• St Mary’s University, Twickenham Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Coventry University Featured Masters Courses
King’s College London Featured Masters Courses
University of Bradford Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Northumbria University Featured Masters Courses
"distributed" AND "system…×
0 miles

Masters Degrees (Distributed Systems)

  • "distributed" AND "systems" ×
  • clear all
Showing 1 to 15 of 243
Order by 
The Internet and Distributed Systems course will help you design and build secure, scalable internet applications and reusable software components. Read more
The Internet and Distributed Systems course will help you design and build secure, scalable internet applications and reusable software components.

This is a practical course which focuses on the development of applications and the management of data in a distributed environment.

An emphasis on practical issues and the current technologies used in the development of internet and distributed systems gives you the opportunity to conduct in-depth research into a specific issue in this area of computing. This dedicated preparation for a real role offers University of Brighton students an advantage when seeking employment within the computing industry.

Scholarships

Scholarships are available for this course. Please click the link below for more information.
https://www.brighton.ac.uk/studying-here/fees-and-finance/postgraduate/index.aspx

Course structure

Modules include both teaching periods and coursework activities.

All modules are designed to support both varied learning through workshops, seminars, lectures and group exercises, and the application of developed skills through assessed coursework.

As part of the course, you will also undertake a project that explores creative solutions to internet and distributed systems-related problems.

Syllabus

You will study five core modules and select two modules from a range of options.

Optional modules allow you to specialise in the aspects of the course that interest you the most.

Modules:

Distributed Systems Principles
Internet Application Development
Enterprise Applications Development
Research Methods
Project

Options:

Algorithms and Computability
Intelligent Systems
Specification, Verification and Validation
Architectures and Integration
Interaction Design and Evaluation Process
Systems Analysis and Design
Intellectual Property Law
The Business and the Information System

Employability

Graduates take up positions such as software engineers, web developers, systems designers, database developers, and systems architects.

The research skills at the centre of the course give Brighton graduates a real advantage when approaching the job market.

Read less
This programme has similar high-level outcomes to Advanced Computer Science, while offering the opportunity to focus on topics in Networks and Distributed Systems, including for example, network protocols and technologies, mobile systems, multimedia and distributed systems. Read more

MSc in Networks and Distributed Systems

This programme has similar high-level outcomes to Advanced Computer Science, while offering the opportunity to focus on topics in Networks and Distributed Systems, including for example, network protocols and technologies, mobile systems, multimedia and distributed systems.

All MSc students take a Core Skills module, covering essential academic skills. Students taking the specialist Computer Science or HCI degrees also take an Object-Oriented Programming module, to provide a common practical foundation for coursework in the modules that follow. Students on specialist degree programmes take a number of designated modules appropriate to the particular field. With careful module choice, it is sometimes possible to keep open several different specialist options until the second semester.

During the final three months of the course, you undertake an extended project agreed with staff, culminating in writing a substantial individual dissertation. Students on specialist degrees undertake a project in the chosen area.

Careers

Taught postgraduate degrees in Computer Science produce graduates who are well equipped to pursue careers at the forefront of technology. Our recent graduates have gone on to work in a variety of global, commercial, financial and research institutions, including: Microsoft, Hewlett Packard, Royal Bank of Scotland, Skyscanner, Avaloq, Amadeus, Amazon, Atlas, Avaloq, Barclays, BP, BT, Capricorn Ventis, FactSet, Hailo, Hitachi Data System, Microsoft, OpenBet and Symantec. We also have a number of students who have stayed on to study for a PhD in the School.

For up-to-date scholarship information, see: http://www.st-andrews.ac.uk/study/pg/fees-and-funding/scholarships/taught/

Features

* You will be part of a cohort of around 60 taught postgraduate students admitted every year who enjoy many opportunities to work and socialise together.

* You will benefit from the School’s emphasis on excellence in both teaching and research. You will learn and study in our two adjacent purpose-built buildings, in daily contact with our 50+ academic and research staff, as well as undergraduate and research students. Larger lectures take place in nearby science buildings.

* You will experience a wide variety of teaching methods in addition to traditional lectures, with an emphasis on personal and small group teaching.

* You will have 24-hour access to well equipped laboratories, including high-speed wireless Internet access throughout.

* You will have the opportunity to broaden your knowledge beyond your lecture courses by attending the departmental seminar series and distinguished lecture programme and the dedicated Systems and Human Computer Interaction seminar series.

