industry that will benefit others. Complex issues often arise in this field: you’ll acquire the skills necessary to make informed judgements and effectively communicate decisions.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices. In your final trimester you’ll undertake an independent project within a vibrant biomedical or drug design research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or industry in the UK or overseas.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This programme is also available as a Masters by Research: http://www.napier.ac.uk/research-and-innovation/research-degrees/courses

Modules

• Current practice in drug development
• Advanced immunology
• Molecular pharmacology and toxicology
• Research skills
• Quality Control and Pharmaceutical Analysis or Biotechnology and Drug Discovery
• Drug design and chemotherapy
• Research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

The rapidly developing pharmaceutical, bioscience and healthcare sectors all need qualified drug discovery or biomedical scientists. This course is your fastest and most effective route to a successful career in drug design.

You could establish a laboratory-based career with global pharmaceutical companies, developing biotechnology companies, contract drug testing, hospitals, NHS, local government or health and safety divisions.

Alternatively, further studies to PhD level are available at institutions all over the world leading to an academic career.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Designed with industry input, and with industry placement opportunities available, this programme prepares you for a career in the pharmaceutical industry or in academic research. Read more
Designed with industry input, and with industry placement opportunities available, this programme prepares you for a career in the pharmaceutical industry or in academic research.

About the programme

The programme – which reflects the approaches taken by modern pharmaceutical companies – provides theoretical and practical training in the strategies and techniques by which novel drugs are designed. This involves the study of synthetic chemistry, medicinal chemistry, pharmacology, and chemical analysis. The latest strategies and technologies involved in the discovery and testing of novel
drug candidates are explored.

Practical experience

You may take a work-based learning module involving industry placement for approximately one day per week during the second trimester. Placements will be with pharmaceutical, chemical or bioscience companies.

Your learning

The MSc consists of six taught modules over two trimesters followed by a substantial research project.

Core modules include:
• Drug Discovery and Development
• Drug Research Methods
• Computer-Aided Drug Design
• Preclinical Drug Testing
• MSc Science Research Project
• Pharmaceutical Synthesis

Optional modules:
• Placement Learning
• Drug Design and Development

MSc

You will conduct a research project to complete the MSc, involving the application of knowledge and practical techniques covered in the modules. There are various exciting research projects ongoing in this area, including testing of potential anti-tumour agents, and enkephalin analogs, design and synthesis of opioidmimetics, and compounds used against Alzheimer’s disease.

Our Careers Adviser says

UWS graduates possess expert knowledge and practical experience of the most relevant techniques used in drug design and discovery, preparing you for a career in the pharmaceutical industry. Graduates will find employment in drug synthesis, computer-aided drug design, drug formulation and regulatory affairs.

Financial support

In session 2015/16 the Postgraduate Diploma element of this programme carried SAAS postgraduate loan funding for eligible students. Check http://www.saas.gov.uk for 2016/17 loan info.

Note: To obtain the MSc, students will usually take 9 months to gain the Postgraduate Diploma and then normally an additional 3 months of study to gain the MSc, from the date of commencement of the project.

First-class facilities

Get the hands on experience you need to succeed. We have excellent specialist facilities which support our research students and staff. These include an advanced chemical analysis lab: with state-of-theart chemical analysis for isotopic and elemental analysis at trace concentrations using ICPMS/OES and the identification of organic compounds using LCMS; and the Spatial and Pattern Analysis (SPAR) lab: providing high specification workstations, geographical information system (GIS) software, geochemical and image processing facilities to support data management in science research.

Read less
Chemical biology is the application of chemical tools and ideas to biological and medical problems. Read more

Chemical biology is the application of chemical tools and ideas to biological and medical problems. This programme is designed to build on an existing knowledge of chemical structure and reactivity to give you a thorough grounding in contemporary chemical biology and drug discovery as well as introducing you to topics from the research frontier.

You’ll be taught by experts from across the Astbury Centre in chemical biology, biophysics and medicinal chemistry using a "problem-based" approach. Visiting lecturers from the pharmaceutical industry will share their expertise in industrially-relevant applications of chemical biology and drug design with you.

Bridging the gap between your undergraduate degree in a core subject, and interdisciplinary research in chemical biology, you’ll develop the skills to solve real-life research problems, benefitting from a multi-million pound investment in fantastic research facilities. Rather than focusing on a single discipline, you’ll learn to use either chemical or biological approaches to tackle the problem in hand.

Accreditation

Royal Society of Chemistry Accreditation

The University of Leeds launched the first taught MSc degree in Chemical Biology in the UK. The course was one of the first two MSc courses in the UK to receive accreditation from the Royal Society of Chemistry; graduates from the programme with an appropriate first degree in chemistry satisfy the academic requirements for the award of Chartered Chemist (CChem) status.

