• University of Edinburgh Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
Cass Business School Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Glasgow Featured Masters Courses
"digital" AND "image" AND…×
0 miles

Masters Degrees (Digital Image Processing)

We have 71 Masters Degrees (Digital Image Processing)

  • "digital" AND "image" AND "processing" ×
  • clear all
Showing 1 to 15 of 71
Order by 
See the department website - http://www.cis.rit.edu/graduate-programs/master-science. The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Read more
See the department website - http://www.cis.rit.edu/graduate-programs/master-science

The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Formal course work includes consideration of the physical properties of radiation-sensitive materials and processes, the applications of physical and geometrical optics to electro-optical systems, the mathematical evaluation of image forming systems, digital image processing, and the statistical characterization of noise and system performance. Technical electives may be selected from courses offered in imaging science, color science, engineering, computer science, science, and mathematics. Both thesis and project options are available. In general, full-time students are required to pursue the thesis option, with the project option targeted to part-time and online students who can demonstrate that they have sufficient practical experience through their professional activities.

Faculty within the Center for Imaging Science supervise thesis research in areas of the physical properties of radiation-sensitive materials and processes, digital image processing, remote sensing, nanoimaging, electro-optical instrumentation, vision, medical imaging, color imaging systems, and astronomical imaging. Interdisciplinary efforts are possible with other colleges across the university.

The program can be completed on a full- or a part-time basis. Some courses are available online, specifically in the areas of color science, remote sensing, medical imaging, and digital image processing.

Plan of study

All students must earn 30 credit hours as a graduate student. The curriculum is a combination of required core courses in imaging science, elective courses appropriate for the candidate’s background and interests, and either a research thesis or graduate paper/project. Students must enroll in either the research thesis or graduate paper/project option at the beginning of their studies.

Core courses

Students are required to complete the following core courses: Fourier Methods for Imaging (IMGS-616), Image Processing and Computer Vision (IMGS-682), Optics for Imaging (IMGS-633), and either Radiometry (IMGS-619) or The Human Visual System (IMGS-620).

Speciality track courses

Students choose two courses from a variety of tracks such as: digital image processing, medical imaging, electro-optical imaging systems, remote sensing, color imaging, optics, hard copy materials and processes, and nanoimaging. Tracks may be created for students interested in pursuing additional fields of study.

Research thesis option

The research thesis is based on experimental evidence obtained by the student in an appropriate field, as arranged between the student and their adviser. The minimum number of thesis credits required is four and may be fulfilled by experiments in the university’s laboratories. In some cases, the requirement may be fulfilled by work done in other laboratories or the student's place of employment, under the following conditions:

1. The results must be fully publishable.

2. The student’s adviser must be approved by the graduate program coordinator.

3. The thesis must be based on independent, original work, as it would be if the work were done in the university’s laboratories.

A student’s thesis committee is composed of a minimum of three people: the student’s adviser and two additional members who hold at least a master's dgeree in a field relevant to the student’s research. Two committee members must be from the graduate faculty of the center.

Graduate paper/project option

Students with demonstrated practical or research experience, approved by the graduate program coordinator, may choose the graduate project option (3 credit hours). This option takes the form of a systems project course. The graduate paper is normally performed during the final semester of study. Both part- and full-time students may choose this option, with the approval of the graduate program coordinator.

Admission requirements

To be considered for admission to the MS in imaging science, candidates must fulfill the following requirements:

- Hold a baccalaureate degree from an accredited institution (undergraduate studies should include the following: mathematics, through calculus and including differential equations; and a full year of calculus-based physics, including modern physics. It is assumed that students can write a common computer program),

- Submit a one- to two-page statement of educational objectives,

- Submit official transcripts (in English) of all previously completed undergraduate or graduate course work,

- Submit letters of recommendation from individuals familiar with the applicant’s academic or research capabilities,

- Submit scores from the Graduate Record Exam (GRE) (requirement may be waived for those not seeking funding from the Center for Imaging Science), and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 600 (paper-based) or 100 (Internet-based) are required. Students may also submit scores from the International English Language Testing System. The minimum IELTS score is 7.0. International students who are interested in applying for a teaching or research assistantship are advised to obtain as high a TOEFL or IELTS score as possible. These applicants also are encouraged to take the Test of Spoken English in order to be considered for financial assistance.

