• University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
De Montfort University Featured Masters Courses
University College London Featured Masters Courses
University of Bedfordshire Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Nottingham Featured Masters Courses
"drug"×
0 miles

Masters Degrees (Drug)

We have 436 Masters Degrees (Drug)

  • "drug" ×
  • clear all
Showing 1 to 15 of 436
Order by 
Help improve human or animal health through creating new or more effective drugs and medicines. Learn the research processes used to identify drug targets and develop new therapeutics. Read more

Help improve human or animal health through creating new or more effective drugs and medicines. Learn the research processes used to identify drug targets and develop new therapeutics.

Your studies will combine the biological sciences with chemistry, giving you the skills to target, design, synthesise, create and assess new drugs. You'll also learn about protecting intellectual property, assessing the financial viability of drugs and the pre-clinical and clinical trial processes.

Tailor your studies to your strengths, interests and career goals. You'll learn a mix of academic and practical skills that are closely aligned to the needs of industry.

The Master of Drug Discovery and Development is best suited to very able students with backgrounds in chemistry or relevant life-science subjects such as biochemistry, biomedical science, pharmacy or pharmacology. It is an intensive one-year taught programme, unique in New Zealand.

Learn from the best

Learn from academics and professionals who are leaders in the field and have experience in successfully taking drugs to market. Each course is taught by at least three academics so you'll be exposed to a wide range of expertise.

Drug Discovery and Development is taught by the Schools of Chemical and Physical Sciences and Biological Sciences in collaboration with the University's Ferrier Research Institute and the Centre for Biodiscovery.

You'll be able to take advantage of the research expertise of the Ferrier Research Institute in drug design and development, and if you're doing a Master's, you'll be working alongside the more than 30 scientists who make up the largest carbohydrate research team in the world. The Institute also has its own manufacturing facility so you'll have the opportunity to observe the drug development process from discovery to product.

You'll also benefit from the programme's links with the Centre for Biodiscovery where you will interact with the research teams that are actively discovering, designing and assessing novel bioactive compounds.

Drugs in the real world

Get wise to the real-world issues facing pharmaceutical development and make the most of the hard-earned experiences of staff who have worked in the local and international biotech industry. Learn not only how to handle chemicals on a large scale, but to develop the mindset to do this in a way that is safe, reliable and robust—so you end up providing medicines that will change people’s lives.

Victoria offers three postgraduate qualifications in Drug Discovery and Development. Choose the one that suits your career goals, time constraints and financial situation.

  • Master of Drug Discovery and Development
  • Postgraduate Diploma in Drug Discovery and Development
  • Postgraduate Certificate in Drug Discovery and Development

If you begin by enrolling in the Certificate or Diploma programme you can continue on to complete your Master's. Or if you enrol in the Master's but can't complete it, for whatever reason, you may have completed enough points to be awarded a Certificate or Diploma.

What you'll study

Each qualification includes the core courses DRGD 401 Chemical Biology and Drug Discovery, and a choice between DRDG 402 Drug Design or CHEM 421 Organic Chemistry and Bio-organic Chemistry.

After that you'll choose from selected courses from the study areas of Drug Discovery and Development, Biomedical Science, Biotechnology, Chemistry, Clinical Research and Microbiology.

All three qualifications give you the opportunity to do at least some research.

Postgraduate Certificate

You'll complete four courses worth 60 points made up of the two core courses and two further choices.

Postgraduate Diploma

You're likely to take seven courses that will include the two core courses, your elective options and the 30-point Research Preparation course.

Master's

You'll study for your Master's in two parts over three trimesters. In Part 1, the first two trimesters, you're likely to take seven courses that will include the core courses and a 30-point Research Preparation course.

In Part 2, you'll complete a full research project. Choose between DRDG 561 Applied Research Project, where you'll complete one or more problem-solving projects, or DRGD 590 Research Project, where you'll focus on medicinal chemistry and the formulation of active pharmaceutical products. In some cases you may be able to replace the research project with the thesis course DRGD 595.

Your Master's may be endorsed with a specialisation in either Drug Discovery, Drug Development or Chemical Biology. Check the requirements to find out what you need to do for these.

Workload and duration

You can expect a workload of 40–45 hours a week for much of your studies.

The MDDD can be completed in 12 months full time, or in two years of part-time study but you'll need to discuss this option with the programme directorfirst. The Diploma will take you two trimesters and the Certificate one trimester.

Location

You'll study at Wellington's Kelburn campus where you will have access to state-of-the-art research facilities. Students doing a research programme will also work in partnership the world-renowned Ferrier Research Institute in Lower Hutt.

Research topics

Be part of a dynamic and collaborative scientific research community. Past students' research areas in drug discovery and development have included:

  • development of a new scaled-up catalytic process for a high value fine chemical
  • isolation and characterisation of a novel bioactive from a New Zealand marine organism
  • formulation of a novel therapeutic for cancer immunotherapy.

Community

Become part of an active community of scientists. Postgraduate study at Victoria will help you build valuable relationships and networks with peers, university staff and future colleagues. You'll have unprecedented access to world industry leaders who visit as guest lecturers and run seminars with students.

Careers

You'll have the broad skills you need to work in drug discovery in companies, universities, research institutes or with drug regulatory authorities. You might work within the pharmaceutical, bioanalytical or chemical industries, or take your skills into nutraceuticals or agrichemicals.