* You will be a part of SICSA, the Scottish Information and Computer Science Alliance, of which St Andrews is a founding partner, giving access to specialised events and training and expert staff at all of Scotland’s universities.

Read less
The MSc in Internet and Distributed Systems is a taught course oriented towards graduates from computing and related subjects who want to extend their knowledge and expertise. Read more
The MSc in Internet and Distributed Systems is a taught course oriented towards graduates from computing and related subjects who want to extend their knowledge and expertise. It provides an opportunity to acquire the more advanced skills required for a career in Internet and Intranet-based information systems. The first module addresses advanced Java programming, and subsequent modules cover new technologies and related theory.

This is a full time course and students will be registered for 12 months

By the end of the programme

You will have learned in depth, through lectures and practical laboratories, a range of key computing technologies needed for modern systems. These include:

-Systematic and advanced-level design abilities using modern internet-related software tools and techniques
-Presenting work in written and oral forms that are aligned to modern industrial documentation and reporting standards and needs
-An advanced level of the theory, principles and practice of internet and distributed computing and directly related technical topics
-The technical management and industry-standard software lifecycle-based approach to designing internet and distributed systems
-Advanced theoretical and practical appreciations of modern approaches to the software engineering required for internet and distributed application, including both product and process technologies

The course will equip you with knowledge of modern technology for a career as a technical expert or consultant.

How will I be assessed?

Assessment will be made based on your laboratory report of 2,500 words for each module and on your individual 20 page journal-style dissertation paper based on the final project. There are no examinations. Some dissertations may involve work with industry, or with other Departments within the University.

Some modules may involve group or team work when a single laboratory assignment report from the team will be required.

What does the course consist of?

The course is built from eight taught modules plus one project module. Each of the eight modules lasts for approximately four weeks and consists of a combination of lectures, tutorials, private study and a mini project. Each of the modules is designed to build upon the student's growing knowledge and skills.

The final project module involves the design, implementation and evaluation of a significant information systems solution.

The modules available for 2013/2014 are listed below. This list may change in subsequent years, as we update and modify the programme.

Advanced Java with UML
Software Dependability
Advances in Software Engineering
Enterprise and Distributed
Research Methods and Professional Issues
Web Technology
New Initiatives in Software Engineering
Information Search for the WWW
Dissertation

Read less
The MSc in Internet and Distributed Systems is a taught course oriented towards graduates from computing and related subjects who want to extend their knowledge and expertise. Read more
The MSc in Internet and Distributed Systems is a taught course oriented towards graduates from computing and related subjects who want to extend their knowledge and expertise. It provides an opportunity to acquire the more advanced skills required for a career in Internet and Intranet-based information systems.

Course Structure
The course is built from eight taught modules plus one project/dissertation module. Each of the eight modules lasts for approximately four weeks and consists of a combination of lectures, tutorials, private study and a mini project. Each of the modules is designed to build upon the student's growing knowledge and skills.

The final project module involves the design, implementation and evaluation of a significant information systems solution.

Core Modules
- Advanced Java with UML
- Software Dependability
- Advanced Principles of Distributed Computing
- Enterprise and Distributed Systems
- Research Methods and Professional Issues
- Web Technology
- Digital Imaging
- Information Search for the WWW
- Dissertation.

Read less
The MSc Distributed Systems and Networks gives you strong technical expertise and practical skills in designing, managing and evaluating computer networks, distributed systems and system security, helping you develop a highly successful specialism. Read more
The MSc Distributed Systems and Networks gives you strong technical expertise and practical skills in designing, managing and evaluating computer networks, distributed systems and system security, helping you develop a highly successful specialism.

Why choose this course?

Gain a specialised master's degree in one year full-time or at a pace that suits you through online studyFlexible online learning allows you to fit study around your other commitments, without travel and accommodation costs.Gain an internationally-recognised master's degree from the UK's University of Hertfordshire.Benefit from the same academic standards and quality control procedures as our equivalent on campus courseWe have an excellent track record in research, with half of our outputs rated at world-leading or internationally excellent in REF 2014, the most recent national assessment.

Careers

Our online masters programme is designed to give graduates the up-to-date skills and knowledge sought after by employers, whether in business, industry, government or research.

These courses will prepare you for a career in many areas including research, IT or software development.

Teaching methods

Our online degree programmes are taught 100% online when studied independently, or supplemented by tutorial support when studied at a local study centre run by one of our online partners. Find out more about Tutored eLearning. Assessment is by coursework and online tests.

