• University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
Coventry University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Staffordshire University Featured Masters Courses
University of Portsmouth Featured Masters Courses
"drainage"×
0 miles

Masters Degrees (Drainage)

We have 29 Masters Degrees (Drainage)

  • "drainage" ×
  • clear all
Showing 1 to 15 of 29
Order by 
IN THIS 24-MONTH INTENSIVE, PART TIME ONLINE PROGRAM YOU WILL LEARN. - Advanced skills and knowledge civil and structural engineering principles that can be applied in a variety of workplaces. Read more

IN THIS 24-MONTH INTENSIVE, PART TIME ONLINE PROGRAM YOU WILL LEARN:

- Advanced skills and knowledge civil and structural engineering principles that can be applied in a variety of workplaces

- The essential underpinning knowledge that guides a range of projects, including road, rail and drainage systems, dams, harbours, bridges, buildings and other structures

- Practical skills in the design and drafting of engineering plans to international standards

- Skills in engineering management

KEY BENEFITS OF THIS PROGRAM:

- Receive practical guidance from civil and structural engineering experts with real world industry skills

- Gain credibility in your firm

- Develop new contacts in the industry

- Improve career prospects and income

Due to extraordinary demand we have scheduled another intake this year.

Start date: April 09, 2018. Applications now open; places are limited.

There are limited placed available so contact us now to speak to a Course Advisor.

INTRODUCTION

Join the next generation of senior civil and structural engineering experts. Embrace a well paid, intensive yet enjoyable career by taking this comprehensive and practical course. It is delivered over 24 months by live distance learning and presented by some of the leading civil and structural engineering instructors in the world today.

Civil and structural engineering encompasses a range of disciplines, including road, rail and drainage systems, dams, harbours, bridges, buildings and other structures. Civil and structural designers and drafters plan, design, develop and manage construction and repair projects.

This qualification develops your skills and knowledge in the design and drafting of engineering plans to recognised standards. You will learn about different areas of civil engineering, including construction, project management, design and testing. You will also learn about the design and drafting of concrete, steelwork, roads and pipes, as well as hydrology, stormwater drainage and foundations.

While it is essential that those who work in the supervisory or management levels of this discipline have a firm understanding of drafting and planning principles, this qualification goes much further. To be effective on the job, you will need to know how to apply knowledge of fundamental civil and structural engineering concepts, including geotechnical engineering, hydraulic engineering, engineering maths, and properties of materials. Throughout the program this subject matter will be placed into the context of engineering management. Our aim is to ensure that you are an effective, knowledgeable and skilled supervisor or manager, someone who can work beyond a “plan and design” brief to ensure that a project is delivered effectively.

This qualification aims to provide theoretical and practical education and training such that graduates may gain employment at the engineering associate (“paraprofessional”) level within the building and construction industry.

There are eight threads in the course to give you maximum, practical coverage. These threads comprise environmental issues, engineering technologies, drawing, 2D and 3D CAD design, building materials, civil and structural sub-disciplines (roads, steel, concrete, pavement, drainage, soil, water supply, sewerage), construction sites and engineering management.

This program avoids too much emphasis on theory. This is rarely needed in the real world of industry where time is short and immediate results, with hard-hitting and useful know-how, are required as a minimal requirement. The instructors presenting this advanced diploma are highly experienced engineers from industry who have done the hard yards and worked in the civil and structural areas. The format of presentation — live, interactive distance learning with the use of remote learning technologies — means that you can hit the ground running and be of immediate benefit to your company or future employer.

WHO SHOULD ATTEND?

Anyone who wants to gain a solid working knowledge of the key elements of civil and structural engineering that can be applied at the supervisory and paraprofessional level. See “Entrance Requirements”

This program is particularly well suited to students for who on-campus attendance is less desirable than the flexibility offered by online delivery. When work, family and general lifestyle priorities need to be juggled this world class program becomes an attractive option to many students world-wide.

- Site Supervisors

- Senior Trades Managers

- Trades Workers

- Construction Managers

- Maintenance Engineers or Supervisors

- Leading hands

- Consulting Engineers

Even those who are highly qualified in civil and structural engineering may find it useful to attend to gain practical know-how.

