• Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Leeds Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Coventry University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Greenwich Featured Masters Courses
FindA University Ltd Featured Masters Courses
"drilling" AND "engineer"…×
0 miles

Masters Degrees (Drilling Engineer)

  • "drilling" AND "engineer" ×
  • clear all
Showing 1 to 5 of 5
Order by 
The MSc in Petroleum Engineering programme aims at broadening, strengthening and integrating knowledge and understanding of the oil and gas industry processes. Read more
The MSc in Petroleum Engineering programme aims at broadening, strengthening and integrating knowledge and understanding of the oil and gas industry processes. You'll learn the mathematics, science, computer-based methods, design, and engineering practice to solve petroleum engineering problems of varying complexity, taking in consideration the economic, social and environmental context.

You'll gain a detailed knowledge of the integrated model of the oil reservoir, so that you'll be able to predict, maintain and improve oil and gas production processes. You'll benefit from the detailed instruction you receive on a suite of software packages that are used in the oil and gas industries to maximize costeffective production from the field, these include: PETREL, HYSYS, Eclipse, Prosper and GAP.

At the end of the programme you should have obtained a deep and broad knowledge of the integrated model of the oil reservoir in order to predict, improve, maintain and to innovate the processes of oil and gas production.

See the website http://www.lsbu.ac.uk/courses/course-finder/petroleum-engineering-msc

Modules

- Petroleum geoscience
- Petro physics
- Reservior engineering and simulation
- Drilling and production
- Advanced reservoir engineering
- Petroleum economics and oilfield management
- Group project (summer period)
- Dissertation (summer period)

Employability

The complexity of the oil and gas industry offers a wide variety of opportunities for career development to petroleum engineers.

In most oil companies worldwide the petroleum engineering team consists of a geologist, a reservoir engineer, a petro-physicist, a drilling engineer and a production engineer. With this Masters qualification you'll be qualified to apply for positions in all of these fields. Each member of this team will be concentrating on their own aspect of the larger task in hand, which is to maximise cost-effective production from the field.

As a graduate of the MSc in Petroleum Engineering your profile will match the needs in different areas of oil and gas production, and reservoir engineering in large companies, which offer attractive graduate programmes, and in medium and small operating and consulting companies.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

This Masters course is accredited by the Energy Institute.

The Energy Institute (EI) is the professional body for the energy industry delivering good practice and professionalism across the depth and breadth of the sector.

- Society of Petroleum Engineers
LSBU gained approval for the creation of the Society of Petroleum Engineers (SPE) Student Chapter in March 2007. The interaction with SPE-London allows our students to attend specialised conferences related to the oil industry, and also to have invited speakers from the industry, delivering presentations on relevant topics.

Read less
This course is designed for engineering graduates who intend to enter or enhance their career prospects in the oil or natural gas industry. Read more
This course is designed for engineering graduates who intend to enter or enhance their career prospects in the oil or natural gas industry. It will be re-accredited by the IGEM in 2016.

The course explores the geology, exploration, drilling, production (surface and subsurface), reservoir engineering and management, distribution and transmission of oil and gas from practical and theoretical viewpoints.

Key benefits:

• The first course of its kind in the UK
• Enhances your career prospects in the oil and gas industries
• Gives you the opportunity to become a Chartered Engineer

Visit the website: http://www.salford.ac.uk/pgt-courses/petroleum-and-gas-engineering

Suitable for

Suitable for engineering graduates or engineers and industrial practitioners who are interested in entering or progressing in the petroleum and gas industries.

You may have a first degree in engineering or a scientific discipline including geology and physics and will be keen to enter the gas or oil industry as an engineer.

You may also already have significant experience of working as an engineer in the gas and oil industry and wish to formalise your current position with an academic and professional qualification.

Programme details

You will develop the knowledge and the skills for problem solving in terms of development, design, business and economics management in oil and gas engineering which will assist you to make management and scientific decisions in the workplace.

On completion of this course you may be eligible to join the Institution of Gas Engineers & Managers or Society of Petroleum Engineers which may enable you to qualify as a Chartered Engineer.

Format

Teaching will be carried out as formal lectures, laboratories, tutorials and workshops

Module titles

• Petroleum Economics and Project Management
• Geology, Exploration, Drilling and Production
• Fundamentals of Natural Gas and Production Systems and Design
• Distribution, Transmission Systems and Design
• Gas Flow and Network Analysis
• Experimental and Measurement Methods
• Project/Dissertation

Assessment

Petroleum and Gas Engineering students are required to attend all of the modules. There are seven examination sessions. Students must pass all the modules studied with an overall average of at least 50% in the module programmes and in the course assessed work.

All laboratory and course assessed work must be submitted on time and to the required standard.

Students admitted to the course at Diploma level with examination and coursework of 50 % may proceed to MSc level. (120 Credits)

MSc Students must undertake a dissertation (60 Credits) on any aspect of the natural gas business either experimentally or computationally. The project can frequently relate to research work already in the school and or natural gas engineering and management.

