• Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University College London Featured Masters Courses
Durham University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Cambridge Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"drosophila"×
0 miles

Masters Degrees (Drosophila)

We have 9 Masters Degrees (Drosophila)

  • "drosophila" ×
  • clear all
Showing 1 to 9 of 9
Order by 
Research projects are available in the field of Molecular Cell Biology that include; the analysis of structure, function and dynamics of telomeres in yeast… Read more
Research projects are available in the field of Molecular Cell Biology that include; the analysis of structure, function and dynamics of telomeres in yeast and parasites, and of centromeric DNA in mammalian cells; investigation of stress-response networks in the nematode Caenorhabditis elegans and of micro RNAs during the evolution of developmental processes in Drosophila; establishment of the relationship between nuclear structure and function using the giant nuclei of amphibian oocytes; analysis of biological membranes, biomaterials and biophysical aspects of cellular interactions as well as filopodia, lamellipodia and stress fiber formation; investigation of blood substitutes from microbial cell factories and of artificial gas-carrying fluids for enhancing growth of cells in culture.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Population genetics studies the genetic variation that exists in wild populations, and the forces, such as selection, mutation and genetic drift, that shape this variation. Read more
Population genetics studies the genetic variation that exists in wild populations, and the forces, such as selection, mutation and genetic drift, that shape this variation. Particular interests in the School involve the molecular genetic variation of humans, and variation in wild populations of molluscs, foraminiferans and Drosophila. Projects may include studies on molecular evolution and phylogenetics using computer analysis of DNA and protein sequences; the genetic changes that are associated with speciation; evolution of transposable elements; and the population genetics of genome structure.

APPLICATION PROCEDURES
After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. Read more

About the course

This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. You’ll also spend time in seminars considering the ethical and legal issues associated with the field.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Stem Cell Techniques; Practical Cell Biology; Practical Developmental Genetics; Bionanomaterials; Modelling Human Diseases; Stem Cell Biology.

Read less
This course blends theory and practice to help you develop the skills required for a career in molecular and cellular biology. Our teaching focuses on integrated mammalian biology and animal models of human disease, drawing on our pioneering biomedical research. Read more

About the course

This course blends theory and practice to help you develop the skills required for a career in molecular and cellular biology. Our teaching focuses on integrated mammalian biology and animal models of human disease, drawing on our pioneering biomedical research.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Integrated Mammalian Biology; Practical Cell Biology; Practical Developmental Genetics; Cancer Biology; Modelling Human Diseases; Epithelia in Health and Disease.

Read less
Our department is home to a world-renowned sensory neuroscience research group. Their projects provide the basis for teaching and research training on this MSc. Read more

About the course

Our department is home to a world-renowned sensory neuroscience research group. Their projects provide the basis for teaching and research training on this MSc.

The course covers molecular, cell and developmental biology of auditory and visual systems. Advanced imaging and behavioural analysis focus on information processing: from sensory transduction to the central nervous system and behaviour. You’ll also study animal models of sensory deficits and the development of therapeutic treatments for hearing loss and blindness.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Integrated Mammalian Biology; Practical Developmental Genetics; Neuroscience Techniques; Sensory Neuroscience; Developmental Neurobiology; Computational Neuroscience.

Read less
Research profile. The Centre for Discovery Brain Sciences (CDBS) carries out research at molecular, cellular, systems and behavioural levels to understand fundamental mechanisms and pathways relevant to brain and body function in health and disease. Read more

Research profile

The Centre for Discovery Brain Sciences (CDBS) carries out research at molecular, cellular, systems and behavioural levels to understand fundamental mechanisms and pathways relevant to brain and body function in health and disease.

CDBS investigators exploit rapid advances in the enabling technologies available from genomics, proteomics, imaging, informatics, and in-vivo analysis to understand the function of gene products at the cell, organ and whole-animal level, and to understand cognition and behaviour at the systems, circuit, cellular and molecular level.