Read less
OVERVIEW. The. Oncology Drug Discovery MSc. course is designed to provide an insight into how existing and future drug targets are identified from biological samples isolated from the cancer clinic. Read more

OVERVIEW

The Oncology Drug Discovery MSc course is designed to provide an insight into how existing and future drug targets are identified from biological samples isolated from the cancer clinic. This will include an industrial viewpoint into what makes an interesting target and how, through an iterative process, this target is validated. In addition, lectures will be provided to discuss how ‘hit’ compounds are identified, in both the academic and industrial setting, using compound screen assays and fragment based screening technologies. We will also provide an insight in computational methods for generating chemical ‘hits’. The module will also cover how these ‘hit’ compounds are prosecuted into tool compounds or Lead Optimisation candidates (LO), both historic and modern, that are used to further validate a potential drug target.

During this second module we will provide an insight into the challenges of moving a compound from an LO candidate to a pre-clinical candidate. How bio-marker companion tests are developed, validated and are used to underpin clinical trials. The lectures will also provide a keen insight into novel formulation strategies currently under development within Queen’s University Belfast. In addition, we will also provide an insight into the development of bio-therapeutics, such as antibodies, that are proving to be a powerful alternative to small molecule based therapeutics.

For further information email  or send us a message on WhatsApp

ONCOLOGY DRUG DISCOVERY HIGHLIGHTS

The strong links between us and the biotech and bio-pharmaceutical sectors provides a stimulating translational environment, while also expanding your career opportunities.

GLOBAL OPPORTUNITIES

INDUSTRY LINKS

  • Research projects will be provided by both academic staff and local biotech companies in ground-breaking research areas with a strong focus on clinical applications.

WORLD CLASS FACILITIES

  • The Oncology Drug Discovery course will be taught and mentored within the Centre for Cancer Research and Cell Biology: a purpose-built institute at the heart of the Health Sciences Campus, boasting state-of-the-art research facilities.

INTERNATIONALLY RENOWNED EXPERTS

  • We have an international reputation in this area, achieved through: high-impact peer review publications significant international research funding, the establishment of successful spin-out companies.

 

COURSE STRUCTURE

Research Project

  • You will undertake a lab based project in a number of different facets of the drug development, such as hit identification, hit compound development and therapeutic antibody development pathway working with both academic and biotech groups.Semester 1

Research Translational: from Concept to Commercialisation (Full Year)

  • This module covers the principles of disease biology and new technological developments that increase our understanding of disease processes. It develops an appreciation of the importance of innovation, business awareness and leadership skills in the translation of discovery science to clinical implementation.

Diagnosis and Treatment of Cancer

  • This module provides a comprehensive overview of the diagnosis and treatment of the common solid and haematological malignancies, including breast, ovarian, genitourinary and gastrointestinal cancers as well as the leukaemias

Cancer Biology

  • This module provides a comprehensive overview of the fundamental principles of carcinogenesis, highlighting how normal control processes are bypassed during tumour formation. The pathogenic mechanisms to be discussed will range from genomic alterations in key gene families, to epigenetic mechanisms of gene control, alterations in kinase activities or protein turnover, or activation of aberrant phenotypes such as invasion and angiogenesis.Semester 2

Target Identification and Development in Drug Discovery

  • This module describe how novel drug targets are identified and validated and identifies how biochemical assays are developed and employed in the drug discovery process. It also evaluates the alternative approaches used in the drug discovery to identify new chemical matter. It describes and defines chemical approaches used in developing ‘hit’ chemical compounds and identifies drug target classes and their drug-like pharmacophores.

Drug optimization, drug delivery and clinical trials

  • This module evaluates the issues associated the drug development process and describes the development, validation and use of bio-markers in the drug discovery process. It discusses the practices employed in clinical trials and defines the processes employed in licensing of new chemical equity and the role it plays in the drug discovery process.

For further information email  or send us a message on WhatsApp



Read less
- https://www.kent.ac.uk/locations/medway/. This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company.

It was designed and conceived by pharmaceutical industry experts in drug discovery and will be delivered and assessed by experts in this field at the School of Pharmacy.

The MSc covers how fundamental science is applied to the discovery and development of medicines and the main aims are to:

- provide you with the experience of critically appraising the research questions and techniques that are routine in the pharmaceutical industry workplace

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- provide expert preparation for students who wish to pursue a career in drug discovery, or wish to proceed to a PhD.

Visit the website https://www.kent.ac.uk/courses/postgraduate/736/applied-drug-discovery

Duration: One year full-time (campus based), two years part-time (distance learning)

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

This programme is taught as either a classic one year full-time programme with attendance required on Mondays and Tuesdays for 48 weeks plus an additional study day off-campus, or delivered through distance e-learning using an interactive virtual learning environment on a two-year part-time basis.

The programme comprises 60 credits at certificate level, 60 credits at diploma level and 60 credits at Master’s level. You may choose to end your study at any one of these stages.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by 100% coursework; including scientific reports, assignments, essays, a research project and portfolio entries.

Programme aims

This programme aims to:

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- teach you an understanding of the drug discovery process

- provide you with expanded training in the biological sciences technical skills that underpin the processes of drug discovery

- provide you with the experience of critically appraising the research questions and techniques they use routinely in the workplace

- develop a variety of postgraduate level intellectual and transferable skills

- equip you with lifelong learning skills necessary to keep abreast of developments in drug discovery

- provide you with opportunities for shared multidisciplinary learning in drug discovery

- give you the experience of undertaking an independent research project

- provide expert preparation for students who wish to pursue and/or further a career in drug discovery, or wish to proceed to a higher degree (PhD) in topics related to the drug discovery process

- provide access to as wide a range of students as practicable irrespective of race, background, gender or physical disability from both within the UK and from overseas.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career. While the MSc in Applied Drug Discovery produces elite drug discovery personnel, who can pursue a career in the pharmaceutical industry or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
DRUG INNOVATION. A UNIQUE PROGRAMME. The Dutch Master's Selection Guide (Keuzegids Masters 2017) ranked this programme as the best in the field of Chemistry in the Netherlands. . Read more

DRUG INNOVATION: A UNIQUE PROGRAMME

The Dutch Master's Selection Guide (Keuzegids Masters 2017) ranked this programme as the best in the field of Chemistry in the Netherlands. 