Applicants seeking financial assistance from the center must have all application documents submitted to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Additional information

- Bridge courses

Applicants who lack adequate preparation may be required to complete bridge courses in mathematics or physics before matriculating with graduate status.

- Maximum time limit

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
Image and signal processing affect our daily lives in an ever-increasing way. Participate in designing this fascinating technology and shape IT‘s future function in business and society. Read more

Image and signal processing affect our daily lives in an ever-increasing way. Participate in designing this fascinating technology and shape IT‘s future function in business and society. Today‘s networked devices for image and signal generation provide a historically unmatched volume of raw data for automated decision making and control systems. The demands are high: How can we design new tools and software in order to best distil useful information? A lot of interesting research and development projects in the private and the public sectors are calling for your expertise. Alternatively, this degree will open career tracks in universities and research labs.

The international Joint Degree Master Programme„Applied Image and Signal Processing“ is conducted in English. The standard period of study is four semesters. The full program is worth a total of 120 points according to the ECTS (European Credit Transfer and Accumulation System). The academic degree of „Master of Science in Engineering“ (MSc) will be awarded upon successful completion of the programme.

From Theory to Practice (Curriculum)

The first semester is devoted to a concise study of the theoretical basis, the mathematical models and the algorithms used in image and signal processing. The second semester additionally focuses on geometric modelling, audio processing and digital media formats. Starting with the third semester, specific application scenarios are discussed and corresponding technologies are investigated in a number of elective courses.

Choose your Elective Courses

The elective courses comprise medical imaging, platform specific signal processing, data science, biometric systems, media security, computational geometry and machine learning.

Apply your Scientific Knowledge

In the third semester, students also start research on their master thesis and acquire profound IT-project management skills. The fourth semester is dedicated to the completion of the master thesis. An accompanying master seminar provides a forum for presenting and defending one‘s approach to a solution and the results obtained, i.e., for scientific discourse with faculty and peers.

Modules & Competences 

This Joint Degree Master Programme is designed to provide students with an in-depth professional and scientific training. Based on appropriate prior bachelor studies, this programme offers a thorough technical training in conjunction with research-driven teaching. It will make the participants familiar with introductory and advanced-level topics in the fields of image and signal processing, their formal and methodical basics, and with diverse fields of application. The sound knowledge and skills acquired in this programme qualify the alumni for diverse practical challenges in their professional work and empower them to contribute to future innovations in image and signal processing. A master thesis serves as a documentary proof of the student‘s ability to tackle scientific problems successfully on his or her own and to come up with a result that is correct with regards to contents and methodology. Furthermore the publication of Master Thesis is intended. Thus, this programme also paves the road to subsequent work in science and technology.



Read less
The MSc in Digital Signal and Image Processing has been developed to deliver qualified engineers of the highest standard into the emerging field of digital signal and image processing who are capable of contributing significantly to this increased demand for both real-time and off-line systems operating over a range of mobile, embedded and workstation platforms. Read more
The MSc in Digital Signal and Image Processing has been developed to deliver qualified engineers of the highest standard into the emerging field of digital signal and image processing who are capable of contributing significantly to this increased demand for both real-time and off-line systems operating over a range of mobile, embedded and workstation platforms. The DSIP option of the MSc in Computational and Software Techniques in Engineering aims to develop your skill-base for the rapidly expanding engineering IT industry sector, not only in the UK but all over the world. Graduates in this option have the opportunity to pursue a wide range of careers embracing telecommunications, the automotive industry, medical imaging, software houses and industrial research where demand for skills is high.