You will be assessed by both coursework 50% and examinations 50%

Career potential

Due to the relative uniqueness of this course in the UK, together with the high demand of graduates with the types of skills and knowledge that this course offers, employment prospects are excellent.

Graduates can expect to enter or progress in industries such as petroleum, gas, process engineering, chemical or steel.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance. Read more
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance.

Course details

The programme of lectures and project work, encompasses a wide range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems. The course is applied in nature and has been designed so that on completion, you are technically well prepared for a career in industry.

Professional accreditation

Our MSc Petroleum Engineering is accredited by the Energy Institute, under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC.

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification, and the earning potential of chartered petroleum engineers can exceed £100,000 a year.

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase the industrial networking opportunities for students.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

You select your master’s research projects from titles suggested by either industry or our academic staff, but you may also, with your supervisor’s agreement, suggest your own titles.

Core modules
-Drill Engineering and Well Completion
-Hydrocarbon Production Engineering
-Material Balance and Recovery Mechanisms
-Petroleum Chemistry
-Petroleum Economics and Simulation
-Petroleum Reservoir Engineering
-Practical Health and Safety Skills
-Research and Study Skills

MSc candidates
-Research Project

Modules offered may vary.

Teaching

The course is delivered using a series of lectures, tutorials and laboratory sessions.

Our MSc Petroleum Engineering is supported by excellent laboratory and engineering machine workshop facilities including fluid flow measurement, computer modelling laboratories, other laboratories and workshops, an excellent library and computing facilities. We have invested around £150,000 in laboratory equipment particularly in within core analysis and enhanced oil recovery.

We have several computer laboratories equipped with specialised and general-purpose software. This generous computing provision gives you extended access to industry-standard software – it allows you to develop skills and techniques using important applications. For upstream processes, Teesside University has access to educational software packages like Petrel, Eclipse, CMG, PIPESIM and Ecrin to simulate the behaviour of oil reservoirs, calculating oil in situ, and oil and gas production optimisation. As for downstream processes, you can use HYSYS to test different scenarios to optimise plant designs.

Facilities include:
Enhanced oil recovery and core analysis laboratory
The flow through porous media, enhanced oil recovery techniques and core analysis is done in the core flooding lab. The lab is equipped with core plugging and trimming, core preparation and conventional core properties measurement equipment. At a higher level, the lab is also equipped to perform some special core analysis measurements such as fluid relative permeabilities as well as rock surface wetting quantification.

Petrophysics laboratory
The petrophysics lab allows you to study the properties of rocks, particularly the measurement of porosity and evaluation of permeability. The lab is equipped with sieve analysis equipment to investigate grain sorting and its effect on permeability and the porosity of rocks. You are able to gauge saturation and fluid flow through porous media.

Surface characterisation laboratory
The rock surface characterisation lab is equipped with a zeta analyser to measure the rock surface electric charge. You study the rock surface wetting state, adsorption and desorption potential using digitised contact angle apparatus and thermos-gravimetric apparatus respectively.

Drilling laboratory
The drilling lab is equipped with mud measurement equipment including mud density, mud rheology and mud filtration systems to enable you to measure mud cake and formation damage. The lab highlights the importance of oilfield drilling fluids.

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

These courses provide specialist education tailored to the requirements of both the upstream and downstream petroleum industry. The relevance of this education combined with careful selection of candidates has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy, with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists.

It is widely recognised that a steady influx of fresh people and ideas is vital for the longer-term success and stability of an organisation, and it is therefore expected that recruitment will continue, especially for those with motivation and the appropriate qualifications.

Read less
This Marine Technology course is for maritime professionals working full time in Singapore. Our dynamic course responds to the challenges and demands of the global maritime sector. Read more
This Marine Technology course is for maritime professionals working full time in Singapore. Our dynamic course responds to the challenges and demands of the global maritime sector.

This course develops technical and managerial techniques essential to the global maritime sector. You will study key topics including:
-Advanced marine engineering design
-Marine project management
-Marine systems identification, modelling and control
-Regulatory framework for the marine industry
-Surveying ships and offshore installations
-Advanced subsea and pipeline engineering
-Advanced marine design
-Advanced offshore technology
-Advanced hydrodynamics
-Mooring riser and drilling system

Delivery

This course involves a mixture of distance learning and week-long intensive schools delivered in Singapore.

Each taught module consists of 100 notional study hours. 35 hours are at the intensive school. You will need to read and complete course work during your non-intensive study. Each module takes two months and you will undertake a five taught modules per year.

Pre-school materials are provided for you to review what will be taught and so that you get the most out of the intensive school. The pre-school materials are made available four weeks prior to the intensive school.

