• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Nottingham in China Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Durham University Featured Masters Courses
University of Cambridge Featured Masters Courses
Swansea University Featured Masters Courses
"digital" AND "signal" AN…×
0 miles

Masters Degrees (Digital Signal Processing)

We have 134 Masters Degrees (Digital Signal Processing)

  • "digital" AND "signal" AND "processing" ×
  • clear all
Showing 1 to 15 of 134
Order by 
The MSc in Telecommunications with Digital Signal Processing aims to produce postgraduates with an advanced understanding of communication systems with special emphasis on the application of digital signal processing, which supports and pervades all modern communication systems. Read more
The MSc in Telecommunications with Digital Signal Processing aims to produce postgraduates with an advanced understanding of communication systems with special emphasis on the application of digital signal processing, which supports and pervades all modern communication systems. It makes extensive use of MATLAB and Simulink simulation tools to design digital filters that perform noise reduction, signal shaping and channel modelling. Adaptive filters, matched filters, reception and detection algorithms essential for digital communications are also modelled and tested.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Telecommunications Suite of Courses

The MSc Telecommunications has three distinct pathways:
-Digital Signal Processing
-Satellite and Broadband Communications
-Wireless Technologies

The demand for engineers in both wide-area and local-area communication systems is currently flourishing and is expected to grow for the foreseeable future. These three pathways offer both recent engineering graduates and industry-based engineers access to in-depth skills for closely related aspects of the communications discipline.

The course structure is quite flexible, affording industry-based students an opportunity to attend and accumulate module credits over an extended period of time. It also simultaneously serves the full-time student cohort which generally progresses through the MSc pathway in a single calendar year.

The MSc programmes are short course based and feature assessment through sequentially submitted result portfolios for the work packages, ie the ILPs. These are assigned immediately upon each short course module where the students are able to concentrate their study efforts just on the most recently-taught subject material. This greatly promotes efficient focused learning. The individual oral examination administered for each ILP furnishes valuable experience in oral defence, and frees students from written examination burdens.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Telecommunications MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
This full-time course covers the theoretical and practical aspects of communications theory and networks, fundamental control technology and digital signal processing (DSP). Read more

Why this course?

This full-time course covers the theoretical and practical aspects of communications theory and networks, fundamental control technology and digital signal processing (DSP). All these topics are critical to the information and communications age.

You’ll gain an advanced knowledge of the principles of the communications, control and DSP domains. You’ll also develop an understanding of the current and future developments and technologies within these three disciplines.

Along with full accreditation from the Institution for Engineering and Technology (IET), this course will enable you to capitalise on job opportunities across a range of sectors including:
- control
- telecommunications
- signal processing
- electronics
- IT user companies

EDF Energy, Siemens and Texas Instruments are just some of the multinationals where our graduates have secured positions.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/communicationscontroldigitalsignalprocessing/

You’ll study

You’ll take two semesters of compulsory and optional taught classes. These are followed by a three-month research project in your chosen area. Opportunities exist to do the project through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners including Selex ES, ScottishPower, SmarterGridSolutions. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

We’ve a wide range of excellent teaching spaces including interactive classrooms and brand new state-of-the-art laboratories equipped with the latest technologies including:
- White Space Communications Facility
- Hyperspectral Imaging Centre
- DG Smith Radio Frequency Laboratory

You’ll have access to our IT facilities including web based resources, wireless internet and free email. There’s an IT support team to help with all your needs.

Accreditation

The course is fully accredited by the professional body, the Institution for Engineering and Technology (IET).
This programme also fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme or equivalent.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development.
Xilinx, Texas Instruments, MathWorks, and Selex ES are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project consists of four elements, with individual criteria:
1. Interim report (10%, 1,500 to 3,000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

By concentrating on three distinct disciplines, this course enables you to capitalise on job opportunities across a range of sectors including control, telecommunications, signal processing, electronics and IT user companies. Globalisation of the communications, electronic & digital sectors means if graduates wish to work abroad, this course provides an ideal passport to anywhere in the world.
Almost all of our graduates secure jobs by the time they have completed their course. They have gained professional and technical occupations with international companies such as Samsung, MathsWorks, Nokia and Texas Instruments, as well as joining Wolfson Microelectronics, Seles ES and Linn Products in the UK.
Increasingly, graduates of this course also play leading roles in the power and renewable energy sectors, supporting data analytics, information transmission and security for organisations such as EDF Energy, Siemens & Petrofac Engineering.

