• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
SOAS University of London Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Greenwich Featured Masters Courses
Coventry University Featured Masters Courses
Loughborough University Featured Masters Courses
"distributed" AND "comput…×
0 miles

Masters Degrees (Distributed Computing)

  • "distributed" AND "computing" ×
  • clear all
Showing 1 to 15 of 180
Order by 
Modern devices often rely on data that is distributed across multiple computers, whether closely located or more distant. Read more

Overview

Modern devices often rely on data that is distributed across multiple computers, whether closely located or more distant. Developing software for such systems offers many benefits, but it also poses new challenges to be overcome, particularly in guaranteeing the security and robustness of the communication between devices.

The MSc at Hull is designed to enable you to overcome those challenges. It prepares you to exploit the extraordinary potential of distributed systems, both in terms of storage capacity and processing power, whilst being aware of the unique constraints and security problems they introduce. You will have access to cutting-edge equipment and facilities, and you will finish with a much greater understanding of how software development needs to adapt to the unique environment of a distributed system. These skills and knowledge are highly sought-after in an industry that is increasingly adopting new distributed technology, such as cloud-based solutions.

The course begins in September each year and lasts twelve months. There are two trimesters of taught modules, followed by an individual dissertation project during the third trimester. There is an option to take an extra trimester – either immediately before or after the dissertation – gaining industrial experience through a module based in SEED, our software development unit working with commercial clients and software. This is unique to Hull.

The Department of Computer Science creates an excellent experience for students, with a supportive student community. We have an international reputation for our research activities, with a strong record of industrial and public grant funding. We are also affiliated with Microsoft’s DreamSpark programme, which allows you to access the latest Microsoft operating systems and development software for home use. Once registered with the department, you can download the software free of charge.

Industrial Experience

There is the option to take an Industrial Experience variant, with the opportunity to extend the period of study by a trimester, to gain experience of working alongside commercial software developers within a commercial software development facility on site (SEED), promoting real-world applications of the advanced concepts met in the course.

Study

The MSc Computer Science (Security and Distributed Computing) programme supports students with various levels of computing and programming practice experience, with material that supports the transition into the postgraduate environment. There is also suitable content on professional skills and the importance of ethics for practising computer scientists.
As a route into research, the programme supports the development of postgraduate technical skills, alongside critical research, analysis and planning activities.
In lectures you’ll benefit from a range of techniques, from interpreting complex ideas through interactive discussions, to live programming or other problem-solving demonstrations.
Core modules
• Oriented Design and Development Using C++
• Component-based Architecture
• Network Security
• Development Project
• Distributed Applications
• Trustworthy Computing
Optional modules
• Computer Science Software Development Practice (pass/fail module)
• Dissertation (There is the option of taking this module either in trimester 3 or trimester 4, depending on whether you take the Industrial Experience module.)
• The Industrial Experience optional 60-credit single trimester module allows students to gain significant commercial experience.

Teaching and learning

We place a strong emphasis on practical laboratory sessions. This will significantly develop your core computer science skills, and enhance your employability through exposure to commercial projects.
As teamwork plays a key role in commercial software development and has great value as an employable skill, group work is used in a number of modules.

Assessment

Practical coursework is the main form of assessment, and you will design, build and test software solutions to a variety of problems. This is complemented by written coursework.
The largest assessment is the dissertation, which is based on the work done in the third trimester (or fourth, depending on your option choices) and documented in a report of up to 20,000 words.

Careers

The MSc Computer Science (Security and Distributed Computing) is designed to open up pathways to postgraduate research, as well as careers in a wide range of areas within your discipline. The industrial placement option will enable you to practise your skills and knowledge of computer science ‘in situ’, giving you a useful insight and advantage when it comes to starting your career.
We have a range of inspirational extra-curricular activities including the Three Thing Game, Imagine Cup Worldwide Software Development Challenge, Really Useful Seminars and Global Game Jam. They are designed to boost your CV and employability, and taking part costs very little.

Our graduates typically gain roles including: Applications Developer, Business Systems Analyst, Computer Analyst, Computer Programmer, Computer Operations Manager, Data Management Analyst, Database Assistant, Developer Support Engineer, Games Programmer, Games Programmer (Engine design), Information Manager, IT Design, IT Systems Manager, IT Technician, IT user Support, Mobile Developer, Operations Director, Software Designer, Software Developer, Software Engineer, Solutions Developer, Systems Engineer, Technical Sales, Technical Specialist, Web Developer.

Read less
Information Technology is now fundamental in every aspect of our daily lives. IT systems are crucial for delivering every day services such as banking, web based services and information systems. Read more
Information Technology is now fundamental in every aspect of our daily lives. IT systems are crucial for delivering every day services such as banking, web based services and information systems.

The MSc Information Technology is a full time, one year taught course, intended for students who are seeking a professional career in the IT industry. There is no requirement for a first degree in computing, but proficiency in at least one programming language is a requirement.