You will participate in the learning experience through the University's on-line learning environment, StudyNet. You will receive learning materials, take part in discussions and submit your assignments online. Additionally, you will receive study resources such as key textbooks and any specialist software. You will have access to the University's extensive online library facilities, or be able to visit in person if you so choose.

The amount of study time required is no different from that needed for an on campus programme. You should expect to spend at least 30 hours per week if studying full-time, and in proportion if part-time.

Read less
The MSc in Computing (Distributed Systems) is a full-time degree of 12 months duration starting in October. It allows graduates who have already studied Computing Science in their degree, but perhaps not exclusively, to focus their further studies in a particular area. Read more
The MSc in Computing (Distributed Systems) is a full-time degree of 12 months duration starting in October. It allows graduates who have already studied Computing Science in their degree, but perhaps not exclusively, to focus their further studies in a particular area. The typical entrant to this track has a good upper-second class or a first class honours degree in a science or engineering discipline, including Computing.

The programme provides opportunities for postgraduate students to develop and demonstrate knowledge and understanding and practical skills in a wide variety of specialised topics in Computing. Students are also able to develop and demonstrate the qualities and skills needed for literature research, technical presentation and report writing. The degree provides a good foundation for PhD study.

Read less
The presence of software applications as components of many different kinds of systems with dynamic configurations is increasing at an unprecedented pace. Read more
The presence of software applications as components of many different kinds of systems with dynamic configurations is increasing at an unprecedented pace. The focus of this MSc is on new methods, architectures and design techniques for software systems that are able to operate, with guaranteed levels of quality of service, across heterogeneous and distributed platforms.

Start Dates
October and January each year.

Read less
This course takes an immersive approach to learning both the principles and practices of computer systems with much of the material based around examples and practical exercises. Read more
This course takes an immersive approach to learning both the principles and practices of computer systems with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in computer systems and will be able to design and build for example, distributed systems for the Web using Internet, Intranet and other technologies.

Programme Objectives
To provide the foundations for understanding of core ideas, methods and technologies in computer science.
To provide the technical skills and background material so that the postgraduate will be able to conduct a near state-of-the-art research or development project;
To provide the graduate with a range of specialist and transferable skills;
To provide the educational base for further professional development and lifelong learning.
Course Topics
Data networks and communications, project foundations and management tools, broadband communication systems, technologies for Internet systems, agent technologies and Artificial Intelligence, introduction to distributed systems and mobile systems, project and dissertation.

Taught Modules:

Java programming: This module provides students with an in-depth understanding of current and emerging Java programming concepts and programming variations. The module teaches the basic and advanced structures of Java and makes use of the object-oriented approach to software implementation. It also gives an in-depth understanding of advanced Java concepts in the area of user interfaces and will enable students to apply the theoretical knowledge of the Java language onto a test-case software development scenario.

Introduction to distributed systems: This module will introduce key ideas in distributed Systems and its role and application in operating systems and middleware. On completion of this module students will have an understanding of the key issues for distributed systems at OS level or as middleware, they will understand core concepts of concurrency, be able to program multithreaded and distributed applications and understand the issues and use of algorithms for transactional systems.

Data networks and communications: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to understand in detail the process required to provide an end-to-end connection.

Technologies for Internet Systems: In this module, students will be introduced to state of the art technologies and tools for Internet Systems and in particular e-commerce systems.

Agent Technologies: This module provides an in-depth understanding of technologies from Artificial Intelligence research such as machine learning, data mining, information retrieval, natural language processing, and evolutionary programming. It will look at the application of agent-oriented technologies for Artificial Life, for building Web search engines, for use in computer games and in film (such as the MASSIVE software developed for the Lord of the Rings movies), and for robotics. It will also provide an introduction to agent-oriented programming using the NetLogo programming language.

Foundations of computer graphics: This module will teach techniques, algorithms and representations for modelling computer graphics and enable students to code 2D and 3D objects and animations.

Database systems: Students completing this module will gain an in depth understanding of DBMS/Distributed DBMS architecture, functionality, recovery and data storage techniques. Students will also have a full understanding of how queries are processed and the importance of database maintenance. This module is designed to enable students to perform research into one or two areas of databases; for example, object oriented databases and deductive databases.

Project foundations and management tools: This module prepares students for their MSc research project, including reference search and survey preparation and familiarisation with project management tools.

