• Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
SOAS University of London Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
University of St Andrews Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Loughborough University Featured Masters Courses
"digital" AND "image" AND…×
0 miles

Masters Degrees (Digital Image Processing)

  • "digital" AND "image" AND "processing" ×
  • clear all
Showing 1 to 15 of 65
Order by 
See the department website - http://www.cis.rit.edu/graduate-programs/master-science. The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Read more
See the department website - http://www.cis.rit.edu/graduate-programs/master-science

The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Formal course work includes consideration of the physical properties of radiation-sensitive materials and processes, the applications of physical and geometrical optics to electro-optical systems, the mathematical evaluation of image forming systems, digital image processing, and the statistical characterization of noise and system performance. Technical electives may be selected from courses offered in imaging science, color science, engineering, computer science, science, and mathematics. Both thesis and project options are available. In general, full-time students are required to pursue the thesis option, with the project option targeted to part-time and online students who can demonstrate that they have sufficient practical experience through their professional activities.

Faculty within the Center for Imaging Science supervise thesis research in areas of the physical properties of radiation-sensitive materials and processes, digital image processing, remote sensing, nanoimaging, electro-optical instrumentation, vision, medical imaging, color imaging systems, and astronomical imaging. Interdisciplinary efforts are possible with other colleges across the university.

The program can be completed on a full- or a part-time basis. Some courses are available online, specifically in the areas of color science, remote sensing, medical imaging, and digital image processing.

Plan of study

All students must earn 30 credit hours as a graduate student. The curriculum is a combination of required core courses in imaging science, elective courses appropriate for the candidate’s background and interests, and either a research thesis or graduate paper/project. Students must enroll in either the research thesis or graduate paper/project option at the beginning of their studies.

Core courses

Students are required to complete the following core courses: Fourier Methods for Imaging (IMGS-616), Image Processing and Computer Vision (IMGS-682), Optics for Imaging (IMGS-633), and either Radiometry (IMGS-619) or The Human Visual System (IMGS-620).

Speciality track courses

Students choose two courses from a variety of tracks such as: digital image processing, medical imaging, electro-optical imaging systems, remote sensing, color imaging, optics, hard copy materials and processes, and nanoimaging. Tracks may be created for students interested in pursuing additional fields of study.

Research thesis option

The research thesis is based on experimental evidence obtained by the student in an appropriate field, as arranged between the student and their adviser. The minimum number of thesis credits required is four and may be fulfilled by experiments in the university’s laboratories. In some cases, the requirement may be fulfilled by work done in other laboratories or the student's place of employment, under the following conditions:

1. The results must be fully publishable.

2. The student’s adviser must be approved by the graduate program coordinator.

3. The thesis must be based on independent, original work, as it would be if the work were done in the university’s laboratories.

A student’s thesis committee is composed of a minimum of three people: the student’s adviser and two additional members who hold at least a master's dgeree in a field relevant to the student’s research. Two committee members must be from the graduate faculty of the center.

Graduate paper/project option

Students with demonstrated practical or research experience, approved by the graduate program coordinator, may choose the graduate project option (3 credit hours). This option takes the form of a systems project course. The graduate paper is normally performed during the final semester of study. Both part- and full-time students may choose this option, with the approval of the graduate program coordinator.

Admission requirements

To be considered for admission to the MS in imaging science, candidates must fulfill the following requirements:

- Hold a baccalaureate degree from an accredited institution (undergraduate studies should include the following: mathematics, through calculus and including differential equations; and a full year of calculus-based physics, including modern physics. It is assumed that students can write a common computer program),

- Submit a one- to two-page statement of educational objectives,

- Submit official transcripts (in English) of all previously completed undergraduate or graduate course work,

- Submit letters of recommendation from individuals familiar with the applicant’s academic or research capabilities,

- Submit scores from the Graduate Record Exam (GRE) (requirement may be waived for those not seeking funding from the Center for Imaging Science), and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 600 (paper-based) or 100 (Internet-based) are required. Students may also submit scores from the International English Language Testing System. The minimum IELTS score is 7.0. International students who are interested in applying for a teaching or research assistantship are advised to obtain as high a TOEFL or IELTS score as possible. These applicants also are encouraged to take the Test of Spoken English in order to be considered for financial assistance.