Where are they now?

87.5% of our graduates are in work or further study.*

Job titles include:
- Graduate controls engineer
- Graduate software engineer
- Lecturer
- Plant controls graduate

Employers include:
- FTDI
- MacDonald Humfrey (Automation)
- Mehran University of Engineering
- Vestas

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12)

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
This course provides a thorough, methodical and wide-ranging education in digital signal and image processing. The Degree course offers both core taught modules and a substantial individual research project. Read more
This course provides a thorough, methodical and wide-ranging education in digital signal and image processing. The Degree course offers both core taught modules and a substantial individual research project.

Teaching and learning

The course contains both compulsory core taught modules and a substantial individual research project. Four taught modules are delivered in the first semester from September to January, and four taught modules are delivered in the second semester from February to June. Each taught unit is assessed by coursework or laboratory report, with written examinations in January and June.
You will conduct your dissertation project work during summer and submit your final dissertation in September.

Course unit details

Typical course units include:
-Signals and data capture engineering
-Digital image processing
-Digital Communications engineering
-Sensing and transduction
-Digital image engineering
-Tomography engineering and applications

Career opportunities

Digital signals are part of almost every aspect of 21st technology. If you take this course, you will become expert in this area and expose yourself to a world of opportunity respecting careers. You will, for example, be able to perform biomedical signal processing, audio/visual/multimedia engineering, digital waveform synthesis and medical, industrial and military image processing. You will be able to work in the fields of imaging, medical physics, aerospace, telecommunications systems development, mechatronics, robotics, remote sensing and nondestructive testing. Your skills will be highly sought after in organisations that develop systems for these and many related state-of the art disciplines.

This course will not only make you very employable; it will be a very fulfilling and enriching experience.

Read less
Modern information systems continue to transform and progress the ease with which information can be accessed across the globe and to underpin the digital society and economy. Read more
Modern information systems continue to transform and progress the ease with which information can be accessed across the globe and to underpin the digital society and economy.

They depend fundamentally on digital systems of communication, and this programme provides thorough coverage of the speciality to meet the high and increasing demand for digital communications engineers who can manage and develop the technologies of today’s data-driven lifestyle.

This programme is aimed at recent engineering, physics and computer science graduates and/or those with a number of years industry experience in the communications industry, who wish to acquire in-depth knowledge of this key specialism in order to progress their careers.

Core study areas include fundamentals of digital signal processing and information theory and coding, and a research project.

Optional study areas include communication networks, personal radio communications, communication channels, digital signal processing for software defined radio, multimedia over networks, mobile network technologies and intelligent signal processing.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/digital-communication-systems/

Programme modules

Compulsory Modules:
Semester 1
- Fundamentals of Digital Signal Processing
- Information Theory and Coding

Semester 2
- Research project
- Advanced individual project

Optional Modules:
Semester 1
- Communication Networks
- Personal Radio Communications
- Communication Channels

Semester 2
- Digital Signal Processing for Software Defined Radio
- Communication Network Security and e-Commerce
- Mobile Network Technologies
- Intelligent Signal Processing

How you will learn

The course is designed to give both deep understanding of the core technologies which underpin the industry and which are driving the latest advances in performance and capability. It allows you to develop your personal interests via a range of specialised optional modules. The individual research project is often undertaken as part of the School’s internationally respected research portfolio.

- Assessment
Examinations are held in January and May, with coursework and group work throughout the programme. The individual research project is assessed by written report and viva voce in September.

Facilities

Students on the programme have access to laboratories, industry standard software and hardware including equipment provided by Texas Instruments. There is a range of anechoic chambers including the largest microwave chamber at any UK university.