Course content

In the first half of the year you’ll cover a core range of modules designed to build on an existing knowledge of chemical structure and reactivity to give you a thorough understanding of chemical biology and the techniques required for drug design. In the second half of the year you’ll spend the majority of your time working on an interdisciplinary research project which will allow you to work with and gain advice from two supervisors with complementary expertise.

This project will contribute 50% of the mark for your degree. The School will help you to select the project that is right for you, in an area that interests and motivates you. The project will provide you with key research experience to take your career forward. With the core modules behind you, you’ll be ideally positioned to choose an exciting problem to investigate.

The breadth of expertise available at Leeds means that you will be able to combine a wide range of techniques from computational ligand design to synthesis, protein engineering and laser spectroscopy. These techniques might span one of more of the following general areas;

  • Synthesis of biologically active molecules
  • Medicinal chemistry
  • Enzymology and directed evolution
  • Biophysical chemistry
  • Chemical genetics

You’ll receive training in the generic skills that are required for the module, including scientific writing and giving oral presentations. You’ll select your project at the start of the second semester,undertaking a programme of directed reading before writing an initial report. You’ll then spend over four months in your supervisors' research laboratories working alongside PhD students and experienced postdoctoral researchers. During the research project, you’ll have access to the outstanding research facilities in chemical biology that are available in Leeds.

Course structure

Compulsory modules

  • Foundation of Chemical Biology 10 credits
  • Drug Discovery and Development 15 credits
  • Emerging Topics in Chemical Biology 25 credits
  • Extended Laboratory Project for Chemistry-based MSc courses 90 credits

Optional modules

  • Practical Bioinformatics 10 credits
  • Molecular Diagnostics and Drug Delivery 10 credits
  • Advanced Topics in Chemical Biology (40 Credit) 40 credits
  • Advanced Topics in Chemical Biology (30 Credit) 30 credits

For more information on typical modules, read Chemical Biology and Drug Design MSc in the course catalogue

Learning and teaching

You will be taught by experts across the Astbury Centre for Structural Molecular Biology, meaning you’ll learn from both chemists and biologists to gain the skills and knowledge to work in a multidisciplinary environment. You’ll be taught through a series of lectures, small group workshops and practical lab sessions. You will also get involved in student led activities such as literature presentations.

Assessment

The wide range of continual assessment formats will allow you to improve your generic skills, and to hone your ability to solve problems. As part of the continual assessment of modules, you will give a wide range of oral presentations; prepare short articles, essays and research reports; perform computational exercises; and undertake group-based problem solving activities. Your research project will be assessed through your practical work and a written research report.

Career opportunities

On graduation, you’ll be ideally placed to undertake interdisciplinary research in academia and the pharmaceutical or biotechnology industry. You’ll also be in a strong position to pursue a science-related career, such as patent work, scientific publishing or scientific administration.

In addition, this course will leave you well-placed to forge a career at companies working at the interface between chemistry and biology. The pharmaceutical and biotechnology industries are increasingly seeking researchers with a strong interdisciplinary background.

Further study

Many of our graduates have secured positions on Chemical Biology and Medicinal Chemistry PhD programmes in the UK and internationally. The Astbury Centre hosts a wide range of PhD programmes incorporating Chemical Biology and Medicinal Chemistry, offering many opportunities for students graduating from the MSc course. The MSc provides tailored training at the interface between chemistry and the biological sciences, and will enhance your prospects of securing a place on one of these highly competitive postgraduate programmes.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
The Organic Chemistry. Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Read more
The Organic Chemistry: Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Students gain outstanding training in synthetic organic chemistry applied to drug design, together with a breadth of experience in several areas of synthetic methodology and chemical biology.

Degree information

The programme provides a thorough foundation in drug design, advanced organic synthesis and molecular modelling, together with modules on research techniques, professional development and entrepreneurship. Students will carry out a substantial research project on organic/medicinal chemistry or chemical biology over a ten-month period.

MRes students undertake modules to the value of 180 credits.

The programme consists of two modules from the Wolfson Institute for Biomedical Research (30 credits), one Master's level chemistry module (15 credits) two transferable/research skills modules (30 credits) and the research project (105 credits).

Core modules - students take 30 credits of transferable/research skills and submit a research dissertation (105 credits).
-Transferable/Research Skills
-Research Dissertation

Optional modules - students take 45 credits from the following options:
-Bioinformatics
-Target Identification
-Cheminformatics
-Biological Molecules
-Biophysical Screening
-Fragment Based Drug Design
-Target Selection (Scientific)
-Target Selection (Commercial)
-Principles of Drug Design
-Biological Chemistry
-Stereochemical Control in Asymmetric Synthesis
-Synthesis and Biosynthesis of Natural Products
-Organometallics and Catalysis
-Structural Methods in Modern Chemistry

Dissertation/report
Students will undertake a laboratory-based research project lasting ten months. An interim report is submitted after five months, and at the end of the project each student writes a dissertation, gives a short presentation and has a viva voce examination.