COURSE

This program is composed of 4 stages, delivered over 24 months. It is possible to achieve the advanced diploma qualification within the time period because the study mode is part-time intensive.

There are 8 threads around which the program is structured:

- Environmental issues

- Engineering technologies

- Drawing

- 2D and 3D CAD design

- Building materials

- Roads, steel, concrete, pavement, drainage, soil, water supply, sewerage

- Construction sites

- Engineering management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.



Read less
Water and Environmental Management aims to provide students with a multi-disciplinary understanding of water resources and environmental issues through the development of knowledge and skills necessary for the planning and management of these resources to meet the needs of society and the environment within the context of climate change. Read more
Water and Environmental Management aims to provide students with a multi-disciplinary understanding of water resources and environmental issues through the development of knowledge and skills necessary for the planning and management of these resources to meet the needs of society and the environment within the context of climate change.

About the programme

On-campus (full-time/part-time) students study eight courses from a range of optional courses. Independent Distance Learning (IDL) students can also choose courses from a range of options in both Semester 1 and 2.

The programme is delivered by experts in the field of water and environmental management, covering a wide range of relevant disciplines.

Topics covered:
=============
• Environmental Hydrology and Water Resources
• Computational Simulation of River Flows
• Water Supply and Drainage for Buildings
• Water Conservation
• Environmental Geotechnics
• Urban Drainage and Water Supply
• Water and Wastewater Treatment
• Marine Waste Water Disposal
• Environmental Statistics
• Innovative Technologies and Global Water Challenges
• Environmental Planning (on-campus only);
• Flood Inundation Modelling (on-campus only);
• Irrigation Water Management.

Career opportunities

Training is provided in water resources engineering, environmental engineering, flood risk management, integrated water resources management, environmental implications of water engineering schemes, and industrial software packages. On completion, graduates will be able to offer employers a broad range of skills and advanced knowledge in a number of important areas of water engineering.

Primary employment destinations include:
- Leading UK and international consultants (e.g. Jacobs, HR Wallingford, JBA, Halcrow, Hyder Consulting and Fairhursts)
- Local and National Government (in the UK and elsewhere)
- Environmental regulators (e.g. SEPA & EA)
- Academic institutions (including PhD study and research associate posts)
- Non-Governmental Organisations

Professional recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Part-time and Distance Learning study options

This programme can be studied full-time, part-time or via Independent Distance Learning (IDL), ideal for those in employment or with other commitments, providing flexible study options that fit around work or family. As an IDL student you will not be required to attend any lectures, tutorials or other events at any of Heriot-Watt University’s campuses.

Industry Links

Where possible MSc dissertation projects are set up in collaboration with industry, the aim being to encourage contact between the student and industry, and to underpin the industrial relevance of the projects.

This programme is supported by the Civil Engineering Industry Advisory Committee, which includes representatives from major multi-national employers AECOM, ARUP, Balfour Beatty, Halcrow, Jacobsand WSP Group. This committee convenes regularly and advises on the programme content and structure, ensuring quality, up-to-date content and relevance to industry needs.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent.

We offer a range of English language courses: http://www.hw.ac.uk/study/english.htm

Read less
This programme is designed for engineering graduates wishing to enhance their capabilities in urban water design, operation and management, or engineers working in the water industry looking to enhance their knowledge and skills in this area. Read more

This programme is designed for engineering graduates wishing to enhance their capabilities in urban water design, operation and management, or engineers working in the water industry looking to enhance their knowledge and skills in this area.

It draws upon the expertise of our Centre for Water Systems, which is internationally renowned for its research into water supply and distribution systems, waste water and urban drainage systems, integrated modelling, risk and uncertainty, whole-life costing, water efficiency, catchment-based management, spatial water management, and associated areas.

The programme is highly relevant to the needs of future water engineers and will provide you with knowledge and key skills in the broad area of urban water engineering and management, equipping you to solve modern day engineering problems.

Water engineering is of significant global interest and highly trained graduates are highly sought after. Graduates can expect to take on exciting roles in consultancies, water utilities, contractors, regulatory bodies, government agencies, and international organisations following successful completion of the programme.

Professional accreditation

This degree has been accredited by the Joint Board of Moderators under licence from the UK regulator, the Engineering Council for the purposes of meeting the requirements for Further Learning for registration as a Chartered Engineer for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Programme Structure

This programme is modular and flexible and consists of nine core engineering modules.