Careers and further study

Job opportunities include both senior technical and managerial activities in the fields of communications engineering including high speed digital design, communication systems engineering, software/firmware engineering, algorithm development and signal processing engineering.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/digital-communication-systems/

Read less
This course equips you with the theory and practice necessary to begin a career as a design or development engineer in communications and signal processing. Read more
This course equips you with the theory and practice necessary to begin a career as a design or development engineer in communications and signal processing. You will also develop transferable skills in research and knowledge acquisition.

Highlights of the course include:
-Unparalleled coverage of all major disciplines in communications engineering and signal analysis methodology
-The comprehensive treatment of advanced communication systems from theoretical and practical approaches
-Innovative educational techniques designed to equip you with practical knowledge
-Design skills and research methodologies

On completing the course, many students progress into employment as design and development engineers in telecommunications and digital signal processing areas or onto a higher research degree.

Our Communications and Signal Processing MSc derives its uniqueness from research strengths in communications and digital signal processing in the School of Electrical and Electronic Engineering. All course lecturers have a world-wide reputation for high quality research at the leading edge of the subject. They have many years of experience with industrial projects and in running short courses for industry.

Research projects cover a range of applications in areas of:
-Wireless networks
-Future generation communication technologies
-Error control coding
-Digital signal and image processing
-Biometrics identification and authentication

Accreditation

The course is accredited by the Institution of Engineering and Technology (IET) and Engineering Council, and therefore provides a good foundation for professional registration.

Facilities

The School of Electrical and Electronic Engineering has a suite of world-class research and teaching laboratories. These have the latest electronic instruments and computer aided design software for Digital Signal Processing (DSP) and Field-programmable gate array (FPGA) devices.

The facilities are among the most advanced of their type. This enables us to join the global race to develop ambient intelligence systems involving tiny sensors and computing devices embedded in much of what we use.

Read less
In our modern world, we are surrounded by systems and devices that have unseen computer software and hardware, such as digital televisions, MP3 players, smartphones and traffic lights. Read more
In our modern world, we are surrounded by systems and devices that have unseen computer software and hardware, such as digital televisions, MP3 players, smartphones and traffic lights. It takes a special type of person (typically working in a multidisciplinary team) to conceive, design and implement, and deploy these so-called embedded systems. This course is designed to set you ahead in the vibrant jobs market for consumer electronics, industrial equipment and the automotive industry.

Key features
-This course is accredited by BCS, The Chartered Institute for IT.
-Practical-based teaching will provide you the opportunity to put your hands on industry and/or research-standard software/hardware such as LabView, Compact Rio, Microchip's dsPIC DSC / MPLAB, Matlab.
-The course is taught by academics with expertise in computer science, electrical, mechanical and automotive engineering and by industrial visiting lecturers based in industry.
-You will have the opportunity to work on your project dissertation in one of our industrial contacts or alongside our research teams with internationally recognised expertise in digital image processing, computer vision, robotics, control systems, aerospace, medical telematics, wireless networks and multimedia communications.

What will you study?

The Embedded Systems MSc has been designed to give you a good background on digital signal processing (DSP), digital signal processors (eg the kind used in set top boxes, image processing, etc.), control systems and micro controllers. You can then choose a number of options to tailor your education mixing computing and engineering subjects. If you are vocationally inclined toward management, we also offer a version of the course that includes management modules.