Teaching and learning
The programme is delivered through a combination of lectures, problem classes, workshops and projects. Assessment is through unseen written examination, coursework, project reports and presentations.

Careers

The MRes has been developed in response to the needs of the pharmaceutical and biotechnology sectors for highly qualified students as leaders in the discovery of new medicines. The pharmaceutical sector is a major employer in the UK and high-quality graduates with an understanding of the sector are always in demand. Our recent graduates have taken up PhD positions, are working in industry and have entered teacher training.

Top career destinations for this degree:
-PHD Chemical Biology, University College London (UCL)
-PhD Radiochemistry, University College London (UCL)

Why study this degree at UCL?

This programme is taught in collaboration with the Wolfson Institute of Biomedical Research (WIBR) which brings together scientists and clinicians from both academic and pharmaceutical industry backgrounds. The institute's strength is in its multidisciplinary approach to research, with the goal of identifying novel targets for drug development.

Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
The global drug delivery sector is set to attain significant growth over the next five years. This is driven by the introduction of technologies with improved product features. Read more
The global drug delivery sector is set to attain significant growth over the next five years. This is driven by the introduction of technologies with improved product features. As the pharmaceutical industry continues to innovate in order to maintain growth and profitability, the use of new drug delivery technologies is being explored for many treatment areas.

The introduction of new routes of delivery combined with increasing research and development spend, has created a new market for drug delivery and there is a market need for employees with matched skill sets.

What you'll study

The programme provides specialist research training and practical experience in the design and development of effective drug delivery systems, as well as promoting directly applicable skills for career and professional development.

This course is designed to provide a robust postgraduate training and skills development for life science or physical science-based graduate students seeking employment in the pharmaceutical industry or at the life sciences interface.

You'll gain an overview of drug delivery and have hands-on experience of pharmaceutical formulation and drug delivery.

The course aims to:
-Develop your understanding of the biology of specific targets for drug-based intervention
-Develop your understanding of the biopharmaceutical, pharmacokinetic & physicochemical principles important in the design and formulation of drug dosage systems
-Address the latest advances in drug delivery & targeting & develop your understanding of the concept of drug targeting using drug -Carriers & provide an in depth appreciation of the strategies available & utilised for a particular drug & biological barrier
-Enhance your research skills & transferable skills relevant to drug delivery in preparation for a career in the pharmaceutical industry or academia including leadership skills & entrepreneurship
-Develop your understanding of advanced research methodology to enable you to carry out independent work of publishable standard

Major projects

Within your project, you'll have the exciting opportunity to work alongside leading researchers developing the next generation of drug delivery systems. We offer a range of topics from nano to macro drug delivery systems and we consider a wide range of delivery strategies.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences offers an excellent environment for research and teaching. It’s located in a new building with several laboratories. All are fitted with the latest equipment.

The course will also provide students with full experiential learning with facilities including:
-Formulation & manufacturing facilities
-Thermo-analytical facilities
-Particle, microparticle & nanoparticle size & surface analysis
-Dissolution analysis facilities
-Freeze-drying
-In-vitro analysis

The course is also supported by access to the full range of analytical spectroscopic and chromatographic instrumentation for the characterisation of drug and drug delivery components, including:
-Nuclear Magnetic Resonance (NMR)
-Ultra-violet (UV)
-Attenuated total reflectance fourier transform infrared spectroscopy (ATR_FTIR)
-Mass spectrometry (MS)
-High-pressure liquid chromatography (HPLC)
-Gas chromatography (GC)
-Liquid chromatograph/gas chromatography mass spectrometry (LC/GC-MS)

Careers

This Masters programme is designed to support your career journey into the field of drug delivery and pharmaceutical sciences and provide the support for you to take up an exciting role within the pharmaceutical industry or continue your research career into a PhD programme.

Read less
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills. Read more
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills.

The programme comprises a broad range of modules covering the major aspects of analytical and pharmaceutical chemistry, complemented by studies in transferable and professional skills.

Core study areas include research methods, separation techniques, pharmacokinetics and drug metabolism, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include mass spectrometry and associated techniques, drug targets, drug design and drug synthesis, sensors, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

The programme is for those who wish to extend their knowledge in a particular area or broaden their field in order to increase their career prospects.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Read less
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis. Read more
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis.

The programme comprises a broad range of modules covering all the major analytical techniques, complemented by studies in transferable and professional skills, with the option to study aspects of medicinal and pharmaceutical chemistry if desired.