Core modules

The core modules can include;

  • Hydroinformatics Tools;
  • Software Modelling;
  • Water Supply and Distribution Management;
  • Water Management in Developing Countries;
  • Water and Environmental Systems;
  • Urban Drainage and Waste Water Management;
  • Sustainable Engineering;
  • Environmental Processes
  • Water Management Dissertation

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.



Read less
The rapidly developing world and evolution of urban development have caused a massive surge in environmental pollution, energy consumption and carbon dioxide (CO2) emissions. Read more
The rapidly developing world and evolution of urban development have caused a massive surge in environmental pollution, energy consumption and carbon dioxide (CO2) emissions. Civil engineers should take a leadership role to promote sustainable development by providing creative and innovative solutions to the challenges associated with sustainability in civil engineering practices.

This programme provides students with technologically advanced knowledge, problem-solving skills and a comprehensive understanding of the key aspects of sustainability in civil engineering construction. It has a particular emphasis on the future trends of global sustainable development. It is intended to provide critical awareness of current and future problems associated with the intervention of sustainability strategies and their integration in the civil engineering sector, as well as prospective solutions from existing and emerging scientific technologies.

This full-time 18-month programme comprises two semesters of taught modules, assessed by coursework and examination, followed by a research dissertation during your third semester. The programme is also offered on a part-time 36-month basis for potential students currently working in industry. All the modules are delivered in English by an international academic staff who specialise in sustainability and sustainable construction.

Modules

• Sustainable Technology and Building Materials
• Sustainable Drainage Systems
• Sustainable Energy and Environment
• Integration of Energy Strategies in the Design of Buildings
• Advanced Simulation of Sustainable Structural Systems
• Sustainable Engineering with Timber
• Environmental Engineering and Management Practice
• Sustainable Urban Planning Strategies
• Dissertation

Sustainable Solutions for Construction

Civil engineering plays a dominant role in providing sustainable solutions to the construction industry. This programme focusses on all of the technologies, techniques and methods that will enable future civil engineers to incorporate an environmentally viable approach to the design of future infrastructure. These designs will be based on renewable energies, recycling of waste construction materials and industrial by-products, smart systems for the efficient drainage and utilisation of surface water run-offs, natural wastewater treatment methods as well as modern digital representation techniques and structural models.

What are my career prospects?

Graduates of this programme will be equipped to take up professional employment in the civil engineering industry and become lifelong learners with an appreciation of the value to society of an education in sustainable construction. On the basis of accreditation by the Joint Board of Moderators, the MSc programme may be used as the final element of the educational base for being a Chartered Engineer.

Part-time study option also available.

Read less
This programme will provide the advancing healthcare professional wishing to study at Masters level the opportunity to learn the theory and practice of advanced skills in the management of complex lymphoedema, including the Casley-Smith technique of Manual Lymphatic Drainage. Read more

This programme will provide the advancing healthcare professional wishing to study at Masters level the opportunity to learn the theory and practice of advanced skills in the management of complex lymphoedema, including the Casley-Smith technique of Manual Lymphatic Drainage.

Why this programme

  • The first course will provide students with the necessary skills and the theory underpinning these and explore the evidence base. The second course will facilitate the application of these skills in more complex situations and in the context of delivering and managing a service. t will facilitate further development of skills in analysing and synthesising clinical findings and evidence for decision-making at an advanced level. 
  • The programme combines workplace learning with part-time attendance and on-line learning to explore and contextualise contemporary issues and the latest research evidence. It will prepare students to the level of a health care professional Band 7 Lymphoedema Advanced Practitioner as proposed in the Lymphoedema Framework Template for Management (Sneddon, 2007).
  • This specialist framework is based on the Skills for Health Career Framework (2007 http://www.skillsforhealth.org.uk) and the Knowledge and Skills Framework (DoH 2004).

Programme structure

Managing Complex Lymphoedema (40 credits) and Lymphoedema Advanced Practice (20 credits) combine to give the Postgraduate Certificate in Lymphoedema Management.