The Embedded Systems course can be combined with Management Studies enabling you to develop business and management skills so you can work effectively with business managers to develop innovative and imaginative ways to exploit embedded systems for business advantage. This is a key skill for employability, particularly as organisations in the public, private and voluntary sectors grapple with austerity.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Embedded Systems MSc modules
-Digital Signal Processing
-Real-time Programming
-Control Systems with Embedded Implementation
-Project Dissertation
-One option module

Embedded Systems with Management Studies MSc modules
-Digital Signal Processing
-Real-time Programming
-Control Systems with Embedded Implementation
-Business in Practice
-Project Dissertation

Read less
Image and signal processing affect our daily lives in an ever-increasing way. Participate in designing this fascinating technology and shape IT‘s future function in business and society. Read more

Image and signal processing affect our daily lives in an ever-increasing way. Participate in designing this fascinating technology and shape IT‘s future function in business and society. Today‘s networked devices for image and signal generation provide a historically unmatched volume of raw data for automated decision making and control systems. The demands are high: How can we design new tools and software in order to best distil useful information? A lot of interesting research and development projects in the private and the public sectors are calling for your expertise. Alternatively, this degree will open career tracks in universities and research labs.

The international Joint Degree Master Programme„Applied Image and Signal Processing“ is conducted in English. The standard period of study is four semesters. The full program is worth a total of 120 points according to the ECTS (European Credit Transfer and Accumulation System). The academic degree of „Master of Science in Engineering“ (MSc) will be awarded upon successful completion of the programme.

From Theory to Practice (Curriculum)

The first semester is devoted to a concise study of the theoretical basis, the mathematical models and the algorithms used in image and signal processing. The second semester additionally focuses on geometric modelling, audio processing and digital media formats. Starting with the third semester, specific application scenarios are discussed and corresponding technologies are investigated in a number of elective courses.

Choose your Elective Courses

The elective courses comprise medical imaging, platform specific signal processing, data science, biometric systems, media security, computational geometry and machine learning.

Apply your Scientific Knowledge

In the third semester, students also start research on their master thesis and acquire profound IT-project management skills. The fourth semester is dedicated to the completion of the master thesis. An accompanying master seminar provides a forum for presenting and defending one‘s approach to a solution and the results obtained, i.e., for scientific discourse with faculty and peers.

Modules & Competences 

This Joint Degree Master Programme is designed to provide students with an in-depth professional and scientific training. Based on appropriate prior bachelor studies, this programme offers a thorough technical training in conjunction with research-driven teaching. It will make the participants familiar with introductory and advanced-level topics in the fields of image and signal processing, their formal and methodical basics, and with diverse fields of application. The sound knowledge and skills acquired in this programme qualify the alumni for diverse practical challenges in their professional work and empower them to contribute to future innovations in image and signal processing. A master thesis serves as a documentary proof of the student‘s ability to tackle scientific problems successfully on his or her own and to come up with a result that is correct with regards to contents and methodology. Furthermore the publication of Master Thesis is intended. Thus, this programme also paves the road to subsequent work in science and technology.



Read less
The MSc in Digital Signal and Image Processing has been developed to deliver qualified engineers of the highest standard into the emerging field of digital signal and image processing who are capable of contributing significantly to this increased demand for both real-time and off-line systems operating over a range of mobile, embedded and workstation platforms. Read more
The MSc in Digital Signal and Image Processing has been developed to deliver qualified engineers of the highest standard into the emerging field of digital signal and image processing who are capable of contributing significantly to this increased demand for both real-time and off-line systems operating over a range of mobile, embedded and workstation platforms. The DSIP option of the MSc in Computational and Software Techniques in Engineering aims to develop your skill-base for the rapidly expanding engineering IT industry sector, not only in the UK but all over the world. Graduates in this option have the opportunity to pursue a wide range of careers embracing telecommunications, the automotive industry, medical imaging, software houses and industrial research where demand for skills is high.

Read less
Research profile. The Institute for Digital Communications (IDCOM) is the UK's leading research institute in signal processing and communications and is home to the Li-Fi research and development centre. Read more

Research profile

The Institute for Digital Communications (IDCOM) is the UK's leading research institute in signal processing and communications and is home to the Li-Fi research and development centre. We have three major centres of activity; signal processing, communications systems and tomographic imaging. Our programme of research delivers world leading research in signal and image processing and communications from fundamental theoretical and algorithmic work through to its translation to specific audio, imaging, radar/sonar, and communications applications.