MSc Research project: After the successful completion of the taught component of the MSc programme, students will spend the remainder of the time undertaking a research project and producing an MSc Dissertation. During this process, students will conduct project work at state-of-the-art research level and to present this work as a written dissertation. Completing a project and dissertation at this level will train students in: problem solving; researching new topics; organizing knowledge; exercising elementary time and project management skills; reporting and writing skills.

Read less
This course runs in Germany. This course covers a range of essential topics related to distributed computing systems. Yet these modules are not isolated; each one takes its place in the field in relation to others. Read more

About the course

This course runs in Germany.

This course covers a range of essential topics related to distributed computing systems. Yet these modules are not isolated; each one takes its place in the field in relation to others.

The emphasis in the course is to build the connections between topics, enabling software engineers to achieve co-operation between distinct autonomous systems under constraints of cost and performance requirements.

The course is suitable for:

Recent graduates in Electrical or Electronic Engineering or Computer Science, who wish to develop their skills in the field of distributed computing systems.
Practicing engineers and computer professionals who wish to develop their knowledge in this area.
People with suitable mathematical, scientific or other engineering qualifications, usually with some relevant experience, who wish to enter this field.

Aims

The past few years have witnessed that Grid computing is evolving as a promising large-scale distributed computing infrastructure for scientists and engineers around the world to share various resources on the Internet including computers, software, data, instruments.

Many countries around the world have invested heavily on the development of the Grid computing infrastructure. Many IT companies have been actively involved in Grid development. Grid computing has been applied in a variety of areas such as particle physics, bio-informatics, finance, social science and manufacturing. The IT industry has seen the Grid computing infrastructure as the next generation of the Internet.

The aim of the programme is to equip high quality and ambitious graduates with the necessary advanced technical and professional skills for an enhanced career either in industry or leading edge research in the area of distributed computing systems.

Specifically, the main objectives of the programme are:

To critically appraise advanced technologies for developing distributed systems;
To practically examine the development of large scale distributed systems;
To critically investigate the problems and pitfalls of distributed systems in business, commerce, and industry.

Course Content

Compulsory Modules:

Computer Networks
Network Security and Encryption
Distributed Systems Architecture
Project and Personal Management
High Performance Computing and Big Data
Software Engineering
Embedded Systems Engineering
Intelligent Systems
Dissertation

Special Features

Electronic and Computer Engineering is one of the largest disciplines in the University, with a portfolio of research contracts totalling £7.5 million, and has strong links with industry.

The laboratories are well equipped with an excellent range of facilities to support the research work and courses. We have comprehensive computing resources in addition to those offered centrally by the University. The discipline is particularly fortunate in having extensive gifts of software and hardware to enable it to undertake far-reaching design projects.

We have a wide range of research groups, each with a complement of academics and research staff and students. The groups are:

Media Communications
Wireless Networks and Communications
Power Systems
Electronic Systems
Sensors and Instrumentation.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Distributed Computing Systems Engineering is accredited by the Institution of Engineering and Technology (IET).

Read less
Distributed and networked computation is now the paradigm that underpins the software-enabled systems that are proliferating in the modern world, with huge impact in the economy and society, from the sensor and actuator networks that are now connecting cities, to cyberphysical systems, to patient-centred healthcare, to disaster-recovery systems. Read more
Distributed and networked computation is now the paradigm that underpins the software-enabled systems that are proliferating in the modern world, with huge impact in the economy and society, from the sensor and actuator networks that are now connecting cities, to cyberphysical systems, to patient-centred healthcare, to disaster-recovery systems.

This new Masters course will educate and train you in the fundamental principles, methods and techniques required for developing such systems. Given the number of elective modules offered, you will be able to acquire further skills in one or more of Cloud Computing, Data Analytics and Information Security.

Facilities include a laboratory where you can experiment with physical devices that can be interconnected in a network, and a cluster facility configured to run the Hadoop MapReduce stack.

A Year in Industry option is also available for this course.

See the website https://www.royalholloway.ac.uk/computerscience/coursefinder/msc-distributed-and-networked-systems.aspx

Why choose this course?

This course will develop a highly analytical approach to problem solving and a strong background in distributed and networked systems, fault-tolerance and data replication techniques, distributed coordination and time-synchronisation techniques (leader-election, consensus, and clock synchronisation), data communication protocols and software stacks for wireless, sensor, and ad hoc networking technologies in virtualisation, and cloud computing technologies.