Read less
Digital Humanities is a fast and growing interdisciplinary field at the cutting edge of 21st century research methods. It aligns traditional Humanities-based research with modern data-intensive computational methodologies to produce exciting new research avenues and questions in traditional fields of expertise. Read more

Overview

Digital Humanities is a fast and growing interdisciplinary field at the cutting edge of 21st century research methods. It aligns traditional Humanities-based research with modern data-intensive computational methodologies to produce exciting new research avenues and questions in traditional fields of expertise. The MA degree is transformative in nature and allows graduates from Arts and Humanities, Social Science, as well as Computer Science backgrounds, to enhance and complement their existing research skills with modern digital methods vital for the cultural heritage and information sectors. It is also excellent preparation for those wishing to pursue a computationally-enabled PhD in the arts and humanities, digital preservation, or digital cultural heritage.

Students have opportunities to:

Use State-of-the-art equipment to digitise, analyse and 3D print cultural heritage objects.
Explore alternative methods, theories, and technologies for undertaking a range of digitally-enabled cultural heritage projects and research
Get real-life experience through an internship in a cultural heritage institution or collaborating on a Digital Humanities project.
Be actively involved in our Digital Humanities projects, such as the Letters 1916, the first crowdsourcing project in Ireland, and Contested Memories, a computer graphic simulation of The Battle of Mount Street Bridge.
Create virtual worlds and get an expertise in computer graphics for cultural heritage.
Learn programming and markup languages used widely in the field
Get experience in encoding historical or literary sources and literature in the creation of Digital Scholarly Editions.
The course is delivered in our state-of-the-art facility in An Foras Feasa (Iontas Building, North Campus), which includes the MakersLab for Computational Imaging and 3D Printing projects, the Digital Humanities Lab with high-end desktop computers for computer graphics and image processing, and the Green Screen Studio for audio-visual recording.

A number of funding options are available including two An Foras Feasa Taught Masters Bursaries, the University wide Taught Masters Scholarships and the Maynooth University Taught Masters Alumni Scholarships. Further details may be found at: https://www.maynoothuniversity.ie/foras-feasa/ma-and-phd-funding

Course Structure

90 ECTS are needed to complete the Masters. The course is comprised of the following elements:

Required Taught Modules: 20 ECTS*

Elective Taught Modules: 40 ECTS

Project and Dissertation: 30 ECTS

*Required modules include Digital Humanities Theory and Practice and Digital Humanities Practicum (10 ECTS each). Both modules are integral to the building of practical and theoretical knowledge of the discipline, its development and its intersection with public projects. The Digital Humanities Practicum module guarantees students a work placement at a cultural heritage institution or on a Digital Humanities project.

Part-time students are advised to register for ‘Digital Humanities Theory and Practice’ in the first semester, while working for the ‘Digital Humanities Practicum’ in the second year of the course.

Elective modules provide students with a variety of skills, methods, and theories. Students may choose to either specialise in a specific area, delving deeply into a specific set of methods, or to take a wider variety of modules hence gaining a broader understanding of the field.

Applicants with little previous programming experience, are advised to register for ‘Structured Programming’: an intensive 3-week 90-hour pre-semester laboratory-based programming course which runs in late August through to early September and counts as one elective module worth 10 ECTS.

The project and dissertation over the last semester of the course and will be individually supervised or co-supervised by an academic from one or both of the contributing departments. Student who wish not to write the final thesis have the opportunity to exit the course with a postgraduate diploma in Digital Humanities.

Career Options

Graduates of the MA in Digital Humanities at Maynooth University are ideally placed to use computational methods in arts and humanities research and research projects. Graduates also take up exciting positions across the areas of museum curating, archiving and public history and heritage projects, while the technical and transferrable skills they develop can also lead them to the Industry and the IT sector.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MH50F/MH51F

The following documents should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Read more
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Video accounts for around 80 per cent of all internet traffic and some mobile network operators have predicted that wireless traffic will double every year for the next 10 years - driven primarily by video. Visual information processing also plays a major role underpinning other industries such as healthcare, security, robotics and autonomous systems.

