• Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
University of Cambridge Featured Masters Courses
University College London Featured Masters Courses
Imperial College London Featured Masters Courses
University of London International Programmes Featured Masters Courses
"disease" AND "transmissi…×
0 miles

Masters Degrees (Disease Transmission)

We have 17 Masters Degrees (Disease Transmission)

  • "disease" AND "transmission" ×
  • clear all
Showing 1 to 15 of 17
Order by 
This programme is intended for those who wish to enhance their understanding of the role of microorganisms in animal health and disease, and provides an excellent grounding in molecular biology, immunology, epidemiology and microbiology. Read more

This programme is intended for those who wish to enhance their understanding of the role of microorganisms in animal health and disease, and provides an excellent grounding in molecular biology, immunology, epidemiology and microbiology.

This grounding leads into the study of the complex mechanisms of host/microbe interactions that are involved in the pathogenesis of specific animal diseases, and provides insights into diagnosis and interventions, such as vaccines, essential for disease control.

You will enhance your critical and analytical skills and gain hands-on experience in the diagnosis of veterinary diseases, such that you may identify problems, formulate hypotheses, design experiments, acquire and interpret data, and draw conclusions.

Programme structure

This programme is studied full-time over one academic year.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Who is the programme for?

This is a full or part-time programme, intended mainly for graduates, those already working in veterinary diagnostic/research laboratories and staff from other laboratories who want to enhance their understanding of the role of microorganisms in animal health and disease.

Pharmaceutical research personnel, policymakers, veterinarians, public health personnel and environmental biologists will also benefit.

Part-time and short course study

Most modules are offered as standalone short courses. The fee structure for short courses is different to that for registered students, and details may be obtained via admissions enquiries, please refer to the contact details on this page.

The option to study the MSc on a part-time basis is only available following successful completion of three modules as stand-alone/CPD. Please contact the for further information.

Programme partners

This Masters programme is delivered by a consortium comprising the University of Surrey and two world class veterinary microbiology institutions: the BBSRC funded Pirbright Institute (PI), and the Government sponsored Animal & Plant Health Agency (APHA).

The Veterinary Medicines Directorate (VMD) and Public Health England (PHE) also contribute to the programme.

Visits

You will have the unique opportunity to gain hands-on experience in the diagnosis of important veterinary diseases within the world reference laboratories of the APHA and Pirbright Institute (PI).

There will also be an opportunity to visit Public Health England (PHE) to gain a detailed knowledge of how zoonotic diseases outbreaks are investigated, and to visit the Veterinary Medicines Directorate (VMD), a livestock abattoir and an intensive livestock farm.

Colleagues from the CEFAS laboratory will also contribute to the programme, and further research training will be provided during your practical research project.

Educational aims of the programme

This is a one year full-time programme aimed at preparing graduates to work in a range of fields in which a detailed understanding of veterinary microbiology is a valuable asset.

These fields include research, commerce, government and policy, reference laboratory and diagnostic work, epidemiology and disease mapping, veterinary science, farming especially animal production, wild and zoo animal conservation and education.

As such, it is intended that graduates will achieve the highest levels of professional understanding of veterinary microbiology within a range of contexts.

The programme combines the study of the theoretical foundations of, and scholarly approaches to, understanding the application and various practices of veterinary microbiology within the contexts described above along with the development of practical and research skills.

The main aims are to enable students to:

  • Acquire sound knowledge of the major principles of veterinary microbiology
  • Develop the skills to perform relevant interpretation and evaluation of data
  • Apply those acquired skills in practice through research
  • To utilise acquired knowledge and evaluative skills to communicate successfully with stakeholders

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas.

The learning outcomes have been aligned with the descriptor for qualification at level 7 given in the Framework for Higher Education Qualifications (FHEQ) produced by the Quality Assurance Agency (QAA) for Higher Education.

Knowledge and understanding

Following completion of the programme, students should display knowledge of:

  • The main principles of current veterinary microbiology
  • The methods and approaches used for the molecular characterisation, and diagnosis of disease agents
  • The main principles of infectious diseases epidemiology
  • The analysis of disease and disease carriage that impact on the development and application of control measures to combat diseases
  • Modes of control of infectious diseases
  • Modes of transmission
  • The various aspects of host pathology and immune responses to disease agents
  • Analytical skills to allow interpretation of data and formulation of conclusions

Intellectual/cognitive skills

Following completion of the programme, students should be able to:

  • Critically appraise scholarly and professional writing on a wide range of subjects pertaining to the various aspects of veterinary microbiology
  • Critically analyse experimental data to enable the formulation of hypotheses
  • Design relevant experiments to test formulated hypotheses
  • Efficiently analyse new developments in technology and critically assess their utilisation to answer existing and new problems

Professional practical skills

Following completion of the programme, students should be able to:

  • Plan and execute an experiment/investigation, act autonomously and demonstrate originality
  • Analyse numerical data using appropriate computer tools including specialist computer packages
  • Communicate experiments at a project level, including report writing
  • Perform specific specialised experimental skills

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This course provides core training in the theoretical and practical aspects of medical parasitology, covering the protozoan and metazoan parasites of humans and the vectors which transmit them. Read more
This course provides core training in the theoretical and practical aspects of medical parasitology, covering the protozoan and metazoan parasites of humans and the vectors which transmit them. Students will gain specialised skills to enable them to pursue a career in research, control or teaching related to medical parasitology.

Graduates enter a range of global health fields ranging from diagnostics through to applied basic research and operational control to higher degree studies and academic/teaching-related positions.

The Patrick Buxton Memorial Medal and Prize is awarded to the best student of the year. Founded by relatives of Patrick Alfred Buxton, Professor in Entomology, who died in 1955.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mp_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmp.html

Additional Requirements

An additional preferred requirement for the MSc Parasitology is an interest in parasites of public health importance and disease transmission. Any student who does not meet the minimum entry requirement above but who has relevant professional experience may still be eligible for admission. Qualifications and experience will be assessed from the application.