Core and optional courses

Managing Complex Lymphoedema

Course 

This course provides the advancing health care professional wishing to study at Masters level, an opportunity to learn the advanced skills and knowledge required to manage patients with complex lymphoedema. The course will equip students with the necessary theory underpinning these skills and explore the evidence base and facilitate development of decision-making skills at an advanced level. Learning of theory is consolidated with workplace and on-line learning to do develop the skills of an advancing practitioner in this field

Course aims and Intended Learning Outcomes

This course will provide the health care professional with the opportunity to develop the theory and practice of more advanced skills in the management of complex lymphoedema including the Casley-Smith technique of Manual Lymphatic Drainage.

By the end of this course, students will be able to:

  • demonstrate appropriate and effective application of specialist knowledge and skills in Decongestive Lymphatic Therapy and discussing the rationale for each aspect of treatment in relation to altered patho-physiology;
  • critically analyse clinical practice problems relating to patients with complicated oedema, showing the ability to synthesise information to make appropriate judgements in determining the diagnosis and developing and leading individualised treatment plans;
  • critically appraise and synthesise the evidence base for Decongestive Lymphatic Therapy;
  • critically evaluate their own practice and decision-making in relation to advanced practice in the management of people with complicated oedema;
  • exercise substantial autonomy and initiative within the context of rehabilitation and a holistic approach to care but make appropriate referrals.
  • demonstrate effective and sensitive communication and provision of patient information, based on individual needs and critical awareness of factors that may influence concordance with treatment and promotion of self-management

Lymphoedema Advanced Practice

Course 

This course provides the advancing health care professional, wishing to study at Masters level, with an opportunity to extend the skills and knowledge of the Managing Complex Lymphoedema course to a range of complex lymphoedema patients in the context of the most contemporary evidence and themes. The course will facilitate the application of advanced skills in more complex situations and in the context of delivering and managing a service. It will facilitate further development of skills in analysing and synthesising clinical findings and evidence for decision-making at an advanced level. Masterclasses, seminars and workshops support further development of the skills of an advancing practitioner in this field and is consolidated with workplace and on-line learning.

Course aims and Intended Learning Outcomes

By the end of this course, students will be able to:

  • Plan and execute adaptation of treatment plans for patients with complex lymphoedema or advanced disease in the light of recent best evidence or changes to clinical knowledge.
  • Devise and critically evaluate a multi-professional management programme for a lymphoedema patient with multi-pathology or complex needs including critical evaluation of relevant evidence and consideration of the latest techniques and innovation.
  • Critically analyse how a current clinical question could be informed by service audit or research within practice.
  • Critically evaluate the role of the lymphoedema advanced practitioner with patients with rare presentations.
  • Critically reflect on clinical practice problems and their own practice in managing complex situations and in relation to relevant literature
  • Analyse the use of ethical frameworks in managing ethical issues and the implications for practice
  • Demonstrate a wide range of effective communication techniques and an interdisciplinary approach to determining patient priorities and planning interventions to meet the patient's holistic needs


Read less
Accredited (non-technical) by the . Joint Board of Moderators.  (JBM) on behalf of the . Engineering Council. Read more
  • Accredited (non-technical) by the Joint Board of Moderators (JBM) on behalf of the Engineering Council for the purposes of meeting the requirements for Further Learning for registration as a Chartered Engineer for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.
  • Linked to the University of Exeter’s Centre for Water Systems
  • Enables you to focus on developing your technical engineering skills, as well as your management skills

This programme is designed for engineering graduates wishing to enhance their capabilities in urban water design, operation and management, or engineers working in the water industry looking to enhance their knowledge and skills in this area.

Alongside the core engineering modules, you will also study two management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

It draws upon the expertise of our Centre for Water Systems, which is internationally renowned for its research into water supply and distribution systems, waste water and urban drainage systems, integrated modelling, risk and uncertainty, whole-life costing, water efficiency, catchment-based management, spatial water management, and associated areas.

The programme is highly relevant to the needs of future water engineers and will provide you with knowledge and key skills in the broad area of urban water engineering and management, equipping you to solve modern day engineering problems.

Water engineering is of significant global interest and highly trained graduates are highly sought after. Graduates can expect to take on exciting roles in consultancies, water utilities, contractors, regulatory bodies, government agencies, and international organisations following successful completion of the programme.

Programme Structure

This programme is modular and flexible and consists of eight core engineering modules and one optional module.