The Institute has excellent research facilities, including state-of-the-art computing systems and laboratories for agile tomography, and audio signal processing, as well as the Li-Fi research and development centre for visible light communications. Internationally recognised for our research on communications systems and signal processing, we offer research topics including: green radio; visible light communications; cognitive radio; compressive sensing; distributed sensor signal processing; and agile tomography.

IDCOM holds the only UK Research Council platform award in sensor signal processing, in collaboration with the joint research institute in signal and image processing and Heriot-Watt University, recognising our world leading research status.

Training and support

The development of transferable skills is a vital part of postgraduate training and a vibrant, interdisciplinary training programme is offered to all research students by the University’s Institute for Academic Development (IAD). The programme concentrates on the professional development of postgraduates, providing courses directly linked to postgraduate study.

Courses run by the IAD are free and have been designed to be as flexible as possible so that you can tailor the content and timing to your own requirements.

Our researchers are strongly encouraged to present their research at conferences and in journal during the course of their PhD.

Every year, the Graduate School organises a Postgraduate Research Conference to showcase the research carried out by students across the Research Institutes

Our researchers are also encouraged and supported to attend transferable skills courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

Facilities

The Institute has excellent research facilities, including state-of-the-art computing systems and laboratories for usability engineering, audio signal processing and visible light communications.

Masters by Research

An MSc by Research is based on a research project tailored to a candidate’s interests. It lasts one year full time or two years part time. The project can be a shorter alternative to an MPhil or PhD, or a precursor to either – including the option of an MSc project expanding into MPhil or doctorate work as it evolves. It can also be a mechanism for industry to collaborate with the School.



Read less
Vision is the most useful sense we possess and as such accounts for about 30% of the sensing processing of the brain. Read more
Vision is the most useful sense we possess and as such accounts for about 30% of the sensing processing of the brain. The automation of visual processing (ie computer vision) has many applications in the modern world including medical imaging for better diagnosis, surveillance systems to improve security and safety, industrial and domestic robotics plus advanced interfaces for computer games, mobile phones and human-computer interfaces. The possibilities are only limited by our imagination.

Key features
-The unique combination of computer vision and embedded systems skills is highly desirable in state-of-the-art industrial applications.
-This course is accredited by BCS, The Chartered Institute for IT.
-You will have the opportunity to work on your project dissertation in the internationally recognised Digital Imaging Research Centre with groups on visual surveillance, human body motion, medical imaging and robotics and being involved in national and international projects or in collaboration with our industrial contacts.

What will you study?

The Embedded Systems (Computer Vision) pathway will equip you with the knowledge and skills required to specify and build computer vision embedded systems, choosing from different imaging devices and applying software that can process and understand images. You will study a range of option modules encompassing computing, engineering and digital media processing. It may also be possible for you to undertake a real-world project in an industrial placement or as part of high-quality research working alongside DIRC (Digital Imaging Research Centre) groups (eg visual surveillance, human body motion analysis, robotics, medical imaging).

The Embedded Systems (Computer Vision) MSc course can be combined with Management Studies enabling you to develop business and management skills so you can work effectively with business managers to develop innovative and imaginative ways to exploit computer vision and embedded systems for business advantage. This is a key skill for employability, particularly as organisations in the public, private and voluntary sectors grapple with austerity.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Embedded Systems (Computer Vision) MSc modules
-Digital Signal Processing
-Real-time Programming
-Artificial Vision Systems
-Project Dissertation
-One option module

Embedded Systems (Computer Vision) with Management Studies MSc modules
-Digital Signal Processing
-Real-time Programming
-Artificial Vision Systems
-Business in Practice
-Project Dissertation

Read less
In our modern world, we are surrounded by systems and devices that have unseen computer software and hardware, such as digital televisions, MP3 players, smartphones and traffic lights. Read more
In our modern world, we are surrounded by systems and devices that have unseen computer software and hardware, such as digital televisions, MP3 players, smartphones and traffic lights. It takes a special type of person (typically working in a multidisciplinary team) to conceive, design and implement, and deploy these so-called embedded systems. This course is designed to set you ahead in the vibrant jobs market for consumer electronics, industrial equipment and the automotive industry.