Objectives

By the end of this course students should be able to demonstrate:

- detailed knowledge and understanding of the biology, life cycles, pathogenesis, and diagnosis of parasitic infections in humans and their relevance for human health and control

- detailed knowledge and understanding of the biology and strategies for control of the vectors and intermediate hosts of human parasites

- carry out practical laboratory identification of parasite stages both free and in tissues and diagnose infections

- specialised skills in: advanced diagnostic, molecular, immunological, genetic, chemotherapeutic, ecological and/or control aspects of the subject

- the ability to design a laboratory or field-based research project, and apply relevant research skills

- prepare a written report including a critical literature review of relevant scientific publications, and show competence in communicating scientific findings

Structure

Term 1:
There is a two-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and an introduction to major groups of pathogens, followed by three compulsory core modules:

- Parasitology & Entomology
- Analysis & Design of Research Studies
- Critical Skills for Tropical Medicine

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). Some modules can be taken only after consultation with the Course Director.

*Recommended modules

- Slot 1:
Epidemiology & Control of Malaria*
Molecular Biology & Recombinant DNA Techniques*
Advanced Immunology 1
Designing Disease Control Programmes in Developing Countries

- Slot 2:
Advanced Diagnostic Parasitology*
Advanced Immunology 2
Design & Analysis of Epidemiological Studies
Statistical Methods in Epidemiology

- Slot 3:
Vector Sampling, Identification & Incrimination*
Advanced Training in Molecular Biology
Spatial Epidemiology in Public Health
Tropical Environmental Health

- Slot 4:
Immunology of Parasitic Infection: Principles*
Molecular Biology Research Progress & Applications*
Vector Biology & Vector Parasite Interactions*
Epidemiology & Control of Communicable Diseases
Genetic Epidemiology

- Slot 5 :
Antimicrobial Chemotherapy*
Integrated Vector Management*
Molecular Cell Biology & Infection*
AIDS

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmpa.html

Residential Field Trip

There is a compulsory one week field course, after the Term 3 examinations, on vector and parasite sampling and identification methods.The cost of £630 is included in the field trip fee.

Project Report

During the summer months (July - August), students complete a research project, for submission by early September. This may be based on a critical review of an approved topic, analysis of a collection of results or a laboratory study.Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmp.html#sixth

Read less
Study for a prestigious MSc Veterinary Epidemiology and Public Health. by distance learning. This programme provides animal health specialists, epidemiologists and public health specialists with an understanding of the conceptual basis of veterinary epidemiology and public health. Read more

Study for a prestigious MSc Veterinary Epidemiology and Public Health

by distance learning

This programme provides animal health specialists, epidemiologists and public health specialists with an understanding of the conceptual basis of veterinary epidemiology and public health. Students learn economic concepts in animal health and production and develop statistical skills for epidemiological investigations and disease modelling.

Programme aims

Graduates of this programme will be able to:

- develop their skills in basic and advanced statistical methods in order to undertake epidemiological investigations and disease modelling

- understand the use of economic concepts in animal health and production

- challenge the perceptions of what constitutes safe food production and make an objective judgement of contemporary issues such as antibiotic resistance

- develop their own strategies for combating chronic farm animal diseases, control zoonotic diseases through surveillance and apply herd health programmes to maximise economic returns from animal production.

Prestige

The programme has been developed by academics at the Royal Veterinary College (RVC), the oldest and largest veterinary school in the UK and one of the leading veterinary research centres in Europe. In 1999, the RVC became the first UK veterinary school to be granted approval by the American Veterinary Medical Association. The RVC also provides support for the veterinary profession through its three referral hospitals, diagnostic services and continuing professional development courses.

Career progression

Graduates of the programme are employed in a variety of organizations, including the Department for Environment and Rural Affairs (Defra), University Veterinary faculties and international organisations including the FAO and World Health Organisation (WHO).

Comprehensive study materials and support

The support you receive includes:

- academic feedback on written assignments

- tutorial support concerning academic matters from RVC staff

- opportunities for local networking and mutual support from other students on the programme

- as all of the study materials you require are mailed to you, there is no requirement to purchase expensive textbooks or spend time trying to locate journals, which may not be available to you locally.

A student perspective

Our graduates find that the international recognition and prestige of their degree opens doors and creates opportunities in their careers.

Stuart Jaques chose to study for the MSc in Veterinary Epidemiology and Public Health. When he was appointed to the role of Chief Veterinary Officer to the Isle of Man Government, he became interested in the detail of disease transmission and control, and felt he required a deeper understanding of certain concepts.

"I’ve found my studies have fully reintegrated my knowledge; filling in certain gaps and enhancing my skill set substantially. Would I recommend distance learning? Absolutely." - Stuart Jaques, MSc in Veterinary Epidemiology and Public Health, Isle of Man

Contact us

If you have any questions, please contact our Student Advice Centre.



Read less
Veterinary epidemiology is a key component in a number of the global grand challenges relating to disease control, food security and climate change. Read more

Veterinary epidemiology is a key component in a number of the global grand challenges relating to disease control, food security and climate change. Consequently, there is a need to improve our ability to understand, predict and respond to patterns and dynamics of disease and to control outbreaks.

The R(D)SVS and SRUC partnership creates the greatest concentration of research power in veterinary and agricultural sciences in the UK. The MSc draws on this wealth of experience and research activity to provide scientific knowledge of the fundamental biological processes (e.g. behaviour, physiology, immunology, ecology) and environmental and farming management practices (e.g. husbandry, nutrition, livestock trade) driving disease transmission, persistence, prevalence and spread in livestock production systems. This enables in-depth understanding of complex environmental patterns of disease, which facilitates prediction of disease risk and control. This multidisciplinary systems approach will provide you with the skills to make significant contributions to tackling food security, climate change and disease control in your role as an animal health professional.