Drug Innovation is about:

  • developing new drugs to combat drug-resistant microorganisms
  • using gene or protein technologies to create therapies targeted at individual patients
  • finding a way to imprint the immune system to increase tolerance
  • exploring the relationship between gut microbes and brain disease
  • learning how to use proteomics to study stem cell development
  • reducing the side effects of treatment by finding new ways to deliver drugs directly onto the tumor
  • updating and speeding up the drug regulatory process

The Master’s in Drug Innovation programme focuses on diagnostics and the improvement and management of small molecule and biomolecular drugs. Drug innovation covers many topics such as the development of new vaccines and the study of antibodies, gene therapeutics, and medical nutrition. Once developed, a new drug then needs to go through approval, which raises a whole new set of challenges, for example the establishment of new methods and criteria for evaluating the quality, efficacy, safety, and performance of the drug.

INTERDISCIPLINARY PROGRAMME

This broad, interdisciplinary programme is open to graduates from a wide range of disciplines such as chemistry, biology, pharmaceutical sciences, biomedical sciences, or medicine.

MANY ELECTIVE COURSES

Our programme offers a diverse suite of elective courses. This means you can concentrate on the topics of most interest to you. You will also take an internship with one of the research teams working on drug innovation at Utrecht University. This work may lead to publication in scientific journals within the field or new drug patents or protocols.

Graduates of this programme may go on to undertake research in drug innovation at universities, in the pharmaceutical or and biotechnology industry or to work in science or healthcare.

PROGRAMME OBJECTIVE 

Programme

Drug innovation is an interdisciplinary field, which pulls together expertise from chemical, biological and medical sciences. This interdisciplinarity is central to the search for new solutions to currently incurable diseases. You will contribute to this field by undertaking two internships over a total of 15 months and submitting a writing assignment.

Graduated?

After graduation, you will have the skills needed to translate a drug-related problem into a relevant research question and will also be able to design and perform the research needed to solve this question. Finally, you will also be able to critically reflect on your own research and report on it, both verbally and in writing. These skills are highly transferable and will enable you to work independently within a competitive labour market.

TRACKS



Read less
Our MSc Model-based Drug Development course provides the knowledge and skills for making evidence-based decisions at various stages of drug development. Read more

Our MSc Model-based Drug Development course provides the knowledge and skills for making evidence-based decisions at various stages of drug development.

It covers the scientific and regulatory aspects of evaluating a drug, with emphasis on the use of modelling and simulation methods. You will learn why these methods are so highly valued by industry and regulatory authorities as effective, cost-saving, decision-making tools. Learning is reinforced via hands-on application of the skills to real data.

The course has been developed with an emphasis on mechanistic approaches to assessing and predicting pharmacokinetics and pharmacodynamics (PKPD), such as physiologically-based pharmacokinetics (PBPK) .

As this comes under the general umbrella of systems biology, you will be able to apply your knowledge of modelling and simulation in various areas of research within the pharmaceutical industry.

Full-time students benefit from immersion in the varied biomedical research environment at The University of Manchester, including interaction with research staff at the renowned Centre for Applied Pharmacokinetic Research .

Alternatively, part-time students already working in the pharmaceutical industry can take advantage of the flexible, distance learning mode of the course, which allows you to fit study around other commitments.

Aims

The aim of the course is to provide specialist knowledge and skills that are highly relevant for a career linked to drug development and pharmaceutical industry.

It is designed for science, engineering or mathematics graduates who want to acquire:

  • awareness of the commercial and regulatory factors in drug development;
  • understanding of the physiological, chemical, and mathematical foundations used to define the safe and effective use of potential medicines;
  • training in the use of mathematical modelling and simulation methods to guide drug development.

The course aims to:

  • provide background information on the theory and methods for quantitative assessment of drug absorption, distribution and elimination;
  • provide an understanding of the role of pharmacometrics in the process of drug development;
  • provide background information on in vitro assays used to characterise ADME properties of new drug entities;
  • indicate the mathematical framework that is capable of integrating in vitro information with knowledge of the human body to predict pharmacokinetics;
  • provide familiarity and experience of using different software platforms related to pharmacometric data analysis including R, Phoenix, NONMEM, MATLAB, Simcyp, WinBUGS and MONOLIX;
  • equip you to reflect upon influential research publications in the field, to critically assess recent published literature in a specific area;
  • provide awareness of the elements of a convincing research proposal based on modelling and simulation;
  • provide the opportunity to undertake a project and carry out original research.

Special features

Distance learning option

Our distance learning option is ideal for scientists linked to the pharmaceutical industry who wish to expand their expertise while working in the industry.

Full-time mode

The full-time mode allows suitably trained mathematics, science or engineering graduates to focus on obtaining the advanced skills needed for a career in this area. We utilise a blended learning approach in which online learning content is supported by regular face-to-face contact with tutors.

Hands-on learning

Your learning will be reinforced over the duration of the course via hands-on application of your skills to real data.

Additional course information

The course focuses on the following topics.

  • Pharmacokinetics: addressing how a drug dose is administered to the body and the fate of drug molecules that enter the body.
  • Pharmacodynamics: addressing the chemical and physiological response of the body to drug.
  • Pharmacometrics: the science that quantifies drug, disease and trial information to aid efficient drug development and/or regulatory decisions (definition used by the US FDA).
  • Systems pharmacology: analysis of interactions between drug and a biological system, using mathematical models.
  • In vitro: in vivo extrapolation using physiologically based pharmacokinetic models (IVIVE-PBPK).