Applicants seeking financial assistance from the center must have all application documents submitted to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Additional information

- Bridge courses

Applicants who lack adequate preparation may be required to complete bridge courses in mathematics or physics before matriculating with graduate status.

- Maximum time limit

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
The MSc in Digital Signal and Image Processing has been developed to deliver qualified engineers of the highest standard into the emerging field of digital signal and image processing who are capable of contributing significantly to this increased demand for both real-time and off-line systems operating over a range of mobile, embedded and workstation platforms. Read more
The MSc in Digital Signal and Image Processing has been developed to deliver qualified engineers of the highest standard into the emerging field of digital signal and image processing who are capable of contributing significantly to this increased demand for both real-time and off-line systems operating over a range of mobile, embedded and workstation platforms. The DSIP option of the MSc in Computational and Software Techniques in Engineering aims to develop your skill-base for the rapidly expanding engineering IT industry sector, not only in the UK but all over the world. Graduates in this option have the opportunity to pursue a wide range of careers embracing telecommunications, the automotive industry, medical imaging, software houses and industrial research where demand for skills is high.

Read less
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Read more
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Video accounts for around 80 per cent of all internet traffic and some mobile network operators have predicted that wireless traffic will double every year for the next 10 years - driven primarily by video. Visual information processing also plays a major role underpinning other industries such as healthcare, security, robotics and autonomous systems.

This challenging, one-year taught Master’s degree covers a range of advanced topics drawn from the field of multimedia signal processing and communications. The programme covers the properties and limitations of modern communication channels and networks, alongside the coding and compression methods required for efficient and reliable wired and wireless audio-visual transmission. It provides students with an excellent opportunity to acquire the necessary skills to enter careers in one of the most dynamic and exciting fields in ICT.

The programme builds on the research strengths of the Visual Information Laboratory and the Communication Systems and Networks Group within the Faculty of Engineering at Bristol. Both groups are highly regarded for combining fundamental research with strong industrial collaboration and their innovative research has resulted in ground-breaking technology in the areas of image and video analysis, coding and communications. Both groups also offer extensive, state-of-the-art research facilities.

This MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the communication networks industry. The programme is accredited by the Institution of Engineering and Technology until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (50 credits)
-Coding theory
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (70 credits)
-Digital signal processing systems
-Speech and audio processing
-Optimum signal processing
-Biomedical imaging
-Image and video coding
-Engineering research skills

Research project
You will complete a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme covers all aspects of current and future image and video communications and associated signal processing technologies. It will prepare you for a diverse range of exciting careers, not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
The School conducts high-quality significant national and international research and offers excellent opportunities for graduate studies, successfully combining modern engineering and technology with the exciting field of digital media. Read more
The School conducts high-quality significant national and international research and offers excellent opportunities for graduate studies, successfully combining modern engineering and technology with the exciting field of digital media. The digital media group has interests in many areas of interactive multimedia and digital film and animation.

Visit the website https://www.kent.ac.uk/courses/postgraduate/264/digital-arts

About the School of Engineering and Digital Arts

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research (http://www.eda.kent.ac.uk/research/default.aspx) that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Course structure

The digital media group has interests in many areas of interactive multimedia and digital film and animation.

There is particular strength in web design and development, including e-commerce, e-learning, e-health; and the group has substantial experience in interaction design (eg, Usability and accessibility), social computing (eg, Social networking, computer mediated communication), mobile technology (eg, iPhone), virtual worlds (eg, Second Life) and video games. In the area of time-based media, the group has substantial interest in digital film capture and editing, and manipulation on to fully animated 3D modelling techniques as used in games and feature films.