The course covers a range of topics including advanced programming, user-interface design, software engineering and management.

This course will give you the knowledge of IT from an organisation oriented viewpoint, allowing you to be capable of designing and implementing IT systems for a wide range of organisations.

The course has been specifically designed to suit the requirements of the IT industry, where you will be able to take up technical or management positions. Our graduates enter employment in many roles, including computer programmers, technical authors and research associates.

Course Aims
-Programming: You will gain a thorough grounding of advanced programming concepts using Java including efficient data structures and algorithms and high performance distributed computing.
-User-Interfaces: You will learn the theory of human computer interaction (HCI) and put this into practice in a number of ways, including user centred design of aspects of people's interaction with digital systems.
-Software Engineering: You will learn and be able to apply the principles of software engineering and case studies using UML, software testing techniques, and privacy and security aspect of software systems.

Learning Outcomes
We expect our graduates to be capable of designing and implementing IT systems for a wide range organisations. A thorough understanding of the following subjects are expected:
-Designing user interfaces following sound principles of interface design
-Designing, specifying, implementing and testing software components and systems using UML, Java and a range of software testing techniques
-Dependability of IT systems including topics in privacy and security
-Computer architectures and high performance distributed computing

Project

The dissertation project undertaken by students in Terms 3 and 4 (Summer Term and Vacation Term) is carried out individually, which might involve collaboration with another organisation. The subject matter of projects varies widely; most projects are suggested by members of staff, some by external organisations, and some by students themselves, usually relating to an area of personal interest that they wish to develop further.

A collaborative project is supervised by a member of the Department, but the collaborating organisation will normally provide an external supervisor. Organisations that have collaborated in projects in the past include Glasgow Town Planning Department, British Rail Passenger Services Department, North Yorkshire Police, North Yorkshire Fire Services, NEDO, the Royal Horticultural Society, Biosis UK, Centre Point sheltered housing, York Archaeological Trust, and the University of York Library.

The subject matter of projects varies widely; most projects are suggested by members of staff, some by external organisations, and some by students themselves, perhaps relating to an area of personal interest that they wish to develop further.

All project proposals are rigorously vetted and must meet a number of requirements before these are made available to the students. The department uses an automated project allocation system for assigning projects to students that takes into account supervisor and student preferences.

Examples of previous project include:
-A Study into the User Experience and Usability of Web Enabled Services on Smartphones
-Agent simulation of large scale complex IT systems
-Do People Disclose their Passwords on Social Media?
-Dynamic Sound Generation for Computer Games
-Iterative linear programming as an optimisation method for buyer resources in online auctions evaluated using a Java-based Monte Carlo simulation
-Qchat (Web-based chat application for quantum physicists)
-Software for dyslexic readers: an empirical investigation of presentation attributes
-Web-based IQ Testing Application for Fluid Intelligence Analysis
-Agent simulation of large scale complex IT systems

Information for Students

Whilst the MSc in Information Technology does not require a formal qualification in computing, we do expect you to have some understanding of computer related issues.

As everyone arrives with different experience, we have put together the following summary of what we expect you to know, with some suggestions of how you can prepare before you arrive.

You'll start the course with a focus on writing and developing Java programs. We assume that you are familiar with programming concepts and terminology, so we advise you to review basic programming concepts, such as:
-Variables and their types
-Control structures (e.g. if-statements, loops)
-Subprograms (e.g. procedures, functions)
-Compilation and debugging.

If you have never used Java, you will benefit greatly from doing some reading and trying out Java programming before you arrive. We will teach you from first principles, but the pace will be fast and you will find it easier to keep up if you've practiced with the basics beforehand. Tutorials and practical exercises are the best way for you to prepare, and the Deitel and Deitel book below is a good source of these.

Careers

Here at York, we're really proud of the fact that more than 97% of our postgraduate students go on to employment or further study within six months of graduating from York. We think the reason for this is that our courses prepare our students for life in the workplace through our collaboration with industry to ensure that what we are teaching is useful for employers.

Read less
The MSc in Internet Systems and e-Business is a taught programme aimed at all graduates who want to train in modern computing. It provides an opportunity to acquire the skills required to pursue a career in Internet-based information systems. Read more
The MSc in Internet Systems and e-Business is a taught programme aimed at all graduates who want to train in modern computing. It provides an opportunity to acquire the skills required to pursue a career in Internet-based information systems. The programme is also suitable for those who have been in industry or other employment, possibly involving increasing recent work with IT, and now want to improve their career by means of formal training and a recognised qualification. The programme starts with an introduction to programming and then covers key details of software engineering and Internet technology.

Course Structure

Seven taught modules and then a dissertation module of approximately two months over the summer.