Key features
-This course is accredited by BCS, The Chartered Institute for IT.
-Practical-based teaching will provide you the opportunity to put your hands on industry and/or research-standard software/hardware such as LabView, Compact Rio, Microchip's dsPIC DSC / MPLAB, Matlab.
-The course is taught by academics with expertise in computer science, electrical, mechanical and automotive engineering and by industrial visiting lecturers based in industry.
-You will have the opportunity to work on your project dissertation in one of our industrial contacts or alongside our research teams with internationally recognised expertise in digital image processing, computer vision, robotics, control systems, aerospace, medical telematics, wireless networks and multimedia communications.

What will you study?

The Embedded Systems MSc has been designed to give you a good background on digital signal processing (DSP), digital signal processors (eg the kind used in set top boxes, image processing, etc.), control systems and micro controllers. You can then choose a number of options to tailor your education mixing computing and engineering subjects. If you are vocationally inclined toward management, we also offer a version of the course that includes management modules.

The Embedded Systems course can be combined with Management Studies enabling you to develop business and management skills so you can work effectively with business managers to develop innovative and imaginative ways to exploit embedded systems for business advantage. This is a key skill for employability, particularly as organisations in the public, private and voluntary sectors grapple with austerity.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Embedded Systems MSc modules
-Digital Signal Processing
-Real-time Programming
-Control Systems with Embedded Implementation
-Project Dissertation
-One option module

Read less
The Electronic Engineering with Management MSc combines the development of advanced electronic engineering skills with a study of modern management techniques and their application to engineering projects. Read more

The Electronic Engineering with Management MSc combines the development of advanced electronic engineering skills with a study of modern management techniques and their application to engineering projects. The course will prepare you for a management pathway in a related industry.

Key benefits

  • Located in central London, giving access to major libraries and leading scientific societies including the BCS Chartered Institute for IT, the Institution of Engineering and Technology and the Institution of Mechanical Engineers (IMechE).
  • Opportunities to focus on advanced digital signal processing and communication principles as well as management skills while studying theoretical and practical electronic engineering and management topics.
  • Frequent access to speakers of international repute through seminars and external lectures, enabling you to keep abreast of emerging knowledge in electronic engineering and related fields.
  • The Department of Informatics has areputation for delivering research-led teachingand project supervision from leading experts in their field.

Description

The Electronic Engineering with Management MSc course will prepare you for work in the industry at a relatively advanced level in electronic engineering or management roles. You will study Project Management, Fundamentals of Digital Signal Processing, and Topics on data and signal analysis as well as the Principles of Management. There are also opportunities to explore a broad range of optional modules, allowing you the freedom to develop your study pathway to reflect your interests. You will complete the course in one year, studying September to September and taking a combination of required and optional modules totalling 180 credits, including 60 credits that will come from an individual project of 15000 words.

Course purpose

To provide practical and theoretical knowledge of modern electronic engineering techniques sufficient to prepare students for careers in the field of electronic engineering on a managerial level.

Course format and assessment

Teaching

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

During your work on the Individual Project you will have regular meetings with your project supervisor, but you are expected to spend the majority of your time in self-study to complete the project work.

 Assessment

The primary method of assessment for this course is a combination of written examinations, essays, coursework and individual or group projects and oral presentations. The research project will be assessed through dissertation of around 10,000 words.

Career destinations

Graduates of this programme are excellently placed to progress into management or technical leadership positions in industry.



Read less
NOTE Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Electronic Engineering. Read more
NOTE Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Electronic Engineering. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success. Take a look at this alternative course here.

About this course:
The course provides coherent and up to date coverage of Electronic Engineering with modules in Microelectronic Systems, VLSI, Digital Signal Processing,Research Methods, Embedded Systems,Analogue and Digital Electronics and Telecommunications. The approach spans specification and design to realisation, with particular emphasis on the application of industry standard CAD tools and DSP devices to develop solutions to practical engineering problems.