By the end of the programme you will not only have a detailed understanding of the biology driving disease persistence and prevalence, but also how the biology scales up from individuals to populations. You will understand how this interacts with agricultural management practices to determine the efficacy of disease control strategies and livestock production (i.e. interdisciplinary systems thinking and communication). Furthermore, the systems approach offers a way to frame disease challenges and problem solve disease risk at a range of scales (e.g. from veterinarians tackling specific outbreaks to the consequences of climate change on disease risk). To this end the programme provides training in methodological skills for the design, implementation, analysis, interpretation and communication of epidemiological studies, disease surveillance and disease control in animal populations and wider host communities.

Courses are delivered by active researchers presenting their own research, which is placed into context with global grand challenges. As such, you will be exposed to and taught skills appropriate for developing a research career.

Online learning

The programme will use the University’s award winning online learning environments, which includes video podcasts, web-based discussion forums and expert tuition.

Programme structure

The programme is delivered part-time by online learning over period of 3-6 years.

You may undertake the programme by intermittent study (flexible progression route), accruing credits within a time limit of:

  • 1 years for the Certificate (maximum period 2 years)
  • 2 years for the Diploma (maximum period 4 years)
  • 3 years for the MSc (maximum period of 6 years including a maximum period of 12 months from the start of your written reflective element to it being completed)

The programme is modular in structure, offering a flexible student-centred approach to the choice of courses studied; other than the three core courses required for the certificate, students may choose to study individual courses, to complete a sufficient number of credits to be awarded the:

  • Certificate (60 credits)
  • Diploma (120 credits)
  • MSc (180 credits)

Postgraduate Professional Development

Postgraduate Professional Development (PPD) is aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Masters, Postgraduate Diploma or Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on a Masters, Postgraduate Diploma or Postgraduate Certificate programme. Although PPD courses have various start dates throughout a year you may only start a Masters, Postgraduate Diploma or Postgraduate Certificate programme in the month of September. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Learning outcomes

  • Acquire knowledge about disease systems in livestock production environments and the interactions between the biological and livestock management processes driving disease dynamics.
  • Acquire specific skills to link individual farm environments and management practices to disease risk and production efficiency at farm and national scales.
  • Be able to interpret, be critical of and communicate scientific results and information in research.

Career opportunities

The courses and programme as a whole will provide:

  • general postgraduate training (e.g. for people in education, government, policy-making, agricultural and veterinary organisations) to enable promotion, further employment opportunities or personal fulfilment
  • general postgraduate training for people considering a career in research (e.g. a precursor to a PhD)
  • topic-specific postgraduate training (e.g. for veterinarians for continuing professional development) to enable promotion, further employment opportunities or personal fulfilment


Read less
About the Course. This 1 year course leads to an internationally recognised MRes qualification that provides training in transferable skills essential for those wishing to pursue post-graduate PhD, commercial or industrial research opportunities. Read more

About the Course

This 1 year course leads to an internationally recognised MRes qualification that provides training in transferable skills essential for those wishing to pursue post-graduate PhD, commercial or industrial research opportunities. Focusing on parasites and the diseases that they cause, you will gain expert knowledge in the detection, prevention and control of protozoan as well as metazoan animal and human pathogens. You will be trained in specialisms including biochemistry, molecular biology, whole organism/cell culture and manipulation, bioinformatics, proteomics, transcriptomics, genomics, functional genomics, drug discovery, vaccinology, biomarker discovery, genetics/epigenetics, epidemiology, vector/intermediate host biology and ecology.

At the end of the course you will understand how interdisciplinary methods can be brought to bear on controlling some of the deadliest infectious organisms on the planet and be ready to pursue your career in parasitology.

Why study Parasite Control at Aberystwyth?

Parasitism is the most successful lifestyle on the planet and leads to diverse and highly-damaging infectious diseases of agricultural, veterinary and biomedical significance. Therefore, a greater understanding of the parasite species responsible for these conditions and the means by which they are controlled remain a priority for scientists, health care professionals and farmers in this 21st Century. For example, it is recognised that parasitic worms infect greater than 1 billion people worldwide with some species causing between $700 million-$1 billion USDs in economic losses per annum. The development of novel, creative and integrated control strategies are urgently needed to combat the growing threat of changing parasite distributions due to climate change, human migration, animal transportation and farming practices. This MRes course will provide you with a range of vocational skills and prepare you for professional employment or further post-graduate PhD studies in Parasitology or related disciplines (i.e. infectious diseases, public health, epidemiology, etc.).

IBERS continuously maintained an excellent internationally-recognised reputation in parasitological research since the 1930s. One of the British Society of Parasitology’s founding members and two of its past presidents were IBERS Parasitologists. More recently, IBERS appointments and University investments have increased critical mass in Parasitology leading to the formation of the Parasitology and Epidemiology Research Group (in 2007) as well as the Barrett Centre for Helminth Control (in 2016). The creation of both research groupings has facilitated greater interactions with animal health and pharmaceutical/biotech companies as well as increased research grant capture derived from government, research council and charitable funding bodies.

Why study at Aberystwyth?

With 360 members of staff (principle investigators, technicians and post-doctoral fellows), 1350 undergraduate students and more than 150 postgraduate students, IBERS is the largest research and teaching institute within Aberystwyth University. Excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey (NSS 2017) and being awarded University of the Year for Teaching Quality by the Times and Sunday Times Good University Guide 2018. Employability data from the Recent Destinations of Leavers from Higher Education (DLHE, 2017) shows that 97% of IBERS graduates were in work or further study six months after leaving Aberystwyth University. The economic and social impact of IBERS research was recognised in 2011 when IBERS won the national BBSRC Excellence with Impact Award.  