Core Modules

-Object-Oriented Programming in Java and UML
-Software Engineering for the Internet
-Distributed Computing
-Enterprise and Distributed Systems
-Research Methods and Professional Issues
-Web Technology
-Digital Imaging
-Dissertation

Learning and Teaching

The MSc in Internet Systems and e-Business is a full-time taught programme aimed at all graduates who want to train in modern computing. It provides an opportunity to acquire the skills required to pursue a career in Internet-based information systems. The programme is also suitable for those who have been in industry or other employment, possibly involving increasing recent work with IT, and now want to improve their career by means of formal training and a recognised qualification. Students are registered for 12 months from the course start date at the beginning of October each academic year. The programme starts with an introduction to programming and then covers key details of software engineering and Internet technology.

The programme consists of seven lecture/tutorial based core modules plus a research project. The two modules in Object Oriented Programming, and Web Technology, each feature 18 hours of lectures plus 8 hours of tutorial contact time.

The three modules in Digital Imaging, Distributed Computing and Research Methods and Professional Issues each feature 12 hours of lectures plus 8 hours of tutorial contact time. The lecture module on Software Engineering for the Internet has 20 hours of tutorials. The lecture module on Enterprise and Distributed Systems use a variety of teaching methods. It might typically feature 24 hours of lectures, 8 hours of tutorials and a total of 91 hours of laboratory/practical classes. The total contact hours for all 7 of these modules is therefore 96 hours of lectures, 68 hours of tutorials and 91 hours of laboratory/practical classes.

A major individual research project is also undertaken during the course under the guidance of an appropriate staff supervisor. This provides an open-ended challenge to each individual student. Regular meetings are held with the supervisor to discuss project progress and planning issues. At the end of the project students are required to submit a dissertation documenting their project work. Students should expect to have around 5 hours of contact time with their supervisors over the course of their research projects.

Read less
The MSc in Computing (Distributed Systems) is a full-time degree of 12 months duration starting in October. It allows graduates who have already studied Computing Science in their degree, but perhaps not exclusively, to focus their further studies in a particular area. Read more
The MSc in Computing (Distributed Systems) is a full-time degree of 12 months duration starting in October. It allows graduates who have already studied Computing Science in their degree, but perhaps not exclusively, to focus their further studies in a particular area. The typical entrant to this track has a good upper-second class or a first class honours degree in a science or engineering discipline, including Computing.

The programme provides opportunities for postgraduate students to develop and demonstrate knowledge and understanding and practical skills in a wide variety of specialised topics in Computing. Students are also able to develop and demonstrate the qualities and skills needed for literature research, technical presentation and report writing. The degree provides a good foundation for PhD study.

Read less
The Masters in Computing Science provides you with a thorough grounding in advanced computing science, together with experience of conducting a development project, preparing you for responsible positions in the IT industry. Read more
The Masters in Computing Science provides you with a thorough grounding in advanced computing science, together with experience of conducting a development project, preparing you for responsible positions in the IT industry.

Why this programme

◾The School of Computing Science is consistently highly ranked achieving 2nd in Scotland and 10th in the UK (Complete University Guide 2017)
◾The School is a member of the Scottish Informatics and Computer Science Alliance: SICSA. This collaboration of Scottish universities aims to develop Scotland's place as a world leader in Informatics and Computer Science research and education.
◾You will have opportunities to meet employers who come to make recruitment presentations, and often seek to recruit our graduates during the programme.
◾You will benefit from having 24-hour access to a computer laboratory equipped with state-of-the-art hardware and software.
◾With a 92% overall student satisfaction in the National Student Survey 2015, computing at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Computing Science include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses
◾Research methods and techniques
◾Masters team project

Optional courses
◾Advanced networking and communications
◾Advanced operating systems
◾Algorithmics
◾Artificial intelligence
◾Big data: systems, programming and management
◾Computer architecture
◾Computer vision methods and applications
◾Cryptography and secure development
◾Cyber security forensics
◾Cyber security fundamentals
◾Distributed algorithms and systems
◾Enterprise cyber security
◾Functional programming
◾Human computer interaction
◾Human computer interaction: design and evaluation
◾Human-centred security
◾Information retrieval
◾Internet technology
◾IT architecture
◾Machine learning
◾Mobile human computer interaction
◾Modelling reactive systems
◾Safety critical systems.
◾Software project management
◾Theory of Computation
◾Web Science

Depending on staff availability, the optional courses listed here may change.

If you wish to engage in part-time study, please be aware that dependent upon your optional taught courses, you may still be expected to be on campus on most week days.

Accreditation

MSc Computing Science is accredited by the British Computer Society (BCS) and the Institution of Engineering & Technology (IET)

Our specialist MSc graduates in Computing Science, Software Engineering and Information Security are recognised by the British Computer Society (BCS), The Chartered Institute for IT, for the purposes of fully meeting the further learning academic requirement for registration as a Chartered IT Professional (CITP Further Learning) and partially meeting the academic requirement for registration as a Chartered Scientist (CSci). These programmes have also been awarded the Euro-Info Master Label.