The course develops an advanced understanding of principles of failure detection and monitoring, principles of scalable storage, and in particular NoSQL technology.

Students will acquire the ability to:
- apply well-founded principles to building reliable and scalable distributed systems
- analyse complex distributed systems in terms of their performance, reliability, and correctness
- design and implement middleware services for reliable communication in unreliable networks
- work with state-of-the-art wireless, sensor, and ad hoc networking technologies
- design and implement reliable data communication and storage solutions for wireless, sensor, and ad hoc networks
- detect sources of vulnerability in networks of connected devices and deploy the appropriate countermeasures to information security threats.
- enforce privacy in “smart” environments
- work with open source and cloud tools for scalable data storage (DynamoDB) and coordination (Zookeeper)
- work with modern network management technologies (Software-Defined Networking) and standards (OpenFlow)
- design custom-built application-driven networking topologies using OpenFlow, and other modern tools
- work with relational databases (SQL), non-relational databases (MongoDb), as well as with Hadoop/Pig scripting and other big data manipulation techniques.

Department research and industry highlights

Royal Holloway is recognised for its research excellence in Machine Learning, Information Security, and Global Ubiquitous Computing.
We work closely with companies such as Centrica (British Gas, Hive), Cognizant, Orange Labs (UK), the UK Cards Association, Transport for London and ITSO.
We host a Smart Card Centre and we are a GCHQ Academic Centre of Excellence in Cyber Security Research (ACE-CSR).

Course content and structure

You will take taught modules during Term One (October to December) and Term Two (January to March). Examinations are held in May. If you are in the Year-in-Industry pathway, you then take an industrial placement, after which you come back for your project/dissertation (12 weeks).

Core course units are:
Interconnected Devices
Advanced Distributed Systems
Wireless, Sensor and Actuator Networks
Individual Project

Elective course units are:

Computation with Data
Databases
Introduction to Information Security
Data Visualisation and Exploratory Analysis
Programming for Data Analysis
Semantic Web
Multi-agent Systems
Advanced Data Communications
Machine Learning
Concurrent and Parallel Programming
Large-Scale Data Storage and Programming
Data Analysis
On-line Machine Learning
Smart Cards, RFIDs and Embedded Systems Security
Network Security
Computer Security
Security Technologies
Security Testing
Software Security
Introduction to Cryptography

Assessment

Assessment is carried out by a variety of methods including coursework, practical projects and a dissertation.

Employability & career opportunities

Our graduates are highly employable and, in recent years, have entered many different [department]-related areas, including This taught masters course equips postgraduate students with the subject knowledge and expertise required to pursue a successful career, or provides a solid foundation for continued PhD studies.

Read less
Develop your skills and experience in research and development in computing. Whether you’re looking to upgrade your employment options or advance towards a PhD program, Acadia's Master in Computer Science will help you achieve your goals. Read more
Develop your skills and experience in research and development in computing. Whether you’re looking to upgrade your employment options or advance towards a PhD program, Acadia's Master in Computer Science will help you achieve your goals.
By choosing Acadia's graduate program in computer science, you will increase the depth and breadth of your knowledge through additional coursework and study, and you will further develop your research skills through challenging projects and development of a thesis with your supervisor. You will benefit from our small class sizes and collaborative approach to research – developing a high degree of contact and collaboration with your supervisor and gaining skills by working with groups with fellow researchers. Many of our research projects are collaborative in nature, where you will be working and reflecting with your supervisors and groups of students while pursuing your own particular research project.

Be Inspired

The Jodrey School of Computer Science is a strong leader in the Acadia Institute for Data Analytics (AIDA), creating many opportunities for you to work with local business and industry partners using data to help solve problems of interest. AIDA is hosted with the Acadia Entrepreneurship Centre - its programming helps you connect with local businesses and entrepreneurs. Acadia was the first in the world to produce a Web Census – a full polling of all web servers in the publically addressable Internet – and has been prolific in performing research on the results and on improved methods for learning about the structure of the web. Our expertise in artificial intelligence, mobile computing, and multi-agent systems is enhanced through collaboration amongst our researchers and students in the Cooperative Intelligent Distributed Systems Group and the Intelligent Information Technology Research Laboratory.