Core modules

The core modules can include;

  • Hydroinformatics Tools;
  • Software Modelling;
  • Water Supply and Distribution Management;
  • Water Management in Developing Countries;
  • Water and Environmental Systems;
  • Urban Drainage and Waste Water Management;
  • Management Concepts
  • Water Management Dissertation

Optional modules

Some examples of the optional modules are

  • Strategic Innovation Management
  • Strategy

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.



Read less
This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry. Read more

About the course

This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry.

Professional ‘Building Services Engineers’ design all of the systems that are necessary in a building for occupants to carry out their business. These systems include: heating, lighting, air-conditioning and electrical systems. The role is increasingly involved with the provision of sustainable, energy efficient and green building within our society. Services have to be carefully designed and installed so that they are unobtrusive and aesthetically pleasing, and also work in harmony with the architecture of the building. The programme will respond to the worldwide demand for building services engineers who have a sound knowledge engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

The course is available either as a full-time, 1-year programme at Brunel or as a 3-to-5 year distance learning programme.

Aims

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and emissions control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is suitable for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study

1 Year Full-Time: The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-5 Years Distance Learning: The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to study yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

The course comprises four core modules, three technical modules and a dissertation. The taught modules are:

Core Modules:

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Dissertation

Technical Modules:

Building Management and Control Systems
Design of Fluid Services and Heat Transfer Equipment
Building Services Design and Management

Special Features

There are several advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additioanlly we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year.
Examinations are normally taken in May. MSc dissertation project normally is carried out over four months (full-time students) or one year (distance learning students) and it is accessed by submission of an MSc dissertation.

Read less
This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility. Read more

About the course

This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility.

It caters to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles – and the ability to apply this knowledge to complex situations.

Management modules cover engineering finance and accounting, people management, business organisation and facilities and contract management.

Aims

Building Service Engineers help buildings to deliver on their potential by working with architects and construction engineers to produce buildings that offer the functionality and comfort we expect, with the minimum impact on our environment. They design the lighting appropriate for the space, the heating, cooling, ventilation and all systems that ensure comfort, health and safety in all types of buildings, residential commercial and industrial.

Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment.

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study
3-5 Years Distance Learning

The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Compulsory Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Engineering Finance and Accounting
Management of People in Engineering Activities
Organisation of Engineering Business
Management of Facilities and Engineering Contracts
Dissertation

Students should choose one of the two themes below:

Theme A - Traditional

Energy Conversion Technologies
This element provides a broad introduction to the principles of energy conversion and thermodynamic machines and demonstrates their application to energy conversion and management in buildings. Emphasis is placed on refrigeration plant, energy conversion plant and energy management.
Refrigeration covers the basic principles and components of vapour compression systems, heat pumps and absorption systems.
Energy Conversion considers power cycles, combined heat and power, combustion processes, boiler plant, thermal energy storage and environmental impacts of plant operation.

Theme B - Renewable

Renewable Energy Technologies
This element includes: energy sources, economics and environmental impact, energy storage technologies, the role of renewables, solar thermal, solar electricity, wind power generation, hydro, tidal and wave power, biofuels, building integrated renewables.

Special Features

There are several advantages in choosing Brunel's Building Services programme:

Award-winning courses: Building Services Engineering courses at Brunel have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

The course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. Read more
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. In addressing these and other environmental challenges, engineers and environmental managers are using sophisticated numerical models for predicting complex hydrodynamic, water quality and sediment transport processes. These models are increasingly complemented with decision support software systems and a wide range of related hydroinformatics software tools.

The MSc in Civil and Water Engineering will offer you the knowledge and expertise that you need for a career as a consulting water engineer within this specialist professional area of civil engineering. The course aims to complement a relevant undergraduate degree by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicators and sediment transport processes in coastal, estuarine and inland waters.

The MSc is aimed at graduates in Civil Engineering, Earth Sciences, Environmental Sciences and Bio-Sciences. Good mathematical skills are an advantage. The degree programme is also aimed at engineers/scientists working in relevant areas wishing to upgrade or refresh their qualifications.

Distinctive features

• The School of Engineering received the highest rating in the UK for its research and its research impact in the Government’s latest Research Excellence Framework (REF 2014).