Research Themes:
- E-Learning Technology (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=1)

- Medical Multimedia Applications and Telemedicine (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=2)

- Human Computer Interaction and Social Computing (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=3)

- Computer Animation and Digital Visual Effects (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=4)

- Mobile Application Design and Development (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=25)

- Digital Arts (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=26)

Research areas

- Intelligent Interactions

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you. The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning. Read more
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you.

The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning.

PROGRAMME OVERVIEW

This degree provides in-depth training for students interested in a career in industry or in research-oriented institutions focused on image and video analysis, and deep learning.

State-of-the-art computer-vision and machine-learning approaches for image and video analysis are covered in the course, as well as low-level image processing methods.

Students also have the chance to substantially expand their programming skills through projects they undertake.

PROGRAMME STRUCTURE

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and a standard project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Signal Processing A
-Object Oriented Design and C++
-Image Processing and Vision
-Space Robotics and Autonomy
-Satellite Remote Sensing
-Computer Vision and Pattern Recognition
-AI and AI Programming
-Advanced Signal Processing
-Image and Video Compression
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department of Electronic Engineering are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas.
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin computer vision, machine learning as well as how they can be related to robotics
-Be able to analyse problems within the field computer vision and more broadly in electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within computer vision, machine learning
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway
This programme in Computer Vision, Robotics and Machine Learning aims to provide a high-quality advanced training in aspects of computer vision for extracting information from image and video content or enhancing its visual quality using machine learning codes.

Computer vision technology uses sophisticated signal processing and data analysis methods to support access to visual information, whether it is for business, security, personal use or entertainment. The core modules cover the fundamentals of how to represent image and video information digitally, including processing, filtering and feature extraction techniques.

An important aspect of the programme is the software implementation of such processes. Students will be able to tailor their learning experience through selection of elective modules to suit their career aspirations.

Key to the programme is cross-linking between core methods and systems for image and video analysis applications. The programme has strong links to current research in the Department of Electronic Engineering’s Centre for Vision, Speech and Signal Processing.

PROGRAMME LEARNING OUTCOMES

The Department's taught postgraduate programmes are designed to enhance the student's technical knowledge in the topics within the field that he/she has chosen to study, and to contribute to the Specific Learning Outcomes set down by the Institution of Engineering and Technology (IET) (which is the Professional Engineering body for electronic and electrical engineering) and to the General Learning Outcomes applicable to all university graduates.

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods

Time and resource management
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Relevant part of: Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

FACILITIES, EQUIPMENT AND SUPPORT

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab. The Faculty’s student common room is also covered by the University’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices.

Specialist experimental and research facilities, for computationally demanding projects or those requiring specialist equipment, are provided by the Centre for Vision, Speech and Signal Processing (CVSSP).

CAREER PROSPECTS

Computer vision specialists are be valuable in all industries that require intelligent processing and interpretation of image and video. This includes industries in directly related fields such as:
-Multimedia indexing and retrieval (Google, Microsoft, Apple)
-Motion capture (Foundry)
-Media production (BBC, Foundry)
-Medical Imaging (Siemens)
-Security and Defence (BAE, EADS, Qinetiq)
-Robotics (SSTL)

Studying for Msc degree in Computer Vision offers variety, challenge and stimulation. It is not just the introduction to a rewarding career, but also offers an intellectually demanding and exciting opportunity to break through boundaries in research.

Many of the most remarkable advancements in the past 60 years have only been possible through the curiosity and ingenuity of engineers. Our graduates have a consistently strong record of gaining employment with leading companies.

Employers value the skills and experience that enable our graduates to make a positive contribution in their jobs from day one.