[[Industry links and employability ]]

◾The School of Computing Science has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors include representatives from IBM, J.P. Morgan, Amazon, Adobe and Red Hat.
◾Employers are interested in graduates who have a combination of good technical skills and well-developed personal skills, and in this respect graduates of the MSc in Computing Science from the University of Glasgow are particularly well placed.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the IT industry.

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Visual Computing at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Visual Computing at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MRes Visual Computing is an ideal preparation for following a career of research or specialism within the area of study. In particular the MRes in Visual Computing seeks to prepare you for further research in the areas of Computer Graphics, Computer Vision, Medical Imaging, and Scientific Visualisation.

We seek strongly motivated students who are able to carry out substantial individual study. Such students are likely to want to control their own time, carry out curiosity driven research to an advanced level, and follow self-study material in advanced topics.

You will decide upon your topic of research in discussion with your supervisor in an exciting and recent area of Visual Computing. In collaboration with your supervisor you will evaluate current research and carry your own research programme based on the contribution you will make. The research programme is supported by taught courses covering useful literature and skills.

Course Content

Research Component

The main part of the MRes in Visual Computing is a substantial and challenging project involving cutting edge research. The project is an exciting opportunity for you to carry out research in the area of Visual Computing. You will produce an abstract of your work, a scientific paper, carry out a presentation and produce your final dissertation.

Taught Component

In addition to the research project, you can choose from a range of modules that provide skills and development training in different areas.

Modules available currently include:

Computer Vision and Pattern Recognition (compulsory)
Data Visualisation (compulsory)
Graphics Processor Programming (compulsory)
Research Methodology (compulsory)
Visual Computing Project Development (compulsory)
Distributed Object-Oriented Programming
Interaction Technologies: Information Retrieval
High Performance Computing in C/C++
Interaction Technologies: Hardware and Devices

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Read less
Distributed and networked computation is now the paradigm that underpins the software-enabled systems that are proliferating in the modern world, with huge impact in the economy and society, from the sensor and actuator networks that are now connecting cities, to cyberphysical systems, to patient-centred healthcare, to disaster-recovery systems. Read more
Distributed and networked computation is now the paradigm that underpins the software-enabled systems that are proliferating in the modern world, with huge impact in the economy and society, from the sensor and actuator networks that are now connecting cities, to cyberphysical systems, to patient-centred healthcare, to disaster-recovery systems.

This new Masters course will educate and train you in the fundamental principles, methods and techniques required for developing such systems. Given the number of elective modules offered, you will be able to acquire further skills in one or more of Cloud Computing, Data Analytics and Information Security.

Facilities include a laboratory where you can experiment with physical devices that can be interconnected in a network, and a cluster facility configured to run the Hadoop MapReduce stack.

A Year in Industry option is also available for this course.

See the website https://www.royalholloway.ac.uk/computerscience/coursefinder/msc-distributed-and-networked-systems.aspx

Why choose this course?

This course will develop a highly analytical approach to problem solving and a strong background in distributed and networked systems, fault-tolerance and data replication techniques, distributed coordination and time-synchronisation techniques (leader-election, consensus, and clock synchronisation), data communication protocols and software stacks for wireless, sensor, and ad hoc networking technologies in virtualisation, and cloud computing technologies.

The course develops an advanced understanding of principles of failure detection and monitoring, principles of scalable storage, and in particular NoSQL technology.

Students will acquire the ability to:
- apply well-founded principles to building reliable and scalable distributed systems
- analyse complex distributed systems in terms of their performance, reliability, and correctness
- design and implement middleware services for reliable communication in unreliable networks
- work with state-of-the-art wireless, sensor, and ad hoc networking technologies
- design and implement reliable data communication and storage solutions for wireless, sensor, and ad hoc networks
- detect sources of vulnerability in networks of connected devices and deploy the appropriate countermeasures to information security threats.
- enforce privacy in “smart” environments
- work with open source and cloud tools for scalable data storage (DynamoDB) and coordination (Zookeeper)
- work with modern network management technologies (Software-Defined Networking) and standards (OpenFlow)
- design custom-built application-driven networking topologies using OpenFlow, and other modern tools
- work with relational databases (SQL), non-relational databases (MongoDb), as well as with Hadoop/Pig scripting and other big data manipulation techniques.

Department research and industry highlights

Royal Holloway is recognised for its research excellence in Machine Learning, Information Security, and Global Ubiquitous Computing.
We work closely with companies such as Centrica (British Gas, Hive), Cognizant, Orange Labs (UK), the UK Cards Association, Transport for London and ITSO.
We host a Smart Card Centre and we are a GCHQ Academic Centre of Excellence in Cyber Security Research (ACE-CSR).

Course content and structure

You will take taught modules during Term One (October to December) and Term Two (January to March). Examinations are held in May. If you are in the Year-in-Industry pathway, you then take an industrial placement, after which you come back for your project/dissertation (12 weeks).