• The course lecturers have considerable experience of working on a wide range of practical environmental hydraulics project and their models have been mounted by over 35 companies for over 80 world-wide EIA projects and by over 45 universities in 17 countries.

• The MSc in Civil and Water Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The MSc in Civil and Water Engineering is run by the School of Engineering and is designed to provide specialised, postgraduate training in environmental water engineering whilst having a measure of flexibility to permit some study of related subjects in Civil and Geoenvironmental Engineering.

The aim of the programme is to enhance your engineering skills and the completion of an extended project within one of the water engineering fields forms a major part of the programme. Thus, the MSc in Civil and Water Engineering aims to complement an undergraduate degree in Civil Engineering, or similar, by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicator and sediment transport processes in coastal, estuarine and inland waters. You will have the opportunity to work with some of these models in an extended project. The degree programme is available on a one-year full-time basis or on a three-year part-time basis.

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. You must complete 120 credits in Stage 1 in order to progress to the dissertation, for which you will be allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you will be encouraged to put forward your own project ideas.

Assessment

Assessment is conducted via coursework and examinations.

You will be required to undertake an individual research project in a specialist area of Water Engineering, leading to the preparation of a dissertation. Project work is undertaken under the direct supervision of a member of staff in one of the three participating departments.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Water Engineering is excellent, with the majority of graduates joining engineering consultancies. A small number of graduates each year go on to further study, typically a PhD.

Read less
The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design. Read more

About the course

The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design.

You will learn about renewable energy technologies, efficient ventilation, air conditioning and energy conversion technologies in the programme, and can choose from a broad range of dissertation topics.

The course is available on either a one-year, full-time or three-to-five-year, distance-learning basis.

Aims

The era of zero emission building is within grasping distance of the mass construction industry – creating a huge demand for specialists with the skills to design and project manage effectively.

The aim of this programme is to respond to the worldwide demand for building services engineers and managers who have a sound knowledge of engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

Course Content

Modes of Study

1-Year Full-Time
The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-to-5-Years Distance-Learning
The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.
Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Building Services Design and Management
Renewable Energy Technologies
Energy Efficient Ventilation for Buildings
Dissertation

Special Features

There are numerous advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additionally we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May/June.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. Read more

This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of inclusive and sustainable public health infrastructure and services.

The programme is based in the School of Civil and Building Engineering’s Water, Engineering and Development Centre (WEDC), one of the world’s leading education and research institutes of its kind.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Architecture, Building and Civil Engineering is ranked 1st in the UK for Building in the Times Good University Guide 2018. 

- Excellent graduate prospects. Many of our graduates are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Programme modules

Core modules:

- Water and Waste Engineering Principles

- Management of Water and Sanitation

- Water Utilities Management

- Data Collection, Analysis and Research

- Group Project

- Research Dissertation

Optional Modules (choose 3):

- Water Source Development

- Wastewater Treatment

- Integrated Water Resources Management

- Solid Waste Management

- Water Distribution and Drainage Systems

- Short Project

Facilities

All masters students have access to our excellent laboratory facilities which include equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. There are three dedicated water laboratory staff available to help you use our equipment who are specialists in pollutant analysis, hydraulics and running continuous trials.

Practical training includes:

- Hand-pump maintenance using the largest single site collection of hand-pumps;

- latrine slab construction;

- flow measurements; and

- water quality sampling and analysis.

Field visits are made to relevant UK facilities.

WEDC has a unique sector Resource Centre with a dedicated and skilled information officer. Over 19,000 items can be searched on a customized database allowing ready access to this collection of books, series, country files, student projects, videos, journals, maps, and manufacturers' catalogues.

The Resource Centre also provides a dedicated quiet study space for WEDC students. Many items including all WEDC publications and over 2500 papers presented at 37 WEDC International Conferences are available in the open access sector knowledge base.

How you will learn

The programme comprises both compulsory core modules and optional modules which may be selected. A group case study module draws together material from across the programme and develops team working skills. The individual research project and dissertation (frequently linked to specific needs of an agency) of between 75 and 150 pages in length concludes the programme. To support your learning you will have access to our comprehensive facilities including laboratories, hand-pumps, and a dedicated Resource Centre.

Scholarships / Bursaries

Bursaries are available for self-funding international students.