Our graduates are employed by companies across the electronics, information technology and communications industries. Recent employers include:
-BAE Systems
-BT
-Philips
-Hewlett Packard
-Logica
-Lucent Technologies
-BBC
-Motorola
-NEC Technologies
-Nokia
-Nortel Networks
-Red Hat

INDUSTRIAL COLLABORATIONS

We draw on our industry experience to inform and enrich our teaching, bringing theoretical subjects to life. Our industrial collaborations include:
-Research and technology transfer projects with industrial partners such as the BBC, Foundry, LionHead and BAE
-A number of our academics offer MSc projects in collaboration with our industrial partners

RESEARCH PERSPECTIVES

This course gives an excellent preparation for continuing onto PhD studies in computer vision related domains.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Given the wider development of Citizen GIS and an increased public awareness and knowledge of the power and value of spatial data, vastly increased amounts of such data from different sources are now available to researchers. Read more

Overview

Given the wider development of Citizen GIS and an increased public awareness and knowledge of the power and value of spatial data, vastly increased amounts of such data from different sources are now available to researchers. However, in order to turn these data into useful information, they must be efficiently managed, processed and analysed before being displayed in a comprehensible format. Geographical Information Systems and the associated field of Remote Sensing greatly aid us in such tasks. The course is equally split between both parts - GIS and Remote Sensing - with four core module introducing the theory and practice of both subject at an introductory and advanced level. Geographical Information Systems or GIS as they are better known, are widely used in a wide variety of subject fields across the physical and social sciences and even in the humanities, with applicability in everything from archaeology and astronomy to geomorphology and globalisation to soil science and social planning. Remote Sensing – the analysis and interpretation of aerial and satellite imagery – has transformed the manner in which we view the Earth. The synoptic view of the Earth that it has given us has greatly improved our understanding of atmospheric and oceanic processes, sustained environmental management and the interaction of humans with the natural world. It is now a standard research tool in many fields such as geology, geography, pollution control, agriculture and climatology. Additional optional modules in Programming, Spatial Databases and Remote Sensing of the Subsurface are also available to students who want to develop the technical side more fully, though the course has a strong applied flavour throughout. In addition, all students complete a work placement in the Summer months which allows them to gain valuable practical experience to test and develop the skills learnt across the course.

Aims of the Course:
- To provide highly qualified, motivated graduates who have been trained in Geographical Information Systems, Remote Sensing and Digital Image Processing and who can apply the information technology skills they obtain.

- To produce marketable graduates who will make significant contributions to GIS and RS application areas including; industry, government, academia, the community and voluntary sector and other public and private bodies.

- To provide an understanding of Geographical Information Systems and Remote Sensing, the technology involved and its applications for specific investigations.

Course Structure

The course consists of 6 modules, 5 of which are compulsory. Two of these cover the theoretical concepts underpinning GIS and Remote Sensing. Two other modules involve gaining the theoretical and technical skills necessary to become proficient in the management and analysis of spatial data. A fifth module involves an assessed work placement during the summer months. Modules include work placement, theoretical remote sensing, digital image processing and advanced remote sensing, introductory GIS systems and science and GIS in practice with optional programming, spatial databases and geophysics modules.

Career Options

The MSc in GIS and Remote Sensing is first and foremost a course to skill students for work in a wide range of employment areas. These include a wide range of government and semi-state agencies, local authorities and the voluntary sector, especially in areas associated with the environment and planning. In addition, graduates have worked in a wide range of private sector organisations and businesses, where the ability to work with and critically managed big spatial data is increasingly valued. Successful students have also proceeded to PhD level research and gained employment in academia.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHN58
The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
This programme provides graduates and working professionals with a broad training in signal processing and communications. Read more

Programme description

This programme provides graduates and working professionals with a broad training in signal processing and communications. It is suitable for recent graduates who wish to develop the specialist knowledge and skills relevant to this industry and is also suitable as advanced study in preparation for research work in an academic or industrial environment or in a specialist consultancy organisation.