Research Interests

-Agent-based distributed systems applications
-Artificial Intelligence
-Autonomic computing
-Computer-supported co-operative work
-Data compression
-DBMS performance
-Distributed systems
-Graph theory algorithms
-Handheld and wireless technologies
-Intelligent agents and adaptive software systems
-Intelligent information retrieval and integration
-Knowledge management
-Logic theory and algorithms
-Machine learning
-User modelling and user adapted interfaces

Read less
All those involved in the wider defence enterprise, across government, military, industry, science and technology have changing needs and aspirations for defence. Read more

Course Description

All those involved in the wider defence enterprise, across government, military, industry, science and technology have changing needs and aspirations for defence. Agility, resilience, continuity of supply, skills and innovation now complement the continuing need to balance cost, time and performance in everything we do.

The Centre for Systems Engineering has been at the forefront of developing systems engineering education for the past fifteen years, blending the breadth of systems thinking with the rigour of systems engineering and closely integrating this within acquisition management.

You will develop knowledge and skills in understanding the wider context of defence capability and guiding the development of operational, support and enabling business solutions which both deliver cost effective outcomes and contribute to the attributes of defence as a whole.

Course overview

The course is modular and you will accumulate credits for each module you successfully complete:

- Full modules are each worth 10 credits.
- The Advanced Systems Engineering Workshop is worth 20 credits.

The course structure has been devised to give the maximum amount of flexibility for you to create your own learning pathway whilst ensuring that the fundamental principles of systems engineering are compulsory.

- The PgCert comprises 60 credits of which 40 are for compulsory modules and 20 are for elective modules.
- The PgDip comprises 120 credits of which 70 are for compulsory modules and 50 are for elective modules.
- The MSc comprises 200 credits of which 70 are for compulsory modules, 50 credits are for elective modules and 80 are for the thesis associated with the Individual Project.

Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

(For MOD status students the duration may vary, subject to annual review.)

Individual Project

The Individual Project provides you with an opportunity to undertake an in-depth study of an area of particular interest to you or your sponsor which is written up as a thesis or dissertation. The study might include, for example:

- Application of Systems Engineering tools and techniques to a real world problem.
- Analysis of underpinning Systems Engineering theory and practice.
- Development of new or tailored Systems Engineering processes.

Modules

The Compulsory and Elective Modules below are as for the MSc and PgDip. For PgCert students Capability Context and Advanced Systems Engineering Workshop are Elective.

Core -

Advanced Systems Engineering Workshop (ASEW)
Applied Systems Thinking
Capability Context
Lifecycle Processes Introduction
Lifecycle Processes Advanced
Systems Approach to Engineering

Elective -

Availability, Reliability, Maintainability and Support Strategy (ARMSS)
Decision Analysis, Modelling and Support (DAMS)
Human Centric Systems Engineering (HCSE)
Introduction to Defence Capability
Model Based Systems Engineering
Simulation and Synthetic Environments
System of Systems Engineering
Thesis Selection Workshop
- Systems Engineering and Software
- Systems Engineering Workshop
- Networked and Distributed Simulation Exercise

Assessment

Coursework, written examinations, oral examinations, portfolio and, for the MSc only, an individual thesis.

Funding

Funding is available to MoD students. For more information contact MoD Enquiries by calling 01793 314485 (Option 4) or Mil: 96161 4485.

For more information on funding for non-MoD students please contact

Career opportunities

Takes you on to impressive career prospects across a range of roles commensurate with your experience. This includes membership of multidisciplinary teams in acquisition, supply or research organisations. This could be in both general systems engineering roles or as a focal point for specific skills such as availability, reliability and maintenance (ARM), human factors, requirements, architecture test and evaluation, etc. It is also applicable to key roles in MoD acquisition such as Project Team leader, capability manager and requirements manager.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Systems-Engineering-for-Defence-Capability

Read less
Information systems (IS) today are large, complex, varied in form and distributed, serving different types of people who use a variety of devices to access information. Read more
Information systems (IS) today are large, complex, varied in form and distributed, serving different types of people who use a variety of devices to access information. Specialists who recognise diverse business needs, and have a systematic approach to understanding the impact of technology on organisations, are essential to the success of any IS/IT strategy. Equal in importance to the architectures of systems and the supporting technologies, is the management and delivery of content, whether in the form of data, documents, images and sound.

Increasingly, the fundamental systems comprise digital architectures and networks which then embody and enable the distribution of digital content. Developed information systems are in reality socio-technical systems incorporating people, technologies and content. The information systems specialist becomes a more broadly based information professional as they extend their range and scope of operations towards the end users and their environments. Providing services to users and people at large and ensuring information resources deliver value is equally a part of the wider world of information systems.