Course content

The course consists of a taught programme followed by an individual project. The taught programme is based on eight modules. Normally these modules are taken over two semesters for the full time route. The individual project is then studied over a further semester to complete the Masters Award.

Core modules are:
-Research Methods & Project Management
-Photovoltaic Technology
-Digital Electronic Systems
-Digital Signal Processing
-MSc Project
-Embedded Real Time Systems
-Telecommunications

Option Modules are:
-Technical Paper Authoring
-Optical Fibre Communication Systems
-Control Systems
-Wireless Navigation Systems

Semester 1 runs from September to January and Semester 2 from February to June. Study of the MSc normally commences in September. The possibility of an optional industrial placement either between the taught programme and the individual project is also available which may involve working in another European country.

Employment opportunities

Future option for graduates include employment in local, national and international industries normally initially in Research and Development roles although many progress to management positions. Alternatively graduates may choose to pursue further academic qualifications and register for a PhD programme.

Read less
Audio engineering and the science behind it plays a major role in the delivery of music and sound, be that during gigs, conferences or in the recording studio. Read more
Audio engineering and the science behind it plays a major role in the delivery of music and sound, be that during gigs, conferences or in the recording studio.

Your course combines the study of acoustics, audio system design and software engineering, ensuring you gain a thorough understanding of all aspects of audio and the science behind it. It's our facilities that make us stand out from the crowd. They include a reverberation and anechoic chamber, a suite of high-quality professional music studios and the latest computer resources for software engineering.

You will study advanced audio engineering, including loud speaker design, interface and interactivity, theoretical acoustics, applied acoustics, advanced audio engineering and audio software engineering. You will learn digital signal processing, how to generate audio effects, how to use research on psychoacoustics, analogue modelled effects and music information retrieval. You will also examine the very latest research which is leading to better audio effects.

- Research Excellence Framework 2014: our University demonstrated strength in five emerging areas of research which it entered into the assessment for the first time, including in music, drama, dance and performing arts

Visit the website http://courses.leedsbeckett.ac.uk/audioengineering_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Whether you are a recent graduate or an audio professional wanting to move up the career ladder, your course combines so many areas of audio you will be able to tailor your studies to your individual interests and ambitions. This could be in live sound, designing venues for live sound, studio design, or as a sonic artist.

- Audio Designer
- Production Engineer
- Acoustic Consultant
- Live Sound Engineer

Careers advice:
Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You will have access to a phenomenal array of the latest equipment, including our reverberation chamber - in which you can move panels to control reverberation time and accurately create spaces - while our anechoic chamber will provide you with experience of measuring audio equipment.

Thanks to our strong links with live sound industries and audio plug-in development software companies you will hear from industry experts at guest lectures, while our tutors are some of the best acousticians around.

If you're an audio professional, we'll help you formalise your knowledge of acoustics and live sound - from setting up PA systems, sound checks and making modifications when the audience arrives, to improving your knowledge of what is happens to sound so you can build a system that gives an audience the best possible experience.

Core Modules

Acoustics
Develop your expertise in the application of acoustic theory and measurement techniques, and develop skills in communicating their findings in a professional manner.

Advanced Audio Engineering
Explore the technical considerations and challenges behind capturing, processing, recording and reproducing audio signals.

Audio Software Engineering
Study the role that software design and engineering plays in the professional audio industries. You will investigate digital signal processing techniques used for the analysis and manipulation of sound in the production of your own audio software.

Research Practice
Develop your awareness of the methods and skills required in order to carry out successful masters level research.

Final Individual Project
Combine your previous learning into a significant piece of work, the nature of which is determined by you. You will need to reflect and critically evaluate the methods you use.

Interfaces & Interactivity
You will create interactive (or reactive) musical or artistic systems, learning how to integrate control technologies in practical projects, and develop original systems for creating and manipulating sound or music.

Negotiated Skills Development
We will provide you with the opportunity to develop high-level skills in your particular field of study, with the aim of enhancing both your knowledge and employability.

Collaborative Practice
An opportunity to work in a collaborative environment, developing creative and technical work in small groups. We will provide you with guidance on group management, communication, creativity and inclusivity.