Engineers or other professionals wishing to participate in the MSc programme may do so on a part-time basis.

Our students gain a thorough understanding of theoretical foundations as well as advanced topics at the cutting edge of research in signal processing and communications, including compressive sensing, deep neural networks, wireless communication theory, and numerical Bayesian methods.

The MSc project provides a good opportunity for students to work on state-of-the-art research problems in signal processing and communications.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses
Discrete-Time Signal Analysis
Digital Communication Fundamentals
Probability, Random Variables and Estimation Theory
Statistical Signal Processing
Image Processing
Signal Processing Laboratory
Semester 2 courses
Adaptive Signal Processing
Advanced Coding Techniques
Advanced Wireless Communication
Array Processing Methods
Advanced Concepts in Signal Processing
Pre-dissertation project preparation and report

Career opportunities

With our excellent employability record and internationally respected reputation, the University of Edinburgh is a reliable choice for developing your engineering career.

This programme will appeal to graduates who wish to pursue a career in an industry such as communications, radar, medical imaging or anywhere else signal processing is applied.

Read less
An MSc-level conversion programme for those with first degrees in numerate disciplines (e.g. Maths, Physics, others with some mathematics to pre-university level should enquire). Read more
An MSc-level conversion programme for those with first degrees in numerate disciplines (e.g. Maths, Physics, others with some mathematics to pre-university level should enquire). The programme targets producing engineers with the knowledge and skills required for working in the communications industry on programmable hardware, in particular. There is a high demand for people to fill such roles in communications and test & measure equipment vendors, and in many smaller companies developing devices for the internet of things.

The huge growth of interconnected devices expected in the Internet of Things and the goals of flexible, high-speed wireless connections for 5G mobile networks and beyond, require programmable, embedded electronics to play a vital role. From the development of small, intelligence sensors to the design of large-scale network hardware that can be functionally adaptive in software-defined networking, there is a huge demand for advanced embedded electronics knowledge and skills in the communications sector.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1223/embedded-communications-engineering

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts successfully combines modern engineering and technology with the exciting field of digital media.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL829 - Embedded Real-Time Operating Systems (15 credits)
EL849 - Research Methods & Project Design (30 credits)
EL893 - Reconfigurable Architectures (15 credits)
EL896 - Computer and Microcontroller Architectures (15 credits)
EL822 - Communication Networks (15 credits)
EL827 - Signal & Communication Theory II (15 credits)
EL871 - Digital Signal Processing (DSP) (15 credits)
EL872 - Wireless/Mobile Communications (15 credits)
EL873 - Broadband Networks (15 credits)
EL890 - MSc Project (60 credits)

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

The programme targets producing engineers with the knowledge and skills required for working in the communications industry on programmable hardware, in particular. There is a high demand for people to fill such roles in communications and test & measure equipment vendors, and in many smaller companies developing devices for the internet of things.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
This course equips you with the theory and practice necessary to begin a career as a design or development engineer in communications and signal processing. Read more
This course equips you with the theory and practice necessary to begin a career as a design or development engineer in communications and signal processing. You will also develop transferable skills in research and knowledge acquisition.

Highlights of the course include:
-Unparalleled coverage of all major disciplines in communications engineering and signal analysis methodology
-The comprehensive treatment of advanced communication systems from theoretical and practical approaches
-Innovative educational techniques designed to equip you with practical knowledge
-Design skills and research methodologies

On completing the course, many students progress into employment as design and development engineers in telecommunications and digital signal processing areas or onto a higher research degree.

Our Communications and Signal Processing MSc derives its uniqueness from research strengths in communications and digital signal processing in the School of Electrical and Electronic Engineering. All course lecturers have a world-wide reputation for high quality research at the leading edge of the subject. They have many years of experience with industrial projects and in running short courses for industry.