The University also offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account. You can apply for one of these scholarships once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes

The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research

Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects

Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/



Read less
This programme is designed to equip graduates with the knowledge and skills to work at a high level in the design and construction of major infrastructure projects. Read more

Programme Background

This programme is designed to equip graduates with the knowledge and skills to work at a high level in the design and construction of major infrastructure projects. Its structure allows students to choose from a broad range of courses including foundation engineering; safety, risk and reliability; water and wastewater treatment and project management, among others. This programme design allows students to select courses which best fit their personal and professional needs, ensuring maximum added value to each individual’s study aspirations. Delivered only by Independent Distance Learning (IDL) this programme is ideal for those in employment or with other commitments, providing flexible study options that fit around work or family.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Industry Links

This programme is supported by the Civil Engineering Industry Advisory Committee, which includes representatives from major multi-national employers AECOM, Arup, Atkins, Balfour Beatty, Halcrow, Jacobs and WSP Group. This committee convenes regularly and advises on the programme content and structure, ensuring quality, up-to-date content and relevance to industry needs.

Programme Structure

This programme is composed of eight optional courses for those studying at PGDip level, each assessed by examination. For those looking to complete the programme at MSc level two synoptically-linked research projects are also required.

Course Choice Semester 1

Environmental Geotechnics
Environmental Hydrology & Water Resources
Ground Engineering
Indeterminate Structures
Sustainability in Civil Engineering
Project Management: Theory & Practice

Course Choice Semester 1

Earthquake Engineering
Foundation Engineering
Safety, Risk and Reliability
Urban Drainage and Water Supply
Water and Wastewater Treatment
Project Management: Strategic Issues

Read less
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. Read more
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. The course is particularly suited to engineers involved in the provision, preservation and operation of highways, but it is open to all those holding a degree or equivalent in Civil Engineering or any other relevant branch of engineering.

The topics covered include: transportation economics; highway planning and programming and route selection; survey methods and instrumentation; computer applications in local authorities; construction law; transportation modelling; theory of traffic flow; impacts of road traffic facilities; traffic: methods for planning, capacity analysis and design; traffic control and management; design of flexible and concrete pavements; pavement maintenance and rehabilitation; surface and sub-surface drainage; bridge design and management; quality assurance plans for road schemes; descriptions of soils and rocks; earthworks technology; stability of fills, slope stability; construction of embankments on soft ground; procurement of civil engineering works; road asset management plans; environmental impact assessment.

Lectures are normally held on Friday evening and Saturday morning each week throughout the two semesters (September to April).

Read less
Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society. Read more

Why take this course?

Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society.

This course is a dynamic mix of specialist civil engineering knowledge and essential learning of current technical and practical methods.

What will I experience?

On this course you can:

Create your own designs and models in response to industry-relevant civil engineering demands
Apply your skills to real-life practical problems as part of our partnership schemes with local and global organisations
Venture overseas on a European exchange programme or do a paid work placement in industry

What opportunities might it lead to?

This course will lead you to a recognised professional qualification in civil engineering. It is accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT) and the Institute of Highway Engineers (IHE).

It fully satisfies the educational base for a Chartered Engineer (CEng) under the UK Standard for Professional Engineering Competence (UK-SPEC). We maintain excellent links with these professional bodies and regularly update and advise you on matters relating to your progress to professional status.

Here are some routes our graduates have pursued:

Civil engineering
Site engineering
Project management

Module Details

Year one

During your first year you will study fundamental engineering principles and be introduced to the key theories upon which civil engineering practice is based.

Core units include:

Construction Management and Practice
Engineering Analysis
Professional Development 1
Soils and Materials 1
Understanding Structures - Analysis and Design
Water and Environmental Engineering

Year two

In year two you will extend your understanding and ability to analyse complex civil engineering systems.

Core units include:

Behaviour of Structures
Design of Structural Elements
Numerical Skills and Economics
Professional Development 2
Soils and Materials 2

Options to choose from include:

Diving and Underwater Engineering A
Diving and Underwater Engineering B
Fieldwork for Civil Engineers
Heritage Property
Introduction to Project Management Principles
Water Infrastructure

Years three and four*

During your final two years you will build on all the knowledge you have acquired enabling you to analyse, design and manage civil engineering systems in an integrated manner. You will develop practical proposals for complex civil engineering problems in a simulated professional organisation. You will also complete a dissertation on a topic of your choice and a design project, which covers the practical application of knowledge and techniques in the identification, design and management of a simulated major construction project.