They also exploit the most appropriate model organisms/systems to investigate the delicate balance between high biomedical relevance (for example human, mouse, rat) and high genetic power (such as C. elegans, drosophila and zebrafish).

Research encompasses the study of the central and peripheral nervous systems, at multiple levels of analysis, from the molecular and cellular levels through to cognitive neuroscience, brain imaging, and behavioural neuroscience.

MSc by Research

The MSc by Research Neuroscience is a full-time 1-year research project done under the supervision of a CDBS Researcher. This programme has no taught component and is therefore only suitable for highly motivated students with a clear idea of their research interests and goals, with significant theoretical or practical knowledge of a chosen field. An MSc by full-time research provides an excellent training in laboratory research and a strong grounding for further study at the level of PhD.

MSc by Research Neuroscience students will work full-time on their research project with the additional option of taking selected transferable skills courses. Each student will have two supervisors. After 3 months study a short presentation and report of completed and proposed work will be made to the supervisors, at which point progression from Diploma to full Masters will be considered. Students that demonstrate sufficient progress and aptitude will progress for a further 9 months full-time research after which a Dissertation will be presented and assessed for the award of MSc.

If you're interested in applying for the MSc by Research Neuroscience please see "the how to apply" section on the right.

Note that this programme is different from “MSc by Research in Integrative Neuroscience” as the latter contains taught elements – for information on that programme please visit:

Facilities

Students have access to state-of-the-art laboratories and equipment to facilitate their research objectives. These are located both within the Central area campus and at the Little France campus. Extensive collaborations exist with the wider biomedical and clinical communities helping ensure you are supported in a world-class research environment.



Read less
This unique research-led masters course provides laboratory training to future scientists in drug screening and gene discovery using the latest automated genomics techniques. Read more

About the course

This unique research-led masters course provides laboratory training to future scientists in drug screening and gene discovery using the latest automated genomics techniques. Students will also gain training in the pharmaceutical industry practices through direct contact with industry leaders from a wide range of companies.

Your research project will be undertaken in conjunction with the internationally renowned Sheffield RNAi Screening Facility, providing you with world-class training and professional skills in the use of pharmaco-genomics. You’ll also benefit from our modern research laboratories and equipment, including purpose-built facilities for drug screening, laboratory automation, cellular assays, imaging and processing.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Practical Approaches to Small Molecule and Functional Genomic Screening; 3D Tissue Culture and Genome Editing; Genomic Approaches to Drug Discovery; The Biotech and Pharmaceutical Industry; Modelling Human Disease

Read less
Our research-focused MSc Developmental Biology course will give you extensive hands-on experience of conducting research into how fertilised eggs turn into complex multicellular organisms. Read more

Our research-focused MSc Developmental Biology course will give you extensive hands-on experience of conducting research into how fertilised eggs turn into complex multicellular organisms.

You will learn through an interactive approach involving seminars, workshops and small group tutorials rather than traditional lectures.

You will also undertake placements in the labs of leading researchers working on a range of model organisms and diverse areas of developmental biology.

Examples of developmental biology research at Manchester include:

  • studies of gene expression and cell signalling in model organisms, such as Drosophila, Xenopus and mice, which are illuminating the mechanisms by which different cell types and tissues arise during development. Findings obtained from these studies serve as general principles relating to human development;
  • exploring how misregulation of developmental mechanisms leads to human diseases, eg cancer, using various models;
  • research into the mechanisms regulating stem cell maintenance and differentiation to harness the therapeutic potential of stem cells;
  • looking at the healing process to improve wound repair and the longer-term regeneration of organs.

Special features

Extensive research experience

Gain significant laboratory experience through placements with leading developmental biology researchers.

Teaching and learning

We use a range of teaching and learning methods, including tutorials, workshops, seminars and research placements.

Find out more by visiting the postgraduate teaching and learning page.

Coursework and assessment

We will assess your progress using:

  • written reports on your research projects and tutorials
  • oral presentations
  • written assignments
  • posters
  • multiple choice exams
  • critical assessment of literature
  • online statistics exercises.