Course Details

An aspect of this course that uniquely positions itself from other Masters level Parasitology courses in the UK is the 12-month dissertation project (Semesters 1-3). Working under the supervision of active researchers in the field, you will collaboratively develop a research project on diverse topics such as (but not inclusive) intermediate host and vector control, anthelmintic drug and target discovery, biomarker identification, visual cue selection for arthropod vectors, mathematical modelling of disease transmission, host responses to parasite biomolecules, parasite and host population studies and functional genomics manipulation of parasites. A list of available projects and supervisors will be advertised closer to the start of each academic year. Your supervisor/supervisory team will mentor you in hypothesis and discovery driven experimental design, provide training in lab-based and computer-assisted methodologies, arrange instruction in analytical techniques, aid in the trouble-shooting of experimental challenges, assist you in the interpretation of results and prepare you for successful oral presentations. You will also be guided in how to most efficiently communicate your results during the dissertation write-up. It is expected that during this year long research project you will become an expert in your topic.   

Please refer to our couse web pages for full details of course modules.

Employability

Careers

This course is an ideal training programme for those wishing to:

-         Pursue PhD studies;

-         Work in industry, charities or funding bodies;

-         Improve animal and human health;

-         Influence governmental policies.

 

Skills

Throughout this course you will:

·        Develop strong data collection/analysis, fieldwork and laboratory skills;

·        Enhance your scientific communication and team work skills;

·        Write for a range of audiences including academics and the wider public;

·        Enhance your analytical abilities, critical thinking and problem solving skills;

·        Develop study and research skills;

·        Direct and sustain a self-initiated programme of study underpinned by good time management skills;

·        Work effectively and independently;

·        Hone your project management skills to deliver a demanding combination of research, analysis, communication and presentation

 

How will I learn?

During the one year of full-time study students complete 40 60 credits of core modules centred on parasitology, parasite control and a further 20 credits focusing on laboratory techniques & research methodologies. The taught modules are assessed by scientific writing assignments (such as reports, critical reviews, essays and journalistic articles), presentations, contribution to group discussions in seminars and online assignments. The core element of this course is the 120 credit MRes Dissertation, during which students will have supervision meetings to give them guidance before undertaking a prolonged period of experimental work/data gathering, research, and writing up of the dissertation. All postgraduate students in IBERS also have a named personal tutor, with whom they can discuss personal or domestic concerns that impact on their studies. Subsequent successful submission of your dissertation leads to the award of an MRes.



Read less
This is a multidisciplinary programme that bridges the fields of epidemiology, laboratory sciences and public health. It includes a strong practical component and the opportunity to undertake a research project overseas. Read more
This is a multidisciplinary programme that bridges the fields of epidemiology, laboratory sciences and public health. It includes a strong practical component and the opportunity to undertake a research project overseas. The course will train students in all aspects of the control of infectious diseases and prepare them for a career in a range of organisations.

This course will equip students with specialised skills that will facilitate a career in the control of infectious diseases as staff of health ministries, health departments, national or international disease control agencies, aid organisations or universities.

The majority of the research projects are performed overseas, with collaborating public health or research organisations and NGOs. Students are encouraged to take advantage of this overseas opportunity, which is crucial to the nature of the course.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/cid_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/masters/intercalating/index.html)

Visit the website http://www.lshtm.ac.uk/study/masters/mscid.html

Objectives

By the end of this course students should be able to:

- investigate the transmission of endemic and epidemic infections

- select appropriate methods of control

- design, implement and evaluate co-ordinated control methods

- assess constraints of local public health delivery systems

- manage available resources in the context of the control of infectious diseases

- focus their efforts on particular geographical regions or specific diseases

Structure

Term 1:

After orientation, students take two compulsory modules: Basic Statistics and Introduction to Disease Agents & Their Control, which focus on the life cycle and characteristics of infectious disease agents according to their principal transmission routes; the principal intervention strategies used to combat infectious diseases; and examples of successes, partial successes and failures in intervention programmes against infectious diseases.

In addition, students take one of the following module combinations:

- Basic Epidemiology; Health Economics; and Health Policy, Process and Power
- Extended Epidemiology and Health Economics or Health Policy, Process and Power

An interdisciplinary approach is emphasised which takes account of the social, political and economic context in which health systems operate.

Terms 2 and 3:

Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules which may be taken only after consultation with the Course Directors.

*Recommended modules

- Slot 1:

Designing Disease Control Programmes in Developing Countries*
Epidemiology & Control of Malaria*
Health Care Evaluation*
Childhood Eye Disease and Ocular Infections
Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries
Clinical Virology
Economic Evaluation
Health Promotion Approaches and Methods
Maternal & Child Nutrition
Research Design & Analysis
Study Design: Writing a Study Proposal.

- Slot 2:

Clinical Bacteriology 1*
Conflict and Health*
Design & Analysis of Epidemiological Studies*
Population, Poverty and Environment*
Statistical Methods in Epidemiology*
Advanced Diagnostic Parasitology
Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine
Health Systems
Qualitative Methodologies

- Slot 3:

Applied Communicable Disease Control*
Control of Sexually Transmitted Infections*
Current Issues in Safe Motherhood & Perinatal Health*
Economic Analysis for Health Policy*
Medical Anthropology & Public Health*
Spatial Epidemiology in Public Health*
Tropical Environmental Health*
Vector Sampling, Identification & Incrimination*
Basic Parasitology
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries
Modelling & the Dynamics of Infectious Diseases
Nutrition in Emergencies
Organisational Management
Social Epidemiology

- Slot 4:

Clinical Bacteriology 2*
Epidemiology & Control of Communicable Diseases*
Analytical Models for Decision Making
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine
Ethics, Public Health & Human Rights
Globalisation & Health; Sexual Health
Vector Biology & Parasite Infections

- Slot 5:

AIDS*
Applying Public Health Principles in Developing Countries*
Integrated Vector Management*
Advanced Statistical Methods in Epidemiology
Antimicrobial Chemotherapy
Integrating Module: Health Promotion
Integrating Module: Health Services Management
Mycology
Nutrition Programme Planning
Principles and Practice of Public Health

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tcid.html

Project Report:
During the summer months (July - August), students complete a research project studying aspects of an intervention programme, for submission by early September. If appropriate, this may take the form of an optional period in a relevant overseas location. Most students on this course undertake projects overseas. Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mscid.html#sixth

Read less
IDOH (Infectious Diseases and One Health) is a partnership of some of Europe's leading research-intensive universities in the field of infectious diseases and the "one health" concept. Read more

IDOH (Infectious Diseases and One Health) is a partnership of some of Europe's leading research-intensive universities in the field of infectious diseases and the "one health" concept. The three founding partners are Université de Tours, Universitat Autònoma de Barcelona and the University of Edinburgh.

Infectious diseases represent a major threat to public health. Fighting emerging, or re-emerging, infections requires that both animal and human health be treated as "One Health". This will enhance biomedical research discoveries, to the great benefit of both humans and animals.

The objective of the programme is to provide students from all over the world with education in One Health concepts, host pathogen interactions, immunology, zoonotic and emerging infections, translational animal models and management of infectious diseases.

This programme will allow students to study at three of Europe's leading research-intensive universities in the field of infectious diseases and complete an internships at one of the three academic partners or any of 35 associated partners (academic and industrial) located worldwide.

Programme structure

The programme will take place over two academic years and students will spend a semester at each of the three academic partners before completing a fourth semester as an internship either at one of the academic partners or one of the 35 associated partners (academic and industrial) located worldwide.

Year 1

Semester 1: Université de Tours

  • Introductory course in Immunology
  • Public Health
  • Immunology and Immunity of Mucosal Surfaces
  • Host Pathogen Interactions
  • Virulence and Resistance
  • Biodrugs, Bioinformatics and Development
  • French Language

Semester 2: Universitat Autònoma de Barcelona

  • One Health and Major and Endemic Zoonoses
  • One Health and Emergent Diseases in Special Situations
  • One Health in Food Safety and Security
  • Biosafety and Biosecurity
  • Spanish Language

Year 2

Semester 3: University of Edinburgh

  • Comparative Animal Models for Infectious Diseases and One Health
  • Laboratory Tools for Infectious Diseases and One Health
  • Analysis of Biological Data
  • Principles of Animal Welfare and Bioethics

Semester 4:

  • Internship leading to Dissertation in Infectious Diseases and One Health

Summer school

There is also a week long summer school between semesters 2 and 3 focused on generic transferable skills.

Learning outcomes

The programme will provide core competencies in skills identified as being required by industry and academia. Therefore, the purpose of this programme is to:

  • Provide students with a detailed knowledge and understanding of infectious diseases, immunology and modes of transmission.
  • Provide students with practical experience in a range of animal science techniques.
  • Develop an increased understanding and awareness of the application of scientific principles to the study of infectious and non-infectious causes of disease in animals and humans.
  • Develop the ability to apply scientific knowledge and technical skills in research.
  • Establish the ability to utilise effective and modern methods for interpreting, analysing and describing scientific data.
  • Enhance the ability to communicate, in writing and verbally, scientific results and information in research.
  • Ensure an understanding of the principles of “One Health, One Biology, One Medicine”, to enable the undertaking of independent research.

Throughout the programme, lectures, tutorials, interactive sessions, the “flipped classroom” approach and practicals will be the main teaching format, with the balance varying depending on the partner institution. The small class size allows for extensive participation and interaction among students and between students and academics.

Assessment items reflect the practice of science and are integrated into the course, for example with students presenting the results of a literature review to the class (peer teaching). Concepts from lectures are developed in laboratory sessions and through assessment items. Students are encouraged to question the validity of information provided and critically appraise information sourced through the literature and other resources.

Independent learning is encouraged throughout the programme, particularly during the research project, but also during preparation of assessment items and classroom work. Group work and cooperation is encouraged and enhances the learning process. Formal class contact is supported by regular meetings with course organisers and tutors. A feature of the University of Edinburgh component of the programme is the intensive hands on approach to learning. Students will participate in a wide range of laboratory activities both at The Royal (Dick) School of Veterinary Studies and the Roslin Institute.

Career opportunities

On completion of the degree, graduates will have a wide range of skills in the area of infectious disease biology, interactions between disease, environment and host, modern animal science and laboratory techniques.

You will also have obtained valuable generic skills in producing and presenting scientific material, communicating with people from a wide range of geographies and cultures and hypothesis development and testing. This will give you a unique background for progressing to further study (PhD or professional qualifications) or going straight into employment.

You could work in developing countries where the burden of infectious disease on both humans and livestock is significant, and thus will help improve food sustainability and the transition from poverty in these countries. In developed countries infectious diseases also cause major losses in productivity of humans and animals, and this will increase as globalisation increases. Depending on your initial background (medical, veterinary, scientific, therapeutic) graduates will find employment that exploits their new knowledge to reduce the impact of infectious disease



Read less
Livestock are vital to the lives of millions of people, but endemic and epidemic diseases that affect livestock limit productivity and exacerbate poverty. Read more

Livestock are vital to the lives of millions of people, but endemic and epidemic diseases that affect livestock limit productivity and exacerbate poverty.

The diseases that can be transmitted between animals and people also threaten the health of livestock keepers, their families and their communities. In many developing regions farmers and animal health workers are often ill equipped to deal with this risk.

This programme draws together expertise from across the University to deliver first-class teaching and research to tackle these issues.

Building on a solid foundation of biological, immunological, pathological and epidemiological principles, this online MSc will equip you with the skills needed to identify, control and manage animal diseases and the expertise to tackle the international animal health challenges of the 21st Century.

This programme is affiliated with the University's Global Health Academy.