Core course units are:
Interconnected Devices
Advanced Distributed Systems
Wireless, Sensor and Actuator Networks
Individual Project

Elective course units are:

Computation with Data
Databases
Introduction to Information Security
Data Visualisation and Exploratory Analysis
Programming for Data Analysis
Semantic Web
Multi-agent Systems
Advanced Data Communications
Machine Learning
Concurrent and Parallel Programming
Large-Scale Data Storage and Programming
Data Analysis
On-line Machine Learning
Smart Cards, RFIDs and Embedded Systems Security
Network Security
Computer Security
Security Technologies
Security Testing
Software Security
Introduction to Cryptography

Assessment

Assessment is carried out by a variety of methods including coursework, practical projects and a dissertation.

Employability & career opportunities

Our graduates are highly employable and, in recent years, have entered many different [department]-related areas, including This taught masters course equips postgraduate students with the subject knowledge and expertise required to pursue a successful career, or provides a solid foundation for continued PhD studies.

Read less
This taught postgraduate course is aimed at students who may not have studied computing exclusively but who have studied a considerable amount of computing already. Read more
This taught postgraduate course is aimed at students who may not have studied computing exclusively but who have studied a considerable amount of computing already.

If you want to become a specialist in a particular area of computing, this course will provide a first crucial step towards that goal.

This course specialises in the application of engineering to the design, development, and maintenance of software.

Study areas include computational finance; computer networks and distributed systems; computer vision; computing for optimal decisions; custom computing; databases; distributed algorithms; distributed systems; graphics; intelligent data and probabilistic inference; and an introduction to bioinformatics.

We also offer specialisms in:

Artificial Intelligence
Computational Management Science
Machine Learning
Software Engineering
Secure Software Systems
Visual Information Processing

Each specialism has a flexible mix of breadth and depth, consisting of two or three compulsory modules as well as choices from a selection of core and optional modules.

Read less
Our Computer Science MPhil and PhD programme gives you an opportunity to make a unique contribution to computer science research. Read more
Our Computer Science MPhil and PhD programme gives you an opportunity to make a unique contribution to computer science research. Your research will be supported by an experienced computer scientist within a research group and with the support of a team of advisers.

Research supervision is available under our six research areas, reflecting our strengths, capabilities and critical mass.

Advanced Model-Based Engineering and Reasoning (AMBER)

The AMBER group aims to equip systems and software engineering practitioners with effective methods and tools for developing the most demanding computer systems. We do this by means of models with well-founded semantics. Such model-based engineering can help to detect optimal, or defective, designs long before commitment is made to implementations on real hardware.

Digital Interaction Group (DIG)

The Digital Interaction Group (DIG) is the leading academic research centre for human-computer interaction (HCI) and ubiquitous computing (Ubicomp) research outside of the USA. The group conducts research across a wide range of fundamental topics in HCI and Ubicomp, including:
-Interaction design methods, eg experience-centred and participatory design methods
-Interaction techniques and technologies
-Mobile and social computing
-Wearable computing
-Media computing
-Context-aware interaction
-Computational behaviour analysis

Applied research is conducted in partnership with the DIG’s many collaborators in domains including technology-enhanced learning, digital health, creative industries and sustainability. The group also hosts Newcastle University's cross-disciplinary EPSRC Centre for Doctoral Training in Digital Civics, which focusses on the use of digital technologies for innovation and delivery of community driven services. Each year the Centre awards 11 fully-funded four-year doctoral training studentships to Home/EU students.

Interdisciplinary Computing and Complex BioSystems (ICOS)

ICOS carries out research at the interface of computing science and complex biological systems. We seek to create the next generation of algorithms that provide innovative solutions to problems arising in natural or synthetic systems. We do this by leveraging our interdisciplinary expertise in machine intelligence, complex systems and computational biology and pursue collaborative activities with relevant stakeholders.

Scalable Computing

The Scalable Systems Group creates the enabling technology we need to deliver tomorrow's large-scale services. This includes work on:
-Scalable cloud computing
-Big data analytics
-Distributed algorithms
-Stochastic modelling
-Performance analysis
-Data provenance
-Concurrency
-Real-time simulation
-Video game technologies
-Green computing

Secure and Resilient Systems

The Secure and Resilient Systems group investigates fundamental concepts, development techniques, models, architectures and mechanisms that directly contribute to creating dependable and secure information systems, networks and infrastructures. We aim to target real-world challenges to the dependability and security of the next generation information systems, cyber-physical systems and critical infrastructures.