Research projects cover a range of applications in areas of:
-Wireless networks
-Future generation communication technologies
-Error control coding
-Digital signal and image processing
-Biometrics identification and authentication

Accreditation

The course is accredited by the Institution of Engineering and Technology (IET) and Engineering Council, and therefore provides a good foundation for professional registration.

Facilities

The School of Electrical and Electronic Engineering has a suite of world-class research and teaching laboratories. These have the latest electronic instruments and computer aided design software for Digital Signal Processing (DSP) and Field-programmable gate array (FPGA) devices.

The facilities are among the most advanced of their type. This enables us to join the global race to develop ambient intelligence systems involving tiny sensors and computing devices embedded in much of what we use.

Read less
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. Read more
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. The School enjoys an international reputation for its work and prides itself in allowing students the freedom to realise their maximum potential.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

We undertake high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Visit the website https://www.kent.ac.uk/courses/postgraduate/262/electronic-engineering

Project opportunities

Some projects available for postgraduate research degrees (http://www.eda.kent.ac.uk/postgraduate/projects_funding/pgr_projects.aspx).

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The Institute for Digital Communications (IDCOM) has three major centres of activity. Signal Processing. Communications Systems. Communications Interface Research. Read more

Research profile

The Institute for Digital Communications (IDCOM) has three major centres of activity:

Signal Processing
Communications Systems
Communications Interface Research

The Institute has excellent research facilities, including state-of-the-art computing systems and laboratories for usability engineering, audio signal processing and visible light communications.

Internationally recognised for its research on communications systems and signal processing, the Institute offers current research topics including:

green radio
visible light communications
cognitive radio
compressive sensing
distributed sensor signal processing
agile tomography.

The Institute was recently awarded a UK Research Council Platform Grant in Sensor Signal Processing in collaboration with the Joint Research Institute in Signal & Image Processing with Heriot-Watt University.

Training and support

The development of transferable skills is a vital part of postgraduate training and a vibrant, interdisciplinary training programme is offered to all research students by the University’s Institute for Academic Development (IAD). The programme concentrates on the professional development of postgraduates, providing courses directly linked to postgraduate study.

Courses run by the IAD are free and have been designed to be as flexible as possible so that you can tailor the content and timing to your own requirements.

Our researchers are strongly encouraged to present their research at conferences and in journal during the course of their PhD.

Every year, the Graduate School organises a Postgraduate Research Conference to showcase the research carried out by students across the Research Institutes

Our researchers are also encouraged and supported to attend transferable skills courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

Facilities

The Institute has excellent research facilities, including state-of-the-art computing systems and laboratories for usability engineering, audio signal processing and visible light communications.

Research opportunities

We offer a comprehensive range of exciting research opportunities through a choice of postgraduate research degrees: PhD, MPhil and MSc by Research.

Masters by Research

An MSc by Research is based on a research project tailored to a candidate’s interests. It lasts one year full time or two years part time. The project can be a shorter alternative to an MPhil or PhD, or a precursor to either – including the option of an MSc project expanding into MPhil or doctorate work as it evolves. It can also be a mechanism for industry to collaborate with the School.

Read less
This programme is structured around topics in systems and signal processing, with specialisms in control and systems theory, image processing and machine learning. Read more

Course Summary

This programme is structured around topics in systems and signal processing, with specialisms in control and systems theory, image processing and machine learning. Skills developed are sought after by industry (biotech, financial services, systems engineering, medical imaging, etc) and the academic research community. The modules have a high mathematical content and much of the material is computationally based, developing strong transferable skills in algorithmic development and programming.

Modules

Semester one: Signal Processing; Control System Design; Machine Learning; Computer Vision

Semester two: Advanced Systems and Signal Processing; Digital Control System Design; Applied Control Systems; Biological Inspired Robotics; Advanced Computer Vision; Image Processing; Advanced Machine Learning; Computational Finance; Computational Biology; Biometrics

Visit our website for further information...