Online learning

Our online learning technology is fully interactive, award-winning and enables you to communicate with our highly qualified teaching staff from the comfort of your own home or workplace.

Our online students not only have access to Edinburgh’s excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.

Programme structure

Students may study to certificate, diploma or masters level.

Year 1: certificate

  • Applied Epidemiology and Surveillance
  • Host Responses to Infection
  • Pathogen Strategies for Transmission and Survival

Year 2: diploma

You will undertake the following compulsory course:

  • Zoonotic disease

Choose one one of the following two courses:

  • Surveillance and control of transboundary diseases affecting international trade
  • An introduction to transboundary diseases and their impact on trade and wildlife populations

Then choose from the following electives (up to 60 credits):

  • Control of economically important parasites
  • Environmental and nutritional diseases of livestock of international importance
  • New developments in epidemiology and the control of vector borne disease
  • Veterinary vaccinology
  • Wildlife animal health and environment
  • Technology advances in veterinary diagnostics
  • Animal disease survey design and analysis
  • Project planning and decision support for animal disease control
  • Animal healthcare systems in the post-privatisation era
  • Introduction to health and production of aquatic species
  • Introduction to GIS and spatial data analysis
  • Advanced GIS and spatial epidemiology and modelling
  • An Introduction of Project Cycle Management
  • Globalisation and health
  • The Modern Zoo
  • The Use of Artificial Reproductive Technologies in Threatened Species
  • Pastoralism and herd health
  • Zoonotic diseases in a global setting
  • Socioeconomic Principles for One Health

Year 3: masters

For a masters, you will choose either to conduct a written reflective element of 10–15,000 words or to take Project Cycle Management and Funding Application Preparation.

Postgraduate Professional Development (PPD)

Postgraduate Professional Development (PPD) is aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Masters, Postgraduate Diploma or Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on a Masters, Postgraduate Diploma or Postgraduate Certificate programme. Although PPD courses have various start dates throughout a year you may only start a Masters, Postgraduate Diploma or Postgraduate Certificate programme in the month of September. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Please contact the programme team for more information about available courses and course start dates.

Career opportunities

This programme has been designed to enhance your career in animal management throughout the world with first-rate expertise and a highly regarded qualification.



Read less
Despite incredible advances in medicine, there is still plenty of work to be done in the 21st century to create healthier communities across the globe – and microbiologists are leading the way. Read more

Despite incredible advances in medicine, there is still plenty of work to be done in the 21st century to create healthier communities across the globe – and microbiologists are leading the way.

Tuberculosis and cholera still devastate populations around the world. New and deadly strains of influenza are appearing. Zika virus is spreading rapidly with warmer global temperatures – as are other parasitic diseases.

For almost a century, we’ve relied on vaccines and antibiotics to prevent and treat infectious disease. But as new pathogens emerge, and antimicrobial drug resistance spreads, innovative approaches are needed. The stakes for microbiologists are higher than ever.

GCU’s MSc Clinical Microbiology will give you the expertise you need to help conquer these challenges – building knowledge, advancing cures and contributing to the common good.

The curriculum takes a scientific approach to the field of clinical microbiology, keeping it career-focused with an emphasis on research and development.

  • Explore principles and practice of bacteriology, virology, parasitology and mycology
  • Examine the disease process: transmission of pathogens, diagnosis and treatment
  • Study the prevention of infectious disease

The programme brings together lectures, seminars and practical laboratory classes, ensuring you’ll acquire both cutting-edge theoretical knowledge and hands-on practical skills. You’ll keep pace with the latest advances in microbiology – including the big breakthroughs happening now in the top microbiology labs across the world.

Finally, you’ll undertake a laboratory-based research project with real-world impact, practising the skills required of a successful independent researcher in clinical microbiology.

What you will study

(Re)Emerging Infectious Disease; Microbial Pathogenicity; Medical Microbiology; Skills for Professional Practice for Biosciences; Applied Molecular Microbiology; Microbial Genetics; Case Studies in Infectious Diseases; and Research Project.

Graduate prospects

Through GCU’s MSc Clinical Microbiology, you will acquire the skills necessary for success in this highly competitive and important field. 

With an understanding of this fast-changing sector and in-demand lab experience, our graduates make competitive candidates for jobs in health, medicine and life sciences, and in university and industry research departments. You’ll also be well prepared to pursue further study at the PhD level.



Read less
Research profile. The Neurobiology Division conducts research in the fields of neurobiology and neuropathology. We investigate mechanisms that regulate normal brain function as well as the causes and consequences of dysfunction during ageing and in acute or chronic neurodegenerative disease. Read more

Research profile

The Neurobiology Division conducts research in the fields of neurobiology and neuropathology. We investigate mechanisms that regulate normal brain function as well as the causes and consequences of dysfunction during ageing and in acute or chronic neurodegenerative disease.

The division has an excellent track-record in the supervision and training of postgraduate students by staff highly experienced in teaching and research. It has 13 Group Leaders and 1 career track fellow who supervise more than 10 postgraduate students.

Why our work is important

Some of our current research focuses on:

  • identifying new TSE strains and their zoonotic potential, examining routes of transmission and the genetics of host susceptibility to disease
  • characterising the pathways and cells involved in the uptake and transport of TSE agents to the brain using rodent models and our natural scrapie sheep flock
  • understanding mechanisms of neurodegeneration associated with both chronic and acute neurodegenerative disease using unique disease models
  • understanding the long-term consequences of adverse experiences in early life on future health
  • identifying novel mechanisms regulating homeostasis and responses to stress in neuronal networks

In addressing these fundamental questions we contribute to the improvement of both animal and human health, livestock productivity and welfare.