Teaching Innovation Group

The Teaching Innovation Group focusses on encouraging, fostering and pursuing innovation in teaching computing science. Through this group, your research will focus on pedagogy and you will apply your research to maximising the impact of innovative teaching practices, programmes and curricula in the School. Examples of innovation work within the group include:
-Teacher training and the national Computing at School initiative
-Outreach activities including visits to schools and hosting visits by schools
-Participation in national fora for teaching innovation
-Market research for new degree programmes
-Review of existing degree programmes
-Developing employability skills
-Maintaining links with industry
-Establishing teaching requirements for the move to Science Central

Research Excellence

Our research excellence in the School of Computing Science has been widely recognised through awards of large research grants. Recent examples include:
-Engineering and Physical Sciences Research Council (EPSRC), Centre for Doctoral Training in Cloud Computing for Big Data Doctoral Training Centre
-Engineering and Physical Sciences Research Council (EPSRC), Centre for Doctoral Training in Digital Civics
-Wellcome Trust and Engineering and Physical Sciences Research Council (EPSRC) Research Grant: a £10m project to look at novel treatment for epilepsy, confirming our track record in Systems Neuroscience and Neuroinformatics.

Accreditation

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Read less
An MSc in Computing & Internet Systems will improve your ability to solve challenging computing-related problems arising in the context of the Internet. Read more
An MSc in Computing & Internet Systems will improve your ability to solve challenging computing-related problems arising in the context of the Internet. Delivered by the Department of Informatics, which has an enviable reputation for research-led teaching and project supervision from leading experts in their field.

Key benefits

- Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the BCS Chartered Institute for IT, and the Institution of Engineering and Technology (IET).

- The programme covers a diverse range of topics ranging from information management to development of applications that support organisational and business processes.

- Develops critical awareness and appreciation of the changing role of computing in society, motivating graduates to pursure continuing professional development and further research.

- Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in advanced computing and related fields.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/computing-and-internet-systems-msc.aspx

Course detail

- Description -

This programme provides students with the advanced skills to solve computational problems arising in the context of the internet. It is built around taught core modules on the internet and internet technologies such as computing networks, distributed systems, information security and database systems which are complemented by a wide range of optional modules that relate to various aspects of computing. The final part of the programme is an individual project which is closely linked with the Department's research activities.

- Course purpose -

For graduates with a substantial background in Computer Science, this programme will enhance your ability to solve a broad range of challenging computing-related problems and gain a broad introduction to aspects of the Internet. Research for your individual project will provide valuable preparation for a career in research or industry.

-Course format and assessment -

Lectures; tutorials; seminars; laboratory sessions; optional career planning workshops.

Core modules:

- Individual Project
- Data Structures and their Implementation in C++
- Group Project
- Web Infrastructure
- Software Engineering of Internet Applications

Assessed through: coursework; written examinations; final project report.

Career prospects

Via the Department’s Careers Programme, students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have gone on to have very successful careers in industry and research. Our graduates are working in general software consultancy companies, specialised software development companies and the IT departments of large institutions (financial, telecommunications and public sector). Recent employers include Logica and Inteliscape. Other graduates have entered into the field of academic and industrial research in areas such as software engineering and computer networks.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This course combines the managerial and computing aspects of Service-Oriented Computing Systems for medium and large scale corporations. Read more
This course combines the managerial and computing aspects of Service-Oriented Computing Systems for medium and large scale corporations.

The course provides a broad education in the area of Internet and Cloud-based systems engineering and emphasizes the importance of team building and problem solving skills.

You will learn how to optimize the information flow between business processes and how to critically analyse the impact of deploying information systems within the Enterprise and in public Computing Clouds to support organisational and business processes.

On the computing front, you will learn the principles and techniques necessary for designing, developing, and evaluating Enterprise Information System (EIS) that are distributed, interoperable, intelligent, and adaptive to change. In addition, the major project element of the course will allow you an opportunity to develop greater subject specialism in one specific Cloud or Enterprise computing topic of your choice.

Overall the programme will equip you to be an independent learner who can critically analyse the business requirements to engineer a comprehensive IT solution that strikes a balance between the financial constraints and the demand for a scalable yet integrative IT infrastructure.

Why study this course?

-You are taught by highly experienced staff members, many of whom are actively involved in cutting-edge research and publish regularly in this discipline
-There's the opportunity for a year-long work placement where you can expect a salary of between £10,000 and £35,000
-The School has strong links with local industry representatives such as Siemens, Experian and Excel. Such links benefit our graduates by ensuring the up-to-date relevance of our courses and opening up possibilities for work placements
-You will have access to the state-of-the-art facilities. These include exceptional computing resources, multimedia editing suites and specialist labs for imaging, networks and communications.

COME VISIT US ON OUR NEXT OPEN DAY!

Register here: https://www.ntu.ac.uk/university-life-and-nottingham/open-days/find-your-open-day/science-and-technology-postgraduate-and-professional-open-event2

The course is a part of the School of Science and Technology (http://www.ntu.ac.uk/sat) which has first-class facilities (http://www.ntu.ac.uk/sat/facilities).