Teaching and learning

The course emphasises the development of problem-solving skills. A large portion of the learning involves structured problems requiring you to apply theory and practical skills to solve typical problems that arise in drug development.

The following teaching and learning methods are used throughout the course:

  • taught lectures;
  • hands-on workshops;
  • self-directed learning to solve given problems;
  • webinars and tutorials by leading scientists in industry/academia;
  • supervised research;
  • mentorship in solving problems and writing the research dissertation;
  • independent study.

Coursework and assessment

We assess your achievement of the learning outcomes for this course through:

  • unit assignments (submitted electronically);
  • unit examinations;
  • research project dissertation and oral presentation.

Career opportunities

This course was originally developed for scientists working within the pharmaceutical industry who wished to qualify as modellers with hands-on experience. The qualification will enhance your abilities within your current role or provide you with skills to progress into new posts.

The course is also appropriate for science and engineering graduates who wish to enter the industry. The role of modelling and simulation or pharmacometrics is assuming greater and greater importance in the pharmaceutical industry.

Pharmaceutical companies and government regulatory agencies are recognising its value in making best use of laboratory and clinical data, guiding and expediting development and saving time and costs.

A range of well-paid jobs exist in this area across the globe. Scientific and industry publications often discuss the current shortage and growing need for modellers.



Read less
Why this course?. The global drug delivery sector is set to attain significant growth over the next five years. This is driven by the introduction of technologies with improved product features. Read more

Why this course?

The global drug delivery sector is set to attain significant growth over the next five years. This is driven by the introduction of technologies with improved product features. As the pharmaceutical industry continues to innovate in order to maintain growth and profitability, the use of new drug delivery technologies is being explored for many treatment areas.

The introduction of new routes of delivery combined with increasing research and development spend, has created a new market for drug delivery and there is a market need for employees with matched skill sets.

What you'll study

The programme provides specialist research training and practical experience in the design and development of effective drug delivery systems, as well as promoting directly applicable skills for career and professional development.

This course is designed to provide a robust postgraduate training and skills development for life science or physical science-based graduate students seeking employment in the pharmaceutical industry or at the life sciences interface.

The course aims to:

  • develop your understanding of the biology of specific targets for drug-based intervention
  • develop your understanding of the biopharmaceutical, pharmacokinetic & physicochemical principles important in the design and formulation of drug dosage systems
  • address the latest advances in drug delivery & targeting & develop your understanding of the concept of drug targeting using drug carriers & provide an in depth appreciation of the strategies available & utilised for a particular drug & biological barrier
  • enhance your research skills & transferable skills relevant to drug delivery in preparation for a career in the pharmaceutical industry or academia including leadership skills & entrepreneurship
  • develop your understanding of advanced research methodology to enable you to carry out independent work of publishable standard

Major projects

Within your project, you'll have the exciting opportunity to work alongside leading researchers developing the next generation of drug delivery systems. We offer a range of topics from nano to macro drug delivery systems and we consider a wide range of delivery strategies.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences offers an excellent environment for research and teaching. It’s located in a new building with several laboratories. All are fitted with the latest equipment.

The course will also provide students with full experiential learning with facilities including:

  • formulation & manufacturing facilities
  • thermo-analytical facilities
  • particle, microparticle & nanoparticle size & surface analysis
  • dissolution analysis facilities
  • freeze-drying
  • in-vitro analysis

The course is also supported by access to the full range of analytical spectroscopic and chromatographic instrumentation for the characterisation of drug and drug delivery components, including:

  • nuclear Magnetic Resonance (NMR)
  • ultra-violet (UV)
  • attenuated total reflectance fourier transform infrared spectroscopy (ATR_FTIR)
  • mass spectrometry (MS)
  • high-pressure liquid chromatography (HPLC)
  • gas chromatography (GC)
  • liquid chromatograph/gas chromatography mass spectrometry (LC/GC-MS)

Learning & teaching

The course is delivered through lectures, tutorials and hands-on practical sessions.

If you successfully complete the required taught classes you may undertake a laboratory project for the MSc.

Assessment

Assessment of taught classes is through multiple choice tests, computer quizzes, problem solving scenarios, poster and oral presentations, essays, and formal written exams. The laboratory project is assessed through a written thesis.

Careers

This Masters programme is designed to support your career journey into the field of drug delivery and pharmaceutical sciences and provide the support for you to take up an exciting role within the pharmaceutical industry or continue your research career into a PhD programme.



Read less
The aim of this MSc is to provide a postgraduate education in pharmacovigilance, including relevant techniques, the basis of adverse drug reactions, regulations and guidelines, handling safety issues including labelling and risk management and systems and processes. Read more
The aim of this MSc is to provide a postgraduate education in pharmacovigilance, including relevant techniques, the basis of adverse drug reactions, regulations and guidelines, handling safety issues including labelling and risk management and systems and processes. Teaching consists of lectures and workshop activities in small groups and takes into account real world situations. There are opportunities for sharing experiences and networking which contributes to the development of your knowledge and understanding of pharmacovigilance issues.

Flexible programme

This is a flexible programme designed to meet the needs of those in either full or part-time employment who are likely to have a spread of responsibilities. Students are able to complete the MSc course in under three years if able to attend all modules at the earliest opportunity. Alternatively, they can take up to five years, progressing at a slower pace.

Participants will normally be graduates and/or experienced personnel and usually will need to have held positions in drug safety for one to several years. The programme is run as a series of intensive short courses supplemented with substantial pre and post-course reading and set coursework. In addition, if you are studying for an MSc, you will undertake a research project that is normally carried out at your workplace but may be done at the University, or an institution with appropriate experience of pharmacovigilance or adverse drug reactions.