Read less
The Computer Animation Master’s programme at Kent is oriented towards current industrial needs, technology and practice. It is designed to be a direct route into this high-profile, modern and creative industry, and has been developed jointly by the School and our industrial partner Framestore CFC. Read more
The Computer Animation Master’s programme at Kent is oriented towards current industrial needs, technology and practice. It is designed to be a direct route into this high-profile, modern and creative industry, and has been developed jointly by the School and our industrial partner Framestore CFC.

Develop your knowledge and understanding of the animation process, software tools, techniques and packages, and the technical aspects of working in a professional animation environment. The MSc programme offers invaluable experience of working to professional briefs and under expert supervision of professional animators to prepare you for a career in industry.

Competition is fierce in animation and visual effects and success depends on your concentration levels, constant practise and ability to grasp the essence and modern techniques of animation. Successful former students are now working in animation and animation layout roles for companies such as Sony Games and Framestore CFC on major titles in games, television and film.

Visit the website https://www.kent.ac.uk/courses/postgraduate/248/computer-animation

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts successfully combines modern engineering and technology with the exciting field of digital media. The School, which was established over 40 years ago, has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. We have a thriving student population studying for postgraduate degrees in a friendly, supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Course structure

This intensively taught postgraduate course lasts a full year. It takes place in a dedicated computer laboratory where you have your own seat and computer for the duration of the course. The course lectures and workshops, whether led by visiting professionals or staff, are all held in this room. Demonstrations and showing of films are by means of an HD projector. By the end of the year, the lab will be where you live as much as your accommodation.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL831 - Digital Visual Art set-up (15 credits)
EL832 - Animation Principles (15 credits)
EL833 - Visual Training (15 credits)
EL837 - Professional Group Work (15 credits)
EL863 - Advanced 3D Modelling (15 credits)
EL864 - Pre-Visualisation (15 credits)
EL865 - Action in Animation (15 credits)
EL866 - Acting in Animation (15 credits)
EL830 - Computer Animation Project (60 credits)

Assessment

Each module is assessed by practical assignments. The project work is assessed on the outcome of the project itself.

Programme aims

This programme aims to:

- enable you to develop your knowledge and understanding within the field of 3D computer animation, which will equip you to become a professional in the animation and visual effects industry

- produce professionally-trained animators who are highly skilled in using state-of-the-art 3D animation software for producing animated films

- provide you with proper academic guidance and welfare support

- create an atmosphere of co-operation and partnership between staff and students, and offer you an environment where you can develop your potential

- strengthen and expand opportunities for industrial collaboration with the School of Engineering and Digital Arts.

Research areas

- Intelligent Interactions

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

Careers

We have developed the programme with a number of industrial organisations, which means that successful students will be in a strong position to build a long-term career in this important discipline.

The School of Engineering and Digital Arts (http://www.eda.kent.ac.uk/) has an excellent record of student employability (http://www.eda.kent.ac.uk/school/employability.aspx). We are committed to enhancing the employability of all our students, to equip you with the skills and knowledge to succeed in a competitive, fast-moving, knowledge-based economy.

Graduates who can show that they have developed transferable skills and valuable experience are better prepared to start their careers and are more attractive to potential employers.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The M.Sc. programme Computer Science for Digital Media at the Bauhaus-Universität Weimar is an internationally oriented 2-years degree programme. Read more
The M.Sc. programme Computer Science for Digital Media at the Bauhaus-Universität Weimar is an internationally oriented 2-years degree programme. It aims at creative and innovative thinking graduates of Computer Science or related subjects with the desire of deepening their knowledge in applied Computer Science, with a focus on applications relevant to the media.

Programme Features

In accordance with the »Weimar Model«, research-oriented projects are a large and defining part of the Master’s programme. Additional elective modules allow students to select courses from other degree programmes such as Computational Engineering, Arts and Design, Architecture, as well as courses from the Computer Science for Digital Media course catalogue. Graded language courses up to 6 ECTS may also be included. The fourth and final semester is dedicated entirely to the Master’s thesis.