Students will be able to take advantage of our multidisciplinary tools including proteomics, bio-imaging, computer-aided behavioural analysis, genetics, molecular biology, in vitro cell models, transgenic rodent models and natural diseases of large animals to dissect biological networks in the nervous and immune systems. The Roslin Institute is uniquely placed to transfer our experience of rodent models into livestock species such as sheep and pigs.

Training and support

Studentships are of 3 or 4 years duration and students will be expected to complete a novel piece of research which will advance our understanding of the field. To help them in this goal, students will be assigned a principal and assistant supervisor, both of whom will be active scientists at the Institute. Student progress is monitored in accordance with School Postgraduate (PG) regulations by a PhD thesis committee (which includes an independent external assessor and chair). There is also dedicated secretarial support to assist these committees and the students with regard to University and Institute matters.

All student matters are overseen by the Schools PG studies committee. The Roslin Institute also has a local PG committee and will provide advice and support to students when requested. An active staff:student liaison committee and a social committee, which is headed by our postgraduate liaison officer, provide additional support.

Students are expected to attend a number of generic training courses offered by the Transkills Programme of the University and to participate in regular seminars and laboratory progress meetings. All students will also be expected to present their data at national and international meetings throughout their period of study.

Facilities

In 2011 the Roslin Institute moved to a new state-of-the-art building on the University of Edinburgh's veterinary campus at Easter Bush. Our facilities include: rodent, bird and livestock animal units and associated lab areas; comprehensive bioinformatic and genomic capability; a range of bioimaging facilities; extensive molecular biology and cell biology labs; café and auditorium where we regularly host workshops and invited speakers.



Read less
Public health and biosecurity and disaster preparedness focuses on preventing the transmission of disease, alien species, and pests, as well the essentials of domestic and international disaster and refugee health. Read more

What is biosecurity and disaster preparedness?

Public health and biosecurity and disaster preparedness focuses on preventing the transmission of disease, alien species, and pests, as well the essentials of domestic and international disaster and refugee health.

Who is this course for?

This course is designed for health professionals with a suitable undergraduate degree or recognised professional qualification in a relevant discipline. It offers a broad range of electives enabling you to specialise in public health issues relevant to tropical Australia and its near neighbours.

Course learning outcomes

JCU graduates are committed to lifelong learning, intellectual development, and to the display of exemplary personal, professional and ethical standards. They have a sense of their place in the tropics and are charged with professional, community, and environmental responsibility. JCU graduates appreciate the need to embrace and be acquainted with the Aboriginal and Torres Strait Islander Peoples of Australia. They are committed to reconciliation, diversity and sustainability. They exhibit a willingness to lead and to contribute to the intellectual, environmental, cultural, economic and social challenges of regional, national, and international communities of the tropics.
Upon successful completion of the Master of Public Health, graduates will be able to:
*Devise appropriate strategies to detect, prevent and control communicable and non-communicable diseases ensuring safe and healthy environments for tropical, rural, remote and Indigenous communities
*Critically assess, analyse and communicate public health information relevant to tropical, rural, remote and Indigenous communities
*Communicate theoretical propositions, methodologies, conclusions and professional decisions through advanced literacy and numeracy skills to specialist and non-specialist audiences
*Critically reflect upon the socio-ecological nature of health promotion and its application in optimising the health and wellbeing of tropical, rural, remote and Indigenous communities
*Critically reflect upon and engage in professional public health practice based on ethical decision-making and an evidence based approach, including consideration of recent developments in the field
*Apply advanced human, project and organisational management skills within a public health and policy context to effect efficient and equitable gains in public health
*Apply knowledge of research principles and methods to plan and ethically execute a substantial research-based project, capstone experience and/or piece of scholarship.

Graduates with a MPH Health Promotion major will also be able to:
*Integrate and apply an advanced body of theoretical and technical knowledge in the discipline of public health, with depth in population health assessment and health promotion planning, implementation and evaluation.

Graduates with a MPH Biosecurity and Disaster Preparedness major will also be able to:
*Integrate and apply an advanced body of theoretical and technical knowledge in the discipline of public health, with depth in disaster health and humanitarian response

Graduates with an MPH Aeromedical Retrieval major will also be able to:
*Integrate and apply an advanced body of theoretical and technical knowledge in the discipline of public health, with depth in the epidemiology, history, physiological effects, and management of patients undergoing aeromedical retrieval in a range of aircraft and settings including the impact of ethical, cultural, legal and financial issues

Graduate with a MPH Communicable Diseases major will also be able to:
*Integrate and apply an advanced body of theoretical and technical knowledge in the discipline of public health, with depth in principles of communicable disease control.

Award title

MASTER OF PUBLIC HEALTH (MPH)

Entry requirements (Additional)

English band level 3a - the minimum English Language test scores you need are:
*IELTS – 7.0 (no component lower than 6.5), OR
*TOEFL – 577 (plus minimum Test of Written English score of 5.5), OR
*TOEFL (internet based) – 100 (minimum writing score of 23), OR
*Pearson (PTE Academic) - 72

If you meet the academic requirements for a course, but not the minimum English requirements, you will be given the opportunity to take an English program to improve your skills in addition to an offer to study a degree at JCU. The JCU degree offer will be conditional upon the student gaining a certain grade in their English program. This combination of courses is called a packaged offer.
JCU’s English language provider is Union Institute of Languages (UIL). UIL have teaching centres on both the Townsville and Cairns campuses.

Minimum English language proficiency requirements

Applicants of non-English speaking backgrounds must meet the English language proficiency requirements of Band 3a – Schedule II of the JCU Admissions Policy.

Why JCU?

James Cook University provides several programs unique to Australia. James Cook University has:
*The Anton Breinl Centre for Public Health and Tropical Medicine, which is one of the leading tropical research facilities in the world
*teaching staff awarded the Australian Learning Teaching Councils’ National Citation for Outstanding Contribution to Student Learning
*cutting-edge teaching laboratories and research facilities.