The programme has attracted students from European Union countries, Norway, Switzerland, Japan and the USA and its success has led to the organisation of an annual Pharmacovigilance Update day for those who have completed their studies.

Recruitment will take place at the beginning of each taught module and the programme offers the awards of a PgC, PgD or MSc. Students are typically able to obtain any one of the awards in a minimum of two years; however you have a maximum registration of up to five years in order to complete the course. This course has the option of being a diploma if you do not feel you can commit to the full MSc programme.

Why choose this course?

-The MSc/PgD/PgC in Pharmacovigilance is a programme developed by the School of Life and Medical Sciences and the Pharmaceutical Information and Pharmacovigilance Association (PIPA).
-In addition to offering this course, The University of Hertfordshire is also part of the Eu2P European Programme in Pharmacovigilance and Pharmacoepidemiology, an online pan European e-learning/e-teaching MSc course.
-The programme includes eight taught modules, provided as intensive three-day workshops, and for the MSc award, a research project.
-It is taught mainly through teams of staff drawn from the professions appropriate to pharmacovigilance. This is a major feature of the programme, the majority of staff delivering the courses will be acknowledged experts.
-The aim is to provide a postgraduate education in pharmacovigilance, including relevant techniques, the basis of adverse drug reactions, regulations and guidelines, handling safety issues and the role of systems and processes.

Professional Accreditations

PIPA (Pharmaceutical Information and Pharmacovigilance Association)

Careers

Potential candidates will normally be in either full or part-time employment and are likely to have a spread of responsibilities, mostly in pharmacovigilance and medical information, monitoring safety data in either pre- and post-marketing studies or from spontaneous reports. They will be graduates and/or experienced personnel and usually will have held positions in drug safety for one to several years. Some applicants may have doctorates and may be medically qualified. Following successful completion of the course the knowledge gained should enable the post-graduates to make a greater contribution to the pharmacovigilance industry.

Teaching methods

Taught modules normally consist of approximately 24 hours class contact. In addition, about 120 hours will be needed to complete the pre and post-course activities. The actual amount of time spent will depend upon your existing knowledge and ability. All modules are free-standing. Satisfactory completion of four modules is compulsory for the PgCert; all eight modules are required for the PgDip and MSc. Coursework will contribute significantly to assessment and may comprise some or all of the following: summaries of pre-course reading, written reports of class discussions, essays, performances in seminars, poster presentations, problem solving or data interpretation exercise, short projects and case studies. Unseen written examinations will feature in some courses; they may be used to examine understanding of pre-course reading material. Attendance at the taught component and satisfactory completion of both coursework and examinations (where present), with a minimum mark of 50% in each element, is normally required to pass each module.

Structure

Year 1
Optional
-Adverse Drug Reactions by Major Body Systems I
-Adverse Drug Reactions by Major Body Systems II
-Drug Safety in Clinical Trials
-Labelling and Risk Management
-Management of Pharmacovigilance Data
-Pharmacoepidemiology
-Pharmacovigilance Regulations and Guidelines
-Principles of Pharmacovigilance

Year 2
Optional
-Adverse Drug Reactions by Major Body Systems I
-Adverse Drug Reactions by Major Body Systems II
-Drug Safety in Clinical Trials
-Labelling and Risk Management
-Management of Pharmacovigilance Data
-Pharmacoepidemiology
-Pharmacovigilance Regulations and Guidelines
-Principles of Pharmacovigilance

Year 3
Optional
-Adverse Drug Reactions by Major Body Systems I
-Adverse Drug Reactions by Major Body Systems II
-Drug Safety in Clinical Trials
-Labelling and Risk Management
-Management of Pharmacovigilance Data
-Pharmacoepidemiology
-Pharmacovigilance Regulations and Guidelines
-Principles of Pharmacovigilance
-Project, Pharmacovigilance

Year 4
Optional
-Adverse Drug Reactions by Major Body Systems I
-Adverse Drug Reactions by Major Body Systems II
-Drug Safety in Clinical Trials
-Labelling and Risk Management
-Management of Pharmacovigilance Data
-Pharmacoepidemiology
-Pharmacovigilance Regulations and Guidelines
-Principles of Pharmacovigilance
-Project, Pharmacovigilance

Year 5
Optional
-Adverse Drug Reactions by Major Body Systems I
-Adverse Drug Reactions by Major Body Systems II
-Drug Safety in Clinical Trials
-Labelling and Risk Management
-Management of Pharmacovigilance Data
-Pharmacoepidemiology
-Pharmacovigilance Regulations and Guidelines
-Principles of Pharmacovigilance
-Project, Pharmacovigilance

Read less
Unique in Europe, this course combines biomedicine and pharmaceutical science to prepare you for a rewarding career in the pharmaceutical, bioscience or healthcare sectors. Read more
Unique in Europe, this course combines biomedicine and pharmaceutical science to prepare you for a rewarding career in the pharmaceutical, bioscience or healthcare sectors.

If you're interested in a career in the fascinating and challenging world of drug design, this is the course that will take you there.

Rather than presenting just one of the disciplines used in the field, this postgraduate degree, unique in Europe, blends the subjects you need - biomedicine and pharmaceutical science - into one comprehensive course that focuses on the integration of modern organomedicinal chemistry and molecular biology.

You’ll study various steps involved in developing and creating effective drugs, from concept to clinic, including the theories and practical applications of chemical drug design and immunology, pharmacology and molecular biology. Learning will be based on emergent technology from academic research and how it is applied to the drug development process, identification of drug targets, and development of effective drugs via reference to the relevant biological systems and pathways.