This challenging, one-year taught Master’s degree covers a range of advanced topics drawn from the field of multimedia signal processing and communications. The programme covers the properties and limitations of modern communication channels and networks, alongside the coding and compression methods required for efficient and reliable wired and wireless audio-visual transmission. It provides students with an excellent opportunity to acquire the necessary skills to enter careers in one of the most dynamic and exciting fields in ICT.

The programme builds on the research strengths of the Visual Information Laboratory and the Communication Systems and Networks Group within the Faculty of Engineering at Bristol. Both groups are highly regarded for combining fundamental research with strong industrial collaboration and their innovative research has resulted in ground-breaking technology in the areas of image and video analysis, coding and communications. Both groups also offer extensive, state-of-the-art research facilities.

This MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the communication networks industry. The programme is accredited by the Institution of Engineering and Technology until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (50 credits)
-Coding theory
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (70 credits)
-Digital signal processing systems
-Speech and audio processing
-Optimum signal processing
-Biomedical imaging
-Image and video coding
-Engineering research skills

Research project
You will complete a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme covers all aspects of current and future image and video communications and associated signal processing technologies. It will prepare you for a diverse range of exciting careers, not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
The School conducts high-quality significant national and international research and offers excellent opportunities for graduate studies, successfully combining modern engineering and technology with the exciting field of digital media. Read more
The School conducts high-quality significant national and international research and offers excellent opportunities for graduate studies, successfully combining modern engineering and technology with the exciting field of digital media. The digital media group has interests in many areas of interactive multimedia and digital film and animation.

Visit the website https://www.kent.ac.uk/courses/postgraduate/264/digital-arts

About the School of Engineering and Digital Arts

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research (http://www.eda.kent.ac.uk/research/default.aspx) that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Course structure

The digital media group has interests in many areas of interactive multimedia and digital film and animation.

There is particular strength in web design and development, including e-commerce, e-learning, e-health; and the group has substantial experience in interaction design (eg, Usability and accessibility), social computing (eg, Social networking, computer mediated communication), mobile technology (eg, iPhone), virtual worlds (eg, Second Life) and video games. In the area of time-based media, the group has substantial interest in digital film capture and editing, and manipulation on to fully animated 3D modelling techniques as used in games and feature films.

Research Themes:
- E-Learning Technology (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=1)

- Medical Multimedia Applications and Telemedicine (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=2)

- Human Computer Interaction and Social Computing (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=3)

- Computer Animation and Digital Visual Effects (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=4)

- Mobile Application Design and Development (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=25)

- Digital Arts (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=26)

Research areas

- Intelligent Interactions

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Digital Humanities is a fast and growing interdisciplinary field at the cutting edge of 21st century research methods. It aligns traditional Humanities-based research with modern data-intensive computational methodologies to produce exciting new research avenues and questions in traditional fields of expertise. Read more

Overview

Digital Humanities is a fast and growing interdisciplinary field at the cutting edge of 21st century research methods. It aligns traditional Humanities-based research with modern data-intensive computational methodologies to produce exciting new research avenues and questions in traditional fields of expertise. The postgraduate diploma is transformative in nature and allows graduates from Arts and Humanities, Social Science, as well as Computer Science backgrounds, to enhance and complement their existing research skills with modern digital methods vital for the cultural heritage and information sectors. It is also excellent preparation for those wishing to pursue a career in digital arts and humanities, digital preservation, or digital cultural heritage.

Students have opportunities to:

Use State-of-the-art equipment to digitise, analyse and 3D print cultural heritage objects.
Explore alternative methods, theories, and technologies for undertaking a range of digitally-enabled cultural heritage projects and research
Get real-life experience through an internship in a cultural heritage institution or collaborating on a Digital Humanities project.
Be actively involved in our Digital Humanities projects, such as the Letters 1916, the first crowdsourcing project in Ireland, and Contested Memories, a computer graphic simulation of The Battle of Mount Street Bridge.
Create virtual worlds and get an expertise in computer graphics for cultural heritage.
Learn programming and markup languages used widely in the field.
Get experience in encoding historical or literary sources and literature in the creation of Digital Scholarly Editions.
The course is delivered in our state-of-the-art facility in An Foras Feasa (Iontas Building, North Campus), which includes the MakersLab for Computational Imaging and 3D Printing projects, the Digital Humanities Lab with high-end desktop computers for computer graphics and image processing, and the Green Screen Studio for audio-visual recording.