Application deadlines

*1st February for commencement in semester one (February)
*1st July for commencement in semester two (mid-year/July)

Read less
Biological anthropology is undergoing rapid and significant change in the 21st century. Biological anthropologists are developing broader interests beyond traditional themes in academic departments of anthropology, and finding new job opportunities in and outside of academia. Read more
Biological anthropology is undergoing rapid and significant change in the 21st century. Biological anthropologists are developing broader interests beyond traditional themes in academic departments of anthropology, and finding new job opportunities in and outside of academia. Biological anthropologists can be found in medical schools, schools of public health, many companies producing pharmaceuticals and dietary items, and at major government research organizations such as the Smithsonian Institution, the National Institutes of Health (NIH) and the Centers for Disease Control and Prevention (CDC). Biological anthropology draws its students from a wide variety of disciplines that include the natural sciences, social sciences and the humanities.

Biomedical anthropology is an emerging subdisciplinary area within biological anthropology. It represents the interface between biomedicine and the behavioral and social sciences that shape health status. As such, it does more than give lip service to integrating cross-disciplinary approaches. It represents an educational philosophy that has been recommended as part of an innovative graduate training initiative (1995 Reshaping the Graduate Education of Scientists and Engineers, National Academy Press) implemented by the National Science Foundation (NSF Announcement 98:96).

Biomedical anthropology emphasizes biomedical, biobehavioral, epidemiological and evolutionary approaches to understanding the transmission and dissemination of disease, the cellular and molecular mechanisms of pathogenesis, and the dynamic interaction of biological and sociocultural factors that shape health outcomes.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
Learn from the best. When you study the Master of Veterinary Studies (Public Health) you will be learning from a world-leading group of researchers and teachers, internationally- recognised for their contribution to progress in the areas of One Health and epidemiology. Read more

Learn from the best

When you study the Master of Veterinary Studies (Public Health) you will be learning from a world-leading group of researchers and teachers, internationally- recognised for their contribution to progress in the areas of One Health and epidemiology.

Find out more about the Master of Veterinary Studies parent structure.

You may be in a government position and needing to know more about disease surveillance and/or food safety. Or you may come from a veterinary background and be interested in learning more about animal health and the transmission of pathogen to humans (zoonoses).

In the Master of Veterinary Studies (Veterinary Public Health) you will learn from our world-leading experts how to help create solutions to reduce the impact of animal pathogens on human health, including the prevention and control of food and water borne pathogens.

Focus on food, water and disease

The Master of Veterinary Studies (Veterinary Public Health) is a research-focused qualification. It has a focus on issues around food safety, water quality and zoonotic diseases - issues that have a crossover between animal and human health.

Internationally-relevant research

Massey University is internationally-renowned for its expertise in this area. We have a unique strength in veterinary public health, both in our research experience in epidemiology and in our on-the-ground experience in implementing preventative programmes in Central Asia. You will be able to work with and learn from four groups that are actively working on different aspects of research and training:

  • mEpiLab
  • The EpiCentre
  • IDRec, our infectious diseases centre and
  • The One Health programme which is training people in Asia around epidemiology issues.

Global recognition

The mEpiLab and EpiCentre are both OIE (World Assembly of the World Organisation for Animal Health) collaborating centres – the only ones in Australasia.

Massey University’s veterinary programme is ranked in the top 50 universities worldwide by both the Quacquarelli Symonds (QS) ranking and ShanghaiRanking's Global Ranking of Academic Subjects.

Multi-disciplinary expertise

The area of public health crosses over into many other scientific disciplines. You will able to take advantage of Massey’s expertise and specialised equipment in relevant areas such as microbiology, molecular biology, mathematics, genomics and other areas.

Sought-after by employers

Massey University’s reputation in this area will mean your degree will be viewed favourably by employers, both within New Zealand and internationally.

What do you want to do?

The Master of Veterinary Studies is a 240 credit qualification for students who want to pursue postgraduate study and research. This qualification is a partly-taught with a large, in-depth research project. You will learn and focus on highly-topical and globally-relevant issues.



Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mm_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmm.html

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology
- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:
Clinical Virology
Molecular Biology & Recombinant DNA Techniques

- Slot 2:
Clinical Bacteriology 1
Molecular Virology

- Slot 3:
Advanced Training in Molecular Biology
Basic Parasitology

- Slot 4:
Clincal Bacteriology 2
Molecular Biology Research Progress & Applications

- Slot 5:
Antimicrobial Chemotherapy
Molecular Cell Biology & Infection
Mycology
Pathogen Genomics

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmmi.html

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth

Read less
The molecular approach to studying biological systems has underpinned huge advances in knowledge and promises much for the future in the understanding and application of biological principles. Read more
The molecular approach to studying biological systems has underpinned huge advances in knowledge and promises much for the future in the understanding and application of biological principles. At Nottingham we are using molecular approaches to study a wide range of model as well as innovative biological systems. Currently projects are available in research groupings that are investigating eukaryotic gene expression and vertebrate embryogenesis, including aspects of the development of the nervous system, germ cells and stem cell maturation, and the behaviour of cellular systems with respect to the many interactions of macromolecules within cells and their membranes. In addition there are projects to study in microbes the systems responsible for maintaining genome integrity and securing accurate chromosome transmission in bacteria, archaea and yeast, as well as the basis of bacterial motility. There are also projects concerned with the biology of fungi in relation to their stress responses and to their interactions with their environment in general, as well as with the use of fungi as cell factories for the production of proteins and pharmaceuticals. Finally there are projects in research groups studying ion channels, receptor-mediated carcinogenesis and ecotoxicology that use natural and synthetic toxins to dissect the properties of signalling molecules in nervous and muscle tissues and employ cutting-edge techniques to understand the molecular mechanisms underlying the actions of toxins and the mechanisms of disease.

APPLICATION PROCEDURES
After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less

Show 10 15 30 per page



Cookie Policy    X