See the website http://www.napier.ac.uk/en/Courses/MSc-Drug-Design-and-Biomedical-Science-Postgraduate-FullTime

What you'll learn

This course provides the knowledge, understanding and practical experience you’ll need to forge a rewarding career in research and development in the pharmaceutical, bioscience or healthcare sectors. You’ll develop in-depth understanding of disease processes and molecular targets and an ability to apply this knowledge and theory to key aspects of drug design and biomedical science.

Equipped with the ability to follow developments in the field, you’ll learn to apply them to your work and make innovative contributions to the industry that will benefit others. Complex issues often arise in this field: you’ll acquire the skills necessary to make informed judgements and effectively communicate decisions.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices. In your final trimester you’ll undertake an independent project within a vibrant biomedical or drug design research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or industry in the UK or overseas.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This programme is also available as a Masters by Research: http://www.napier.ac.uk/research-and-innovation/research-degrees/courses

Modules

• Current practice in drug development
• Advanced immunology
• Molecular pharmacology and toxicology
• Research skills
• Quality Control and Pharmaceutical Analysis or Biotechnology and Drug Discovery
• Drug design and chemotherapy
• Research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

The rapidly developing pharmaceutical, bioscience and healthcare sectors all need qualified drug discovery or biomedical scientists. This course is your fastest and most effective route to a successful career in drug design.

You could establish a laboratory-based career with global pharmaceutical companies, developing biotechnology companies, contract drug testing, hospitals, NHS, local government or health and safety divisions.

Alternatively, further studies to PhD level are available at institutions all over the world leading to an academic career.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body. Read more

This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body.

About this degree

You will gain hands-on experience of molecular modelling and computer-based drug design, and analytical and synthetic techniques and be exposed to modern platforms for drug discovery and methods of drug synthesis.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (90 credits), two optional modules (30 credits) and a dissertation (60 credits).

Core modules

  • Modern Aspects of Drug Discovery
  • The Process of Drug Discovery and Development I
  • The Process of Drug Discovery and Development II

Optional modules

Students choose two from the following:

  • Anticancer Personalised Medicines
  • New Drug Targets in the CNS
  • Pharmacogenics, Adverse Drug Reactions and Biomarkers
  • Advanced Structure-based Drug Design

Dissertation/report

All students undertake a laboratory-based research project which is assessed at the end of the year by a written report and oral presentation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials and seminars supported by the Blackboard e-learning system and practical classes. Assessment is through a combination of written examination and coursework. The research project is assessed by written report and oral presentation.

Further information on modules and degree structure is available on the department website: Drug Discovery and Development MSc

Careers

Students who complete the Drug Delivery and Development MSc will progress to careers in the various aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs.

Recent career destinations for this degree

  • PhD Medicinal Chemistry, UCL

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

Lectures and seminars from industry-based scientists and visits to industrial and biotechnological research laboratories are key features of this programme.

Our graduates include international students from 24 different countries

The programme covers marketing, licensing and the regulatory affairs that form an integral part of the development process

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: School of Pharmacy

87% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing the Drug Design MSc. Read more

This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing the Drug Design MSc. Conducting cutting-edge research within the drug industries and UCL's academic group, it offers opportunities for networking and future career development.

About this degree

This programme teaches students the latest methodologies and approaches and covers all aspects of drug design: drug discovery, computational and structural biology, screening, assay development, medicinal chemistry, and most importantly the industrial practices involved in modern drug design technology.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a dissertation/report (105 credits).

Core modules

  • Investigating Research
  • Researcher Professional Development

Plus two taught transferable skills modules delivered by CALT (UCL Centre for the Advancement of Learning and Teaching

Optional modules

Students select three of the following.

  • Bioinformatics and Structural Biology as applied to Drug Design
  • Target Identification and High Throughput Screening
  • Cheminformatics and Computer Drug Design
  • Biological Molecules as Therapeutics - Antibodies, siRNA, and Stem Cells
  • Biophysical Screening Methods, Protein NMR and Phenotypic Screening
  • Fragment-based Drug Design
  • Target Selection - Commercial and Intellectual Property Aspects
  • Target Selection - Scientific Grounds

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 15,000 to 20,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials and problem classes, critical journal clubs and a research project. Assessment is through coursework, practicals, laboratory work, examination, dissertation and oral presentation.

Further information on modules and degree structure is available on the department website: Drug Design MRes

Careers

We expect students graduating from this programme to take leading roles in drug discovery and development worldwide or to undertake further PhD-level research. Drug Design MRes graduates have found jobs in the pharmaceutical industry as well as PhD studentships in leading universities

Employability

The advanced knowledge and skill set acquired by taking this programme will enable students to find employment in the pharmaceutical and biotech industries in a global market.

Why study this degree at UCL?

The division hosts research groups in the areas of medicine, pharmaceutical research, cell cycle, neurobiology, mitochondrial function, stem cells and cancer. Underpinning the translational aspects of the biomedical research, we have a medicinal chemistry group which conducts research where chemistry and biology intersect, using the latest techniques and developing new ones for the study of biological systems.

The division collaborates extensively within industry and academia to develop biological tools and therapeutic agents. There are plenty of opportunities to conduct translational research that has an impact on drug discovery.

Pharmaceutical and biotech companies, well established in the West, have been transferring their research and development to the East. Given these substantial developments, particularly in China and India, the programme will have a broad international appeal.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Drug Discovery Skills MSc course aims to equip you with the advanced skills to enhance your knowledge and technical expertise in the drug discovery process. Read more

The Drug Discovery Skills MSc course aims to equip you with the advanced skills to enhance your knowledge and technical expertise in the drug discovery process.

 Key benefits

  • King's is ranked 7th in the world for Pharmacy & Pharmacology (QS World University Rankings by Subject 2017)
  • Lectures are delivered by experienced multi-disciplinary researchers from the biopharmaceutical sector and the regulatory authorities.
  • Advanced study programme with a five to six-month industry-based research project.
  • Close links and regular speakers from pharmaceutical companies giving you insights and up-to-the-minute knowledge of drug discoveries.