Year three

Core units include:

Professional Development 3
MEng Individual Research Project
Project Management for Civil Engineers
Design of Bridges
Soils and Materials 3
Year four

Core units are:

Advanced Engineering Science
Environmental Management
Integrated Design Project

*This course is also available as a 5-year sandwich (work placement)

Programme Assessment

You will be taught through a combination of lectures, seminars, tutorials and group work, and be fully supported throughout your degree. We promote many practical teaching methods by way of lab and fieldwork supplying you with proactive, hands-on learning opportunities.

We guarantee sustained feedback to make sure your studies are on track. Providing you with valuable skills and experience, you will be assessed in a variety of ways, including:

Written exams
Web assessments
Essays and reports
Project presentations
A 10,000-word dissertation

Student Destinations

Working in the construction and engineering sector will make an interesting, challenging and rewarding career. There will be a wide range of roles within the construction industry open to you once you have completed your studies.

This course is an appropriate first degree leading to a recognised professional qualification in civil engineering should you wish to continue your studies. What’s more, it also meets the entry requirements for many of the major graduate engineering programmes.

Overall, you will be a versatile graduate who will have the employable skills to secure work in many areas of the job market.

Roles our graduates have taken on include:

Structural engineer
Construction manager
Design engineer
Highway engineer
Envinronmental and drainage engineer
Site engineer
Traffic engineer
Assistant engineer

Read less
Beautiful architecture. Solid structure. What else do buildings need?. Try living in one without any heating, cooling, electrical power, lighting, water or drainage. Read more
Beautiful architecture. Solid structure. What else do buildings need?

Try living in one without any heating, cooling, electrical power, lighting, water or drainage. What would it be like to work in a tower without lifts? How would you manage without telephones, an IT system or an internet connection? All of these systems and many more are designed by building services engineers. Building Service Engineers turn buildings from empty shells into spaces fit for people to use.

From the very start of the building design, Building Services Engineers are involved helping architects and other members of the design team to get the size, shape and configuration of the building right. They determine strategies for designing energy efficient buildings, making them sustainable in the long term. Buildings are responsible for a large chunk of carbon emissions so this work makes a critical contribution to reducing a building's impact on climate change.

Of all the disciplines working in the built environment today, the building services engineer has the broadest reach and the deepest impact, affecting virtually every aspect of building design. In short, they make buildings work.

This Masters course provides a broad basis of advanced understanding in the technological areas of building services and energy engineering, with particular emphasis on those areas that are relevant to the interaction between the built and natural environments, modern industry, and the analysis of developing technologies.

Modules

The course provides a practitioner perspective with which we analyse building energy requirements in terms of the external environment and internal space, and the effect on energy resources. We consider the principles and analyse associated building engineering systems to understand control, simulation and modelling techniques.

As well as the core engineering skills, appropriate areas of management and research methods are studied to provide a balance foundation for the specialist units. The MSc dissertation provides an opportunity to develop further research skills by application to problems that require in-depth and innovative thinking.

Modules taught on this course include:

Thermal environment, acoustics and lighting
Heating and energy in buildings
Energy resource and use analysis
Electrical power
Sustainable refrigeration
Ventilation and air conditioning
Energy engineering project

Timetable

Full-time timetable: 2 days per week
Part-time day release timetable: 1 day per week

Accreditation

This course is accredited by the Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute as masters further learning to meet the academic requirements of becoming a Chartered Engineer (with a suitable first degree). The course is accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer.

Expertise

The course is based in what was formerly the National College for Heating Ventilation and Refrigeration Engineering as well as Centre for Energy Studies, and maintains extremely strong links with all areas of the associated industries. Many of the leaders in energy and building services engineering fields are former LSBU students, lending much support in guidance and industrial collaboration, placement and employment.

Employability

Employment prospects are excellent. Construction and engineering activity is expected to accelerate in the UK, Europe and worldwide over the next 20 years and demand for building services engineers continues to outstrip supply.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less

Show 10 15 30 per page



Cookie Policy    X