The degree programme offers students to focus on different fields. Core components of the programme and areas of specialisation include:
• Web Technologies
• Information Retrieval and Data Mining
• Big Data Analytics
• Intelligent Software Systems
• Computer Graphics and Visualization
• Computer Vision
• Virtual Reality, 3D Interfaces
• Human Computer Interfaces
• Usability
• Secure Protocols and Cryptographic Algorithms

Key skills and competences are acquired through a project-based teaching approach: on a semester basis, students work in teams to solve assigned research tasks in the labs of the faculty. This approach provides our graduates with soft- and hard- skills which are very welcome in research and development institutions. Within the recently built »Digital Bauhaus Lab«, the faculty of media has excellent research facilities equipped with the latest advanced hardware.

Visit the Computer Science for Digital Media on the Bauhaus-Universität Weimar website for more details on the programme.

Career Options

Our graduates find employment in the R&D departments of companies in the automotive, telecommunication, software, gaming and animation industry, as well as at academic institutions in Germany and overseas. A specialisation in Computer Science with focus on media opens the door for employment and research in innovative areas such as system development, algorithm development, data analysis, data mining, scientific visualisation, image processing, physical simulation, interface development and testing and security protocols development.

Application Process

Applicants who graduated outside of Europe should apply online on http://www.uni-assist.de/index_en.html. Applicants who graduated in Europe and do not require a visa can apply online at: https://movein-uni-weimar.moveonnet.eu/movein/portal/studyportal.php?_language=en

Please find further information for your application on http://www.uni-weimar.de/en/media/studies/computer-science-and-media-hci/application-master-csm/

We also maintain a FAQ page: http://www.uni-weimar.de/en/media/studies/computer-science-and-media-hci/faq-application-csm/

Studying in Weimar

The »Bauhaus « was the most influential design school in the 20th century and was founded in 1919 in Weimar. The Bauhaus-Universität Weimar is the living continuation of this tradition. We are an international university in the unique, cultural city of Weimar. We are a vibrant institution, not a museum! Experimentation and excellence are our mission throughout our university faculties Media, Architecture and Urbanism, Civil Engineering and Art and Design. Across our Faculties, transdisciplinary projects and co-operations in research and education are an important part of this mission.

Find out more about student life in Weimar on http://www.uni-weimar.de/en/university/studies/einblickbauhaus/university-town-of-weimar/

Read less
There is increasing pressure to make life quieter and to gain a better understanding of how noise and vibration affect people. Read more

Summary

There is increasing pressure to make life quieter and to gain a better understanding of how noise and vibration affect people. The Institute of Sound and Vibration Research (ISVR) at the University of Southampton is renowned for its contributions to reducing noise and vibration in engineering applications and also for fundamental work on understanding how humans hear sounds and process this information. No prior knowledge of acoustics is required to take this programme, and you will cover aspects of engineering acoustics, structural dynamics, applied digital signal processing and human effects of sound and vibration. You have the possibility to specialise in one of the three pathways: Applied Digital Signal Processing; Engineering Acoustics; Structural Dynamics.

Modules

You have the possibility to specialise in one of the three pathways: Applied Digital Signal Processing; Engineering Acoustics; Structural Dynamics.
Compulsory module: Research Methods
Core module: MSc Research Project
Typical Optional Modules: Signal Processing; Fundamentals of Acoustics; Fundamentals of Vibration; Musical Instrument Acoustics; Noise Control Engineering; Underwater Acoustics; Electroacoustics; Aeroacoustics; Architectural and Building Acoustics; Audio Engineering; Human Responses to Sound and Vibration; Advanced Vibration; Biomedical Application of Signal and Image Processing; Active Control; Applied Digital Signal Processing; Numerical Methods for Acoustics

Visit our website for further information...



Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X