Course detail

This course builds on typical undergraduate computing courses studied at level 4 and 5 or equivalent ( such as HND) by offering a level 6 entry route 'integrated' to a level 7 Masters course.

The two year combination provides a route to develop new knowledge and skills in areas critical to the introduction and success of modern information systems for enterprises. The course also provides a route for people with other backgrounds and experience to engage with the world of information systems. It helps you gain a full understanding of how information systems are designed and constructed, and of the impact of technology and its integration into an organisation. It will also give you the skills you need to work effectively in a business-consulting environment, and provide a solid basis for research.

To qualify for the award of MSc Information Systems (Integrated), candidates on the integrated pathway must study five level 6 modules consisting of 20 credits each and two 10 credits each, and six level 7 modules consisting of 20 credits and a 60 credits dissertation module.

Modules

Year One (Level 6)
• Strategies and Systems or Advanced Business Systems
• Development Methodologies
• Computer Security
• Advanced Databases
• Project Preparation
• Project
• IT Industry
Year Two (Level 7)
• Project Management
• Consultancy and Technological Innovation
• Enterprise Architecture
• Knowledge Management
• Learning and Professional Development
• Employability Skills and Employment
• HCI for Information Systems (optional)
• Mobile Applications Development ( optional)
• Data Architectures ( optional)
• UML Component Modelling(optional)
• Security Management ( optional)
• Research Methods
• Dissertation

Note: students select one option from the list offered

Format

Teaching consists of lectures, seminars and laboratory work to provide a basis for the intensive individual study you need to undertake to maximize your investment of time and potential outcomes from taking the course.

Assessment

Course assessed work is a significant part of the total assessment. There is practical work, report writing, critical academic writing and the skills and knowledge gained in these contribute to a capacity to deliver a high quality dissertation.

There are a number of end of module exams. Course tutors provide appropriate support throughout the module to ensure candidates are well prepared.

Career and study progression

The course aims to provide routes into a number of careers:
- information officers
- librarians, information service staff
- content and intelligence gatherers
- analysts
- researchers
- editors
- searchers and intermediaries
- advice and assistance workers
- data managers
- management information systems staff
- multimedia content workers
- mapping specialists and cartographers
- marketing research
- public relations and communication staff.

Outstanding graduates have gone on to further study at the level of MPhil and PhD at UWL and at other institutions. We actively encourage students with potential for research to make their interest known early on in their course.

How to apply

Click the following link for information on how to apply to this course: http://www.uwl.ac.uk/students/postgraduate/how-apply

Scholarships and bursaries

Information about scholarships and bursaries can be found here: http://www.uwl.ac.uk/students/postgraduate/scholarships-and-bursaries

Read less
This course builds upon typical computing courses available at undergraduate level and develops new knowledge and skills in areas critical for the successful introduction of information systems into business enterprises and organisations. Read more
This course builds upon typical computing courses available at undergraduate level and develops new knowledge and skills in areas critical for the successful introduction of information systems into business enterprises and organisations.

Information systems (IS) today are large, complex, varied in form and distributed, serving different types of people who use a variety of devices to access information. Specialists who recognise diverse business needs, and have a systematic approach to understanding the impact of technology on organisations, are essential to the success of any IS/IT strategy. Equal in importance to the architectures of systems and the supporting technologies, is the management and delivery of content, whether in the form of data, documents, images and sound.

Increasingly, the fundamental systems comprise digital architectures and networks which then embody and enable the distribution of digital content. Developed information systems are in reality socio-technical systems incorporating people, technologies and content. The information systems specialist becomes a more broadly based information professional as they extend their range and scope of operations towards the end users and their environments. Providing services to users and people at large and ensuring information resources deliver value is equally a part of the wider world of information systems.

Course detail

The course also provides a route for people with other backgrounds and experience to engage with the world of information systems. It helps you gain a full understanding of how information systems are designed and constructed, and of the impact of technology and its integration into an organisation.

It will also give you the skills you need to work effectively in a business-consulting environment, and provide a solid basis for research.

Modules

• Enterprise Architecture
• Knowledge Management
• Consultancy and Technical Innovation
• Information Systems Project Management
• UML Component Modelling
• Advanced Rich Media (optional)
• Data Architecture (optional)
• Security Management (optional)
• HCI for Information Systems (optional)
• Mobile Applications Development (optional)
• Research Methods
• Dissertation.