Read less
The MSc Computing programme at Hull focuses on the development of programming concepts and how they can model business processes and support other applications. Read more

Overview

The MSc Computing programme at Hull focuses on the development of programming concepts and how they can model business processes and support other applications. The programme involves a rewarding combination of computer systems and software implementation, enabling you to master the latest computer technology.

You’ll make great advancements on your existing knowledge of computer science, learning about the technology behind a wide range of commercial and enterprise solutions. You will learn how to analyse problems and apply your knowledge to create software solutions. Along the way, you will gain experience with cutting-edge techniques and commercial perspectives. The course includes core development skills, alongside options encompassing large-scale development, visualization, security and distributed programming.
The course begins in September each year and lasts twelve months. There are two trimesters of taught modules, followed by an individual dissertation project during the third trimester. There is a variant that includes an extra trimester – before the dissertation – gaining industrial experience through a module based in SEED, our software development unit working with commercial clients and software. This is unique to Hull.

The Department of Computer Science creates an excellent experience for students, with a supportive student community. We have an international reputation for our research activities, with a strong record of industrial and public grant funding. We are also affiliated with Microsoft’s DreamSpark programme, which allows you to access the latest Microsoft operating systems and development software for home use. Once registered with the department, you can download the software free of charge.

Industrial Experience

There is the option to take an Industrial Experience variant, with the opportunity to extend the period of study by a trimester, to gain experience of working alongside commercial software developers within a commercial software development facility on site (SEED), promoting real-world applications of the advanced concepts met in the course.

Study

The MSc Computing programme is designed to support students with various levels of computing and programming practice experience. There is suitable content on professional skills and the importance of ethics for practising computer scientists. Material on software engineering, referencing and unfair means supports the transition into the postgraduate environment.
In lectures you’ll benefit from a range of techniques, from interpreting complex ideas through interactive discussions, to live programming or other problem-solving demonstrations.

Core modules

• Oriented Design and Development Using C++
• Development Project
Optional modules
• Component-based Architecture
• Maintaining Large Software Systems
• Mobile Devices and Applications
• Level 6 Module (only one to be taken during the programme)
• Advanced Computational Science
• Visualization
• Distributed Applications
• Trustworthy Computing
• Computer Science Software Development Practice – pass/fail module
• Dissertation (There is the option of taking this module either in trimester 3 or trimester 4, depending on whether you take the Industrial Experience module.)
• The Industrial Experience optional 60-credit single trimester module allows students to gain significant commercial experience.

Teaching and learning

We place a strong emphasis on practical laboratory sessions. This will significantly develop your core computer science skills, and enhance your employability through exposure to commercial projects.
As teamwork plays a key role in commercial software development and has great value as an employable skill, group work is used in a number of modules.

Assessment

Practical coursework is the main form of assessment, and you will design, build and test software solutions to a variety of problems. This is complemented by written coursework.
The largest assessment is the dissertation, which is based on the work done in the third trimester and documented in a report of up to 20,000 words.

Careers

The MSc Computing programme is designed to open up pathways to postgraduate research, as well as careers in a wide range of areas within your discipline. The computational science module introduces concepts and ideas which will help prepare you for postgraduate study; the industrial placement option, meanwhile, will enable you to practise your skills and knowledge of computer science ‘in situ’, giving you a useful insight and advantage when it comes to starting your career.
We also have a range of inspirational extra-curricular activities including the Three Thing Game, Imagine Cup Worldwide Software Development Challenge, Really Useful Seminars and Global Game Jam. They are designed to boost your CV and employability, and taking part costs very little.

Our MSc graduates typically gain roles including: Applications Developer, Business Systems Analyst, Computer Analyst, Computer Programmer, Computer Operations Manager, Data Management Analyst, Database Assistant, Developer Support Engineer, Games Programmer, Games Programmer (Engine design), Information Manager, IT Design, IT Systems Manager, IT Technician, IT user Support, Mobile Developer, Operations Director, Software Designer, Software Developer, Software Engineer, Solutions Developer, Systems Engineer, Technical Sales, Technical Specialist, Web Developer.

Read less
The MSc Computing programme at Hull focuses on the development of programming concepts and how they can model business processes and support other applications. Read more

Overview

The MSc Computing programme at Hull focuses on the development of programming concepts and how they can model business processes and support other applications. The programme involves a rewarding combination of computer systems and software implementation, enabling you to master the latest computer technology.

You’ll make great advancements on your existing knowledge of computer science, learning about the technology behind a wide range of commercial and enterprise solutions. You will learn how to analyse problems and apply your knowledge to create software solutions. Along the way, you will gain experience with cutting-edge techniques and commercial perspectives. The course includes core development skills, alongside options encompassing large-scale development, visualization, security and distributed programming.
The course begins in September each year and lasts twelve months. There are two trimesters of taught modules, followed by a trimester of industrial experience through a module based in SEED, our software development unit working with commercial clients and software; this is unique to Hull. This is followed by an individual dissertation project during the fourth trimester.