Description

The Drug Discovery Skills MSc is a one-year advanced course that runs from September to September and you will study modules totalling 180 credits throughout the year, with 75 credits coming from the research project and a dissertation to complete the programme.

You will study a range of modules that include core skills and case histories in drug discovery. You will also complete an extended industry-based research project and dissertation relating to drug discovery.

Course format and assessment

On average teaching consists of:

  • Seminars: 50 hours
  • Practicals and Workshops: 120 hours
  • Tutorials and feedback on assignments: 9 hours
  • Research Project Placement: Full-time (35 hours per week) for 20 weeks

Typically, one credit equates to 10 hours of work.

Assessment

  • Core Skills in Drug Discovery will be assessed by a 30-minute oral examination, a series of workshop diaries and a poster presentation.
  • Case History of Drug Discovery will be assessed by a 30-minute oral presentation, in addition to a written report of 3,000 words.
  • Research Project in Drug Discovery will be assessed by a research 10,000-word dissertation.
  • Seminars in Drug Discovery will be assessed by a two-hour written examination.

The study time and assessment methods detailed above are typical and give you a good indication of what to expect.

Location

This course is primarily taught at the King’s College London Guy’s campus. The work placement for the Research Project in Drug Discovery is usually in the UK laboratories of a pharmaceutical or biotech company.

Career prospects

Our graduates mainly gain employment in the pharmaceutical industry, or go on to study for a PhD.



Read less
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics). Read more
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics).

You’ll gain a thorough understanding and awareness of your chosen area of pharmacy, the research methods required to complete a final supervised research project and an overview of the drug discovery process.

These courses are primarily designed to prepare you for an academic or industrial career in the relevant area. You may be a scientist already working within the pharmaceutical industry or a recent science graduate.

You will undertake a variety of compulsory modules and a research project. This project will last approximately four months and you will work under the supervision of recognised experts in their field. The project allows you to undertake a detailed investigation and develop practical expertise in a specialist pharmaceutical sciences area. The University also has strong links with numerous pharmaceutical companies - there may be the opportunity to undertake your project in collaboration with one of these companies.

You will gain an overview of the drug development process from concept to market, gaining hands-on experience of pharmaceutical formulation and drug delivery.

What you will study

All students studying one of our three pharmacy MSc courses will take the following core modules:
-Research Methods 1: Professional Development
-Research Methods 2: Communication Skills
-Research Project
-Drug Discovery

Depending upon the course you chose, you will also undertake the following modules:
-Chemotherapy & Selective Toxicity
-Drug Dosage Form & Design
-Principles of Product Analysis and Validation
-Drug Delivery and Targeting

Learning, teaching & assessment

Ranked in the UK's top 10 in the 2017 Complete University Guide, Aston Pharmacy excellent links with the profession. In addition, our research profile ensures relevant, expertise-led teaching for the students who enrol onto our courses each year. We have a long history of proving sector-leading courses - did you know that Aston Pharmacy School can trace its roots back to 1841?

You will learn in lectures, seminars, workshops and tutorials. Some modules may also use computer modelling and simulation sessions.

Our courses are assessed by a mixture of coursework, examinations, practical work and oral and written presentations. The research project module will be assessed on the basis of a submitted project report and an oral defence of a poster.

Your future career prospects

Graduates from our MSc programmes have taken up careers within the Pharmaceutical Industry in various disciplines such as analytical sciences, formulation development and project management. Our programmes provide the wider context and practical laboratory experience for pursuing careers in regulatory affairs, scientific writing and further studies.

Recent graduates have entered roles such as:
-Assistant Lecturer, University of Sulaimaniyah
-Associate Product Manager, AstraZeneca
-Business Development Manager, Crete Designs Limited
-Clinical Technician / Worker, Bridgewater Hospital
-Compound Technician, Sterling Pharmaceuticals
-Drug Designer, Unspecified Drug Company
-Drug Safety Specialist, PPD
-Drug Store Manager, Qaiwan group company
-Inhalation R & D Analyst, Aesica Pharmaceuticals Ltd (R5)
-Lecturer, University of Lagos, Nigeria
-Locum Pharmacist, various
-Molecular Modeller / Community Pharmacist, Verax Care Pharmacy
-OSD Technologist, GSK
-Pharma Benefit Associate, UnitedHealth Group
-Pharmacist, Government of India
-Pharmacist, Kerbala University
-Pharmacologist, Unspecified
-PhD Research Scholar, NIRMA University
-Recruitment Consultant, SRG
-Regulatory affairs trainee, PharmaLeaf India Pvt Ltd
-Research assistant, University of Leeds
-Research Scientist, Pluss Polymers
-Research Scientist, Wintean
-Researcher, Sunny Pharmtech Inc.
-Sales Relationship Coordinator, Wesley Assurance Society
-Science Teacher, Perry Beeches School
-Senior Regulatory officer, Roche Pharmaceuticals

Read less
Your programme of study. If you want to discover a cure for a major disease or lesser known disease this programme will help you towards that goal. Read more

Your programme of study

If you want to discover a cure for a major disease or lesser known disease this programme will help you towards that goal. Aberdeen is well know for drug discovery as Insulin was developed at the university and there has always been a strong research focus within the medical sciences to continue finding major innovations in health sciences. You learn how to formulate drugs to understand how they are regulated and the bio-business area. This area has been in rapid growth since the discovery of customised drugs which rely on individual genetic make up to define, small batch drugs which larger drug companies don't manufacture for reasons of scale and economy, and the understanding of biologics to treat diseases.