Each one week intensive school runs from Saturday to Saturday:
-Saturday 14:00 to 18:00
-Sunday 10:00 to 18:00
-Monday to Friday 18:30 to 21:30
-Saturday 14:00 to 18:00

A typical school includes:
-Lectures
-Case studies
-Tutorials
-Presentations
-Discussions
-Visits

You will sit an examination during this intensive teaching week. It is worth 60% of the module mark.

Post-school materials include an assignment worth 40% of the module mark. You will submit this four weeks after the school. This consolidates your learning on a module. You must achieve a mark of 50% or more to pass.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. On graduation you will have satisfied the educational requirements leading to Chartered Engineer (CEng) status.

The RINA is an internationally renowned professional institution. Members work in all levels of design, construction, maintenance and operation of marine vessels and structures. Members of RINA span over 90 countries. They include industry, universities and colleges and maritime organisations.

IMarEST brings together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you a benchmark of quality to your degree. They make you more attractive to graduate employers. It can also open the door to higher-level jobs that need CEng status.

Read less
This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. Read more

Overview

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. As such it is also an opportunity for candidates from a different Engineering background to develop key Mechanical Engineering knowledge and skills required for their professional development. A key objective of the programme is to be an accredited route to becoming Chartered Engineer.

This programme makes use of masters-level courses in the Energy Sciences and Manufacture & Design complemented with specialist courses from relevant MSc courses offered by the institute. We have seen a growing need for an advanced mechanical engineering programme at the request of applicants, and our industry partners. This programme has been specifically developed to meet this need and to encourage students of this field into further learning.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 6 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Semester One - Mandatory
- B81PI Professional and Industrial Studies
This course is specifically designed to meet the master’s level outcome requirements in the areas of professional development and practice for chartered engineering status. This multi-disciplinary course uses industrial speakers and speakers from those in the university involved in bridging the gap between academia and industrial application.

- B51GS Specialist Engineering Technologies 1
The first of the specialist engineering technologies courses is based on computational fluid dynamics and assessed by a group project

Optional (Choose two)
- B51DE Engineering Design
In this course students interact with companies in a real life small R&D project supplied by the industrial partners. Working in teams, the students have to manage the design of a prototype, product or system and interact with the industrial contact putting into practice problem-solving skills from other engineering topics studied elsewhere in the programme.

- B51EK Fluids 1
Fluid mechanics applied to aerodynamics, including ideal flows, boundary layers, and aerofoils and their use for analysis and design purposes.

- B51EM Advanced Mechanics of Materials 1
Advanced classical mechanics including 3D stress and strain with particular application to thin walled vessels. Fatigue analysis and design for fatigue limit.

- B51EO Dynamics 1
To provide students with a thorough understanding of vibration theory and an appreciation of its application in an engineering environment

- B51EQ Thermodynamics 1
Thermodynamic cycles including heat engines and reverse heat engines and means of evaluating best performance.

- G11GA Flame Appraisal
Introduction to the stages required for evaluating an oilfield for production. This covers geological considerations and fluid flow from oil bearing rock.

Semester Two – Mandatory

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B51HB Failure Accident Analysis
To acquaint students with the potential causes of material, structure or component failure; framework under which a failure or forensic engineering investigation should be carried out and give them the opportunity to work case studies through from information-gathering to preparation of reports and an awareness of fire and explosion engineering.

- B51GT Specialist Engineering Technologies 2
To present advanced theory and practice in important or emerging areas of technology including non-linear final element materials to include contact mechanics, design of components subjected to high stress applications.

Optional (Choose one)
- B51EL Fluids 2
To provide a methodology for analysing one-dimensional compressible flow systems.

- B51EN Advanced Mechanics of Materials 2
To provide students with an opportunity to: carry out advanced analyses of mechanics of materials problems; analyse mechanics of materials where time is a significant additional variable; use final element analysis for cases involving viscoelasticity and complex geometry
engage with the findings of recent research in a mechanics of materials topic

- B51EP Dynamics 2
To provide students with a thorough understanding of control theory and an appreciation of the subject of environmental acoustics and passive noise control

- B51ER Thermodynamics 2
Investigation of heat transfer mechanisms with a view to the design of effective heat exchangers for given operating conditions. The study of radiation heat transfer and combustion equilibrium.

- B51DF Engineering Manufacture
To provide the student with a detailed understanding of the importance and integration of advanced manufacturing technology and manufacturing systems within the context of product engineering. On completion, the students should have acquired a detailed understanding of the product development process from initial conception through to product support as well as appreciate the impact of each stage of the process on the business and organisationally with respect to information dependence and manufacturing processes employed.

- G11GD Flame Development
A continuation of Flame Appraisal, this course looks at the well-head arrangement for oil extraction. This is an introduction to drilling engineering and the techniques required for oil extraction.

Semester 3 – Mandatory

- B51MD Masters Dissertation
An individual project led by a research active member of staff on a current research theme with the aim of leading to the production of a journal article.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Advanced Mechanical Engineering. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X