The Department of Computer Science creates an excellent experience for students, with a supportive student community. We have an international reputation for our research activities, with a strong record of industrial and public grant funding. We are also affiliated with Microsoft’s DreamSpark programme, which allows you to access the latest Microsoft operating systems and development software for home use. Once registered with the department, you can download the software free of charge.

Industrial Experience

The degree includes an Industrial Experience trimester, to gain experience of working alongside commercial software developers within a commercial software development facility on site (SEED), promoting real-world applications of the advanced concepts met in the course.

Study

The MSc Computing programme is designed to support students with various levels of computing and programming practice experience. There is suitable content on professional skills and the importance of ethics for practising computer scientists. Material on software engineering, referencing and unfair means supports the transition into the postgraduate environment.
In lectures you’ll benefit from a range of techniques, from interpreting complex ideas through interactive discussions, to live programming or other problem-solving demonstrations.

Core modules

• Oriented Design and Development Using C++
• Development Project
• Computer Science Software Development Practice – pass/fail module. The Industrial Experience optional 60-credit single trimester module allows students to gain significant commercial experience.
• Dissertation.

Optional modules
• Component-based Architecture
• Maintaining Large Software Systems
• Mobile Devices and Applications
• Level 6 Module (only one to be taken during the programme)
• Advanced Computational Science
• Visualization
• Distributed Applications
• Trustworthy Computing

Teaching and learning

We place a strong emphasis on practical laboratory sessions. This will significantly develop your core computer science skills, and enhance your employability through exposure to commercial projects.
As teamwork plays a key role in commercial software development and has great value as an employable skill, group work is used in a number of modules.

Assessment

Practical coursework is the main form of assessment, and you will design, build and test software solutions to a variety of problems. This is complemented by written coursework.
The largest assessment is the dissertation, which is based on the work done in the third trimester and documented in a report of up to 20,000 words.

Careers

The MSc Computing programme is designed to open up pathways to postgraduate research, as well as careers in a wide range of areas within your discipline. The computational science module introduces concepts and ideas which will help prepare you for postgraduate study; the industrial placement option, meanwhile, will enable you to practise your skills and knowledge of computer science ‘in situ’, giving you a useful insight and advantage when it comes to starting your career.
We also have a range of inspirational extra-curricular activities including the Three Thing Game, Imagine Cup Worldwide Software Development Challenge, Really Useful Seminars and Global Game Jam. They are designed to boost your CV and employability, and taking part costs very little.

Our MSc graduates typically gain roles including: Applications Developer, Business Systems Analyst, Computer Analyst, Computer Programmer, Computer Operations Manager, Data Management Analyst, Database Assistant, Developer Support Engineer, Games Programmer, Games Programmer (Engine design), Information Manager, IT Design, IT Systems Manager, IT Technician, IT user Support, Mobile Developer, Operations Director, Software Designer, Software Developer, Software Engineer, Solutions Developer, Systems Engineer, Technical Sales, Technical Specialist, Web Developer.

Read less
The Internet and Distributed Systems course will help you design and build secure, scalable internet applications and reusable software components. Read more

Course overview

The Internet and Distributed Systems course will help you design and build secure, scalable internet applications and reusable software components.

This is a practical course which focuses on the development of applications and the management of data in a distributed environment.

An emphasis on practical issues and the current technologies used in the development of internet and distributed systems gives you the opportunity to conduct in-depth research into a specific issue in this area of computing. This dedicated preparation for a real role offers University of Brighton students an advantage when seeking employment within the computing industry.

Core subjects:
Distributed Data Management
Internet Application Development
Enterprise Applications Development
Research Methods
Project

You will also select two additional modules from a range of options.

Start dates September and February

Read less
The Master of Science in Embedded Computing Systems is jointly offered by the Institute of Communication, Information and Perception Technologies (TeCIP) of Sant’Anna School of Advanced Studies and the Department of Information Engineering of the University of Pisa. Read more
The Master of Science in Embedded Computing Systems is jointly offered by the Institute of Communication, Information and Perception Technologies (TeCIP) of Sant’Anna School of Advanced Studies and the Department of Information Engineering of the University of Pisa. It is aimed at providing the basic knowledge for approaching complex software design in embedded computing systems using the most modern design methodologies, and integrating specific knowledge in various research areas, including automatic control, signal acquisition and processing, real-time computing, sensors and actuators interfacing, software engineering, formal methods for software verification, distributed systems, computer architectures, and digital electronics.

The organization of teaching courses and laboratories will allow each student to achieve the most suitable and effective working environment. In order to achieve the described goals for high qualification and working environment, the maximum number of admitted students per year is 40.

People graduating in Embedded Computing Systems will have a deep knowledge in the following fields:
• real-time computing systems, scheduling algorithms and resource management;
• microprocessor, multiprocessor and multi-core architectures;
• distributed systems and sensor networks;
• paradigms, models and tools for software design.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X