Core study areas include research methods, separation techniques, mass spectrometry and associated techniques, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include sensors, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis and innovations in analytical science.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries including pharmaceuticals, chemicals, food, environmental management, contract analysis laboratories, public laboratories, regulatory authorities and instrument manufacturers in either technical or marketing functions or preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Read less
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. Read more
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. You will gain hands-on experience of working within a medicinal chemistry team during your research project.

The course is suitable if you have a background in the chemical or pharmaceutical sciences. It includes 120 credits of taught modules and a 60 credit practical project.

Themes include drug design, metabolism and toxicology with an understanding of synthetic organic chemistry. Building on University research strengths, specialist topics include bio-imaging and modern approaches to chemotherapy. You will develop expertise in drug design as practised in the pharmaceutical industry and in academia.

You will also gain knowledge of modern and experimental therapies developing in the Northern Institute for Cancer Research.

Delivery

The course is delivered through the School of Chemistry in collaboration with the Northern Institute of Cancer Research and the Faculty of Medical Sciences. The School will provide personal study support throughout your course.

Your work is in chemistry and biology laboratories using modern analytical equipment with access to computer clusters, specialist computer software, online resources, an extensive library and dedicated study areas. All teaching takes place at the university's campus in the centre of Newcastle upon Tyne.

Facilities

The School of Chemistry has modern teaching and research facilities along with major research strengths in drug and medicinal chemistry. Our new teaching laboratories, costing £1.9 million, have recently opened.

Read less
Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. Read more
Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. Practical experience gained through two six-month laboratory rotations.

Key benefits

- The range of topics including advanced imaging methods is unique for this translational cancer programme

- The sponsoring laboratories and departments all have international standing and have agreed to closely supervise the trainees

- Recently released data from the Higher Education Funding Council for England (Hefce) shows that King’s College London is equal top in England (with Queen Mary, University of London) for its PhD completion rates. This programme will potentially select candidates for the PhD programme within the Division of Cancer Studies

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/translational-cancer-medicine-mres.aspx

Course detail

- Description -

Overview of subjects covered:

• Biomarkers, biostatistics and modelling
• Breast cancer
• Cancer bioinformatics
• Cancer imaging (optical)
• Cancer imaging (PET)
• Clinical trials and translational research
• Gene discovery through to therapeutic applications
• Haemato-oncology and associated genetics/genomics
• Immunology of cancers
• Molecular pathology
• Signal transduction in cancers

- Course purpose -

The programme will provide students with a detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging, all of which are relevant to Translational Cancer Research. In addition, practical experience will be gained through two laboratory rotations of six months duration.

- Course format and assessment -

Work with 2 supervisors and their teams, 6 months in each lab

Assignments:

• 30 credit taught module:

2-3 weekly lectures during first 3 months

Throughout the year, students also attend literature reviews and journal clubs that their labs/departments organise and any other internal or external seminars deemed relevant to their projects/assignments.

The assessment for this module is an essay on the fundamentals and the overall concept of Translational Cancer Medicine

• 75 credit laboratory based research project 1:

Assessed by a written dissertation, a seminar presentation and an oral examination

• 75 credit laboratory based research project 2:

Assessed by a draft of a paper of the standard and format required by a scientific journal.

Career prospects

Future PhD studies. Clinical and non-clinical academic careers in cancer medicine.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body. Read more
This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body.

Degree information

You will gain hands-on experience of molecular modelling and computer-based drug design, and analytical and synthetic techniques and be exposed to modern platforms for drug discovery and methods of drug synthesis.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (90 credits), two optional modules (30 credits) and a dissertation (60 credits).

Core modules
-Modern Aspects of Drug Discovery
-The Process of Drug Discovery and Development I
-The Process of Drug Discovery and Development II

Optional modules - students choose two from the following:
-Anticancer Personalised Medicines
-New Drug Targets in the CNS
-Pharmacogenics, Adverse Drug Reactions and Biomarkers
-Advanced Structure-based Drug Design

Dissertation/report
All students undertake a laboratory-based research project which is assessed at the end of the year by a written report and oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials and seminars supported by the Blackboard e-learning system and practical classes. Assessment is through a combination of written examination and coursework. The research project is assessed by written report and oral presentation.

Careers

Students who complete the Drug Delivery and Development MSc will progress to careers in the various aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs.

Top career destinations for this degree:
-Analytical Scientist, GSK (GlaxoSmithKline)
-Product Physician, AstraZeneca
-PhD in Medicinal Chemistry, University College London (UCL)

Why study this degree at UCL?

Lectures and seminars from industry-based scientists and visits to industrial and biotechnological research laboratories are key features of this programme.

Our graduates include international students from 24 different countries.

The programme covers marketing, licensing and the regulatory affairs that form an integral part of the development process.

Read less

Show 10 15 30 per page



Cookie Policy    X