Format

Diverse methods are used to explore all aspects of the field. A strong supportive culture exists amongst the course tutors which enables students to achieve their potential.

Assessment

Course assessed work is a significant part of the total assessment. There is practical work, report writing, critical academic writing and the skills and knowledge gained in these contribute to a capacity to deliver a high quality dissertation.

There are a number of end of module exams. Course tutors provide appropriate support throughout the module to ensure candidates are well prepared.

Career and study progression

The course aims to provide routes into a number of career options and positions. There are good opportunities for employment in the core IS and ICT functions at the development and service levels. Employers require information officers, librarians, information service staff, content and intelligence gatherers and analysts, researchers, editors, searchers and intermediaries, advice and assistance workers, data managers, management information systems staff, as well as multimedia content workers, mapping specialists and cartographers, marketing research, public relations and communication staff. All these wider information professional positions are grounded in the fundamental core the discipline of information systems and the broader computing and ICT environment.

Graduates have a good record of achieving employment and progressing in professional information work especially in the voluntary and private sector as well as in the public sector.

Outstanding graduates have gone on to further study at the level of MPhil and PhD at UWL and at other institutions. We actively encourage students with potential for research to make their interest known early on in their course.

How to apply

Click the following link for information on how to apply to this course: http://www.uwl.ac.uk/students/postgraduate/how-apply

Scholarships and bursaries

Information about scholarships and bursaries can be found here: http://www.uwl.ac.uk/students/postgraduate/scholarships-and-bursaries

Read less
The future of information and communication technology (ICT) is driven by mobile and networked embedded systems. Read more

About Mobile and Embedded Systems

The future of information and communication technology (ICT) is driven by mobile and networked embedded systems: tomorrow’s digital cities, Industry 4.0, cyber-physical systems (CPS) and the Internet of Things (IoT) will all depend on embedded sensing of real-world phenomena, in-situ computation as well as automated information exchange and data distribution using machine-to-machine (M2M) com­munications between local and distributed control systems and machinery.

The ‘smart grid’ is one example of an application for future embedded systems, as it uses real-time sensing of the available renewable energy to determine where energy is to be routed across the power grid and controls intelligent machinery to increase production during peak times; this requires that internet-connected smart meters are installed in industrial plants and private homes alike to facilitate real-time sensing and control of technical systems.

Another exciting area of application for embedded systems is mobile and wearable technology, which allows users to access and manipulate information ‘on the go’ as the system provides relevant and timely information — indeed, this is one of the main purposes of mobile information technology such as smartphones and tablet computers. Additional meaning for this Human-Computer Interaction (HCI) is generated by the context of the device, the user, the location and many more factors, all of which are sensed and computed by a plenitude of embedded sensors and collocated or connected systems.

Wearable devices such as fitness trackers and smart watches collect bio-physiological and health-related data to facilitate novel applications, including smart contact lenses and feedback systems for the learning of physical activities. At the same time, increasing cross-device interoperability means that users of head-mounted augmented reality and virtual reality displays can, for instance, use their entire smartphone screen as a keyboard and have the typed text displayed on augmented reality glasses.

Programme content

The programme is divided into three module groups with core and elective modules. These are:

1. Human-Computer Interaction
2. Systems Engineering
3. Data Processing, Signals and Systems

Features

- Excellent rankings for computer science, e.g. in U-Multirank and the CHE rankings
- A strongly research-oriented two-year programme with a modern, broad range of subjects
- Allows flexible interest-based selection of modules from the groups ‘Human-Computer Interaction’, ‘Systems Engineering’ and ‘Data Processing, Signals and Systems’
- A fully English-taught programme
- An outstanding staff-student ratio
- Participation in cutting-edge research projects
- Excellent research and teaching infrastructure
- An extensive network of partnerships with academic institutions and businesses worldwide
- A great student experience in Passau, the ‘City of Three Rivers’

Language requirements

Unless English is your native language or the language of your secondary or undergraduate education, you should provide an English language certificate at level B2 CEFR, e.g. TOEFL with a minimum score of 567 PBT, 87 iBT or ITP 543 (silver); IELTS starting from 5.5; or an equivalent language certificate.

To facilitate daily life in Germany, it would be beneficial for you to have German language skills at level A1 CEFR (beginner’s level). If you do not have any German skills when starting out on the programme, you will complete a compulsory beginner’s German course during your first year of study.

Read less

Show 10 15 30 per page



Cookie Policy    X