Drug Discovery is one of the few areas which have continued to expand over the last 5 years, in fact there is a major revolution in treating disease processes with other disciplines assisting. The pharmaceutical industry in the UK is one of the largest contributors of income and it is being disrupted by a combination of easy process and scale up using innovation centre facilities, and customised treatments. Drug discovery involves multidisciplinary teams working in academia, biotechnology and pharmaceutical industries. Our MRes in Drug Discovery provides training in across all aspects of drug discovery and development, clinical pharmacology and medical biotechnology. The degree programme consists of one term of taught courses (3 months) followed by 2 individual research projects lasting 16 weeks each.

Courses listed for the programme

Semester 1

  • Molecular Pharmacology
  • Small Molecule Drug Discovery
  • Introduction to Bio-Business and the Commercialisation of Bioscience Research
  • Basic Skills-Induction
  • Generic Skills

Optional

  • Introduction to Molecular Biology
  • Applied Statistics
  • Drug Metabolism & Toxicology

Semester 2

  • Research Project

Optional

  • Advanced Bio-Business and the Commercialisation of Bioscience Research
  • Biologic Drug Discovery
  • Basic Research Methods

Semester 3

Why study at Aberdeen?

  • The university is highly regarded and known as a 'centre for excellence' in drug discovery and commercialisation
  • Researchers that teach are active opinion leaders and regulators with further interdisciplinary researchers in other countries and two British Pharmacological Society Wellcome Gold Medal winners on staff
  • The university won the Nobel Prize for the treatment of diabetes and invention of insulin

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months or 24 Months
  • September

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
This exciting new programme has been introduced as a spin-off from the very successful Drug Discovery MSc in response to the increasing opportunities which now exist for research scientists who can evaluate the business potential of their science as well as generate the science itself. Read more

This exciting new programme has been introduced as a spin-off from the very successful Drug Discovery MSc in response to the increasing opportunities which now exist for research scientists who can evaluate the business potential of their science as well as generate the science itself.

About this degree

This MSc contains the science core of the Pharmaceutics MSc and combines a broad overview of the drug discovery and development process with specialisation in management training and awareness, and strategic partnering and business development skills.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (120 credits), and a dissertation (60 credits).

Core modules

  • The Process of Drug Discovery
  • The Process of Drug Development
  • Modern Aspects of Drug Discovery
  • Pharma Management

Optional modules

  • There are no optional modules for this programme.

Dissertation/report

All students undertake a business development project based on an aspect of science from drug discovery either at the UCL School of Pharmacy or in industry.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials and seminars and practical classes. Assessment is through a combination of written examination and coursework. The business development project is by written report and oral presentation to the class and a judging panel of scientists and managers.

Further information on modules and degree structure is available on the department website: Drug Discovery and Pharma Management MSc

Careers

Students who complete the Drug Discovery and Pharma Management MSc will progress to careers in the various aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs.

Recent career destinations for this degree

  • Clinical Research Associate, Qualitis
  • Consultant, Prescient Healthcare Group
  • Data Analyst, ABPI (Association of the British Pharmaceutical Industry)
  • International Clinical Trial Co-ordinator, Ferring Pharmaceuticals
  • MRes in Molecular Plant and Microbioscience, Imperial College London

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The Pharma Management component of this MSc is led by Dr Nigel Ratcliffe, formerly Vice-President for regulatory and commercial affairs at Astra Zeneca.

Students visit a leading research laboratory e.g. GlaxoSmithKline to look at computer-based molecular modelling, how physico-chemical properties are determined, the robotic compound library, and high throughput screening. The visit is supplemented by material and instruction and the discovery process of a drug will be worked through in detail.

Students attend a one-day research conference on an aspect of drug discovery and development organised by the Society for Medicines Research where there is opportunity to interact with leading industrialists and researchers in the field.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: School of Pharmacy

87% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This online programme will provide you with the stimulus, guidance and knowledge to develop a career around new approaches to drug discovery. Read more

This online programme will provide you with the stimulus, guidance and knowledge to develop a career around new approaches to drug discovery.

You will study the challenges in developing novel drugs; the science underlying emerging fields of drug discovery; the application of new ideas to the field; how drug discovery relates to real-world health problems; the commercial aspects of drug discovery; and potential future developments. The programme offers a research-rich environment in which you can develop as a scientist and entrepreneur.

Online learning

Our award-winning online learning technology enables you to interact with our highly qualified teaching staff from the comfort of your home or workplace. You will have the same access to our staff as you would if you were on campus. Our online students not only have access to Edinburgh’s excellent resources but they get the opportunity to become part of a supportive online community.

Programme structure

You will learn through a variety of teaching methods, including online tuition, peer-to-peer discussion and individual study. You will take twelve taught courses followed by a research project leading to a dissertation in your final year.

Individual courses can be taken for Continuing Professional Development purposes or you can study for a Postgraduate Certificate, Postgraduate Diploma or MSc.

We offer a fast-track option to complete the MSc in two years, or you can spread your programme over a maximum of six years, through intermittent study, allowing you to accommodate work and other commitments.

You can expect to spend seven to 13 hours a week on your studies, depending on your chosen schedule.

Courses

  • Professional Skills in Drug Discovery
  • Measuring Drug Binding
  • Chemistry for Drug Discovery
  • Structure Determination of Drug Targets
  • Druggable Systems
  • Introduction to Modelling Biological Systems
  • Molecular Modelling
  • High Throughput Drug Discovery
  • Commercial Aspects of Drug Discovery
  • Systems Approach to Modelling Cell Signal Transduction
  • In Silico Drug Discovery
  • Modelling Metabolic Pathways

Career opportunities

You will enhance your career prospects with marketable analytical and presentation skills.



Read less

Show 10 15 30 per page



Cookie Policy    X