Michael Ward

Senior Lecturer

"Whether you're a recent graduate with a music technology or computing qualification, or an audio professional wanting to move up the career ladder - studying a course that combines so many areas of audio will enhance your employability."

Michael Ward spent many years working simultaneously but separately as a software engineer and as a sound engineer before deciding to combine the two interests and entered academia. As well as taking a lead in the MSc Audio Engineering, Michael also combines his industry experience and takes a lead in undergraduate modules in Audio Software Systems, Acoustics and Critical Listening and Mixing and Mastering. He now combines his academic work with a practice as a mastering engineer.

Facilities

- Library
Our Library is one of the only university libraries in the UK open 24/7 every day of the year. However you like to study, our Library has you covered with group study, silent study, extensive e-learning resources and PC suites.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
The progress made in telecommunications and information technology allows you to benefit from greater access to entertainment, health, and commerce. Read more
The progress made in telecommunications and information technology allows you to benefit from greater access to entertainment, health, and commerce. A range of multimedia services underpins the growth in these areas. This programme focuses on practical and theoretical aspects of electronics and provides a solid foundation for engineering a wide range of electrical systems, such as embedded microcontrollers, renewable energy, power converters and high frequency communications.

Key features

-Gain hands-on experience in signal processing and embedded systems programming.
-Benefit from the industrial collaboration with British Telecommunications plc (BT) and Bombardier Transportation. Strong collaboration with BT's Goonhilly Satellite Earth Station and other companies such as Orange (France Telecom).
-Progress in a school that has gained national and international recognition for its research in satellite communications, data storage, and digital signal processing (Research Assessment Exercise RAE 2008).
-Develop research skills in leading edge technology. and advance with the support of our Centre for Security, Communications and Network Research.
-Develop your knowledge in our Digital Signal Processing [DSP] laboratory, a new networks laboratory funded in part by CISCO, a separate postgraduate study room with full internet and specialist software, and a dedicated communications laboratory.
-Explore the option of completing the programme over two years with an integral work placement year.
-Draw on the expertise of our lecturers who are nationally and internationally recognised leading researchers. Professor Martin Tomlinson is internationally recognised for the invention of the Tomlinson-Harashima precoder – a key component of any telecommunications modem.
-Benefit from Institution of Engineering and Technology (IET) accreditation. The MSc is a significant step towards the status of Chartered Engineer (CEng) which is highly sought after in industry.
-You are eligible to apply for an IET postgraduate scholarship. Amounts can vary between £2,500 and £10,000, tenable for one year, which are intended to reward excellence rather than alleviate financial hardship. For more information on the different scholarships available, details on how to apply and confirmed closing dates for applications, please visit the IET Awards and Scholarships.
-Stand out from the crowd by completing an integrated placement as part of your masters degree.

Course details

The MSc Electrical and Electronic Engineering will appeal to you if you are a design engineer. The programme provides an in-depth knowledge of specialist areas in electrical and electronic engineering underpinned by the theory and practice of modern electronics and renewable energy systems, together with the associated signal processing and embedded programming techniques. The modules have been selected to give you an even balance of essential modern areas of electrical and electronic engineering. The communications content will give you a broad grounding in communication theory and systems while the signal processing content is generally biased toward applications in communications engineering. From our experience of intensive courses, and our work with partner companies, this programme meets the current needs of electrical and electronics industry. The programme is taught in autumn and spring blocks and includes a project.

Core modules
-ROCO503 Sensors and Actuators
-BPIE500 Masters Stage 1 Placement Preparation
-PROJ509 MSc Project
-ELEC512 Nanotechnology and Nanoelectronics
-ELEC518 Digital and Wireless Communications
-SOFT561 Robot Software Engineering
-ELEC517 Integrated Power Systems
-ELEC516 Advanced Signal Processing

Optional placement year
-BPIE502 Electrical/Robotics Masters Industrial Placement

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less

Show 10 15 30 per page



Cookie Policy    X