Course unit details

The course starts in September and runs for 12 months. You require 180 credits to complete the course, of which:

  • 135 credits are from research projects
  • 45 credits are from transferable skills units.

Research projects

Your projects each run for 18 weeks starting in October and April.

  • Research Placement 1 (65 credits)
  • Research Placement 2 (70 credits)

Transferable skills

45 credits are achieved through completion of activities that develop your transferable skills in essential areas such as experimental design, statistics, bioethics (included in the tutorial and workshop unit) and science communication. Experimental Design and Statistics runs at the start of the year to prepare you for your research projects. Elements of the other units run throughout the year alongside your research projects.

  • Experimental Design and Statistics (15 credits)
  • Tutorial and Workshop (15 credits)
  • Science Communication (15 credits)

Disclaimer: Our units teach the current trends in life sciences. Consequently, details of our units may vary over time. The University therefore reserves the right to make such alterations to units as are found to be necessary. Before accepting your offer of a course, it is essential that you are aware of the current terms on which the offer is based. This includes the units available to you. If in doubt, please contact us.

Facilities

You will be able to access a range of facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Our graduates acquire a vast array of subject-specific and transferable skills, as well as extensive laboratory research experience.

The University has a strong record of placing students in PhD programmes at Manchester and other universities, and several of our graduates have pursued research careers in industry.



Read less
Research profile. The Centre for Discovery Brain Sciences (CDBS) carries out research at molecular, cellular, systems and behavioural levels to understand fundamental mechanisms and pathways relevant to brain and body function in health and disease. Read more

Research profile

The Centre for Discovery Brain Sciences (CDBS) carries out research at molecular, cellular, systems and behavioural levels to understand fundamental mechanisms and pathways relevant to brain and body function in health and disease.

CDBS investigators exploit rapid advances in the enabling technologies available from genomics, proteomics, imaging, informatics, and in-vivo analysis to understand the function of gene products at the cell, organ and whole-animal level. They exploit the most appropriate model organisms/systems to investigate the delicate balance between high biomedical relevance (for example human, mouse, rat) and high genetic power (such as C. elegans, drosophila or zebrafish).

Research focuses on understanding fundamental mechanisms and pathways relevant to human function in health and disease across the life course.

MSc by Research

Our MSc by Research in Integrative Physiology is a full-time 1-year research project done under the supervision of a CDBS Researcher. This programme has no taught component and is therefore only suitable for highly motivated students with a clear idea of their research interests and goals, with significant theoretical or practical knowledge of a chosen field. An MSc by full-time research provides an excellent training in laboratory research and a strong grounding for further study at the level of PhD. Initial enquires should be made directly to Dr. Paul Skehel.

MSc students will work full-time on their research project with the additional option of taking selected transferable skills courses. Each student will have two supervisors. After 3 months study a short presentation and report of completed and proposed work will be made to the supervisors, at which point progression from Diploma to full Masters will be considered. Students that demonstrate sufficient progress and aptitude will progress for a further 9 months full-time research after which a Dissertation will be presented and assessed for the award of MSc.

If you're interested in applying for the MSc by Research, please review the Research Profiles and recent publications from members of the CDBS:

A preliminary email briefly outlining your research interests and identifying up to three potential supervisors from the CDBS should be sent directly to Dr Paul Skehel. If appropriate, students will then be invited to submit a short 400-word general outline for a potential MSc project with specific supervisors. Applicants progressing to this point will then be guided to make a formal application on this page. Please note that the MSc by Research has additional programme costs of £5,000.

Facilities

Students have access to state-of-the-art laboratories and equipment for all aspects of modern molecular, cellular and systems biology to facilitate their research objectives. These are located both within the Central area campus and at the Little France campus. Extensive collaborations exist with the wider biomedical and clinical communities helping ensure you are supported in a world-class research environment.

Research is mainly funded by grants from the MRC, the BBSRC and industrial companies.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X