Course Structure

60 ECTS are needed to complete the Diploma. The course is comprised of the following elements:

Required Taught Modules: 20 ECTS*

Elective Taught Modules: 40 ECTS

*Required modules include Digital Humanities: Theory and Practice and Digital Humanities Practicum (10 ECTS each). Both modules are integral to the building of practical and theoretical knowledge of the discipline, its development and its intersection with public projects. The Digital Humanities Practicum module guarantees students a work placement at a cultural heritage institution or on a Digital Humanities project.

Elective modules provide students with a variety of skills, methods, and theories. Students may choose to either specialise in a specific area, delving deeply into a specific set of methods, or to take a wider variety of modules hence gaining a broader understanding of the field.

Applicants with little previous programming experience, are advised to register for ‘Structured Programming’: an intensive 3-week 90-hour pre-semester laboratory-based programming course which runs in late August through to early September and counts as one elective module worth 10 ECTS.

Career Options

Graduates of the Postgraduate Diploma in Digital Humanities at Maynooth University are ideally placed to use computational methods in arts and humanities research and projects. Graduates also take up exciting positions across the areas of museum curating, archiving and public history and heritage projects, while the technical and transferrable skills they develop can also lead them to the Industry and the IT sector.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MH54F Full-time / MH55F

The following documents should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
Given the wider development of Citizen GIS and an increased public awareness and knowledge of the power and value of spatial data, vastly increased amounts of such data from different sources are now available to researchers. Read more

Overview

Given the wider development of Citizen GIS and an increased public awareness and knowledge of the power and value of spatial data, vastly increased amounts of such data from different sources are now available to researchers. However, in order to turn these data into useful information, they must be efficiently managed, processed and analysed before being displayed in a comprehensible format. Geographical Information Systems and the associated field of Remote Sensing greatly aid us in such tasks. The course is equally split between both parts - GIS and Remote Sensing - with four core module introducing the theory and practice of both subject at an introductory and advanced level. Geographical Information Systems or GIS as they are better known, are widely used in a wide variety of subject fields across the physical and social sciences and even in the humanities, with applicability in everything from archaeology and astronomy to geomorphology and globalisation to soil science and social planning. Remote Sensing – the analysis and interpretation of aerial and satellite imagery – has transformed the manner in which we view the Earth. The synoptic view of the Earth that it has given us has greatly improved our understanding of atmospheric and oceanic processes, sustained environmental management and the interaction of humans with the natural world. It is now a standard research tool in many fields such as geology, geography, pollution control, agriculture and climatology. Additional optional modules in Programming, Spatial Databases and Remote Sensing of the Subsurface are also available to students who want to develop the technical side more fully, though the course has a strong applied flavour throughout. In addition, all students complete a work placement in the Summer months which allows them to gain valuable practical experience to test and develop the skills learnt across the course.

Aims of the Course:
- To provide highly qualified, motivated graduates who have been trained in Geographical Information Systems, Remote Sensing and Digital Image Processing and who can apply the information technology skills they obtain.

- To produce marketable graduates who will make significant contributions to GIS and RS application areas including; industry, government, academia, the community and voluntary sector and other public and private bodies.

- To provide an understanding of Geographical Information Systems and Remote Sensing, the technology involved and its applications for specific investigations.

Course Structure

The course consists of 6 modules, 5 of which are compulsory. Two of these cover the theoretical concepts underpinning GIS and Remote Sensing. Two other modules involve gaining the theoretical and technical skills necessary to become proficient in the management and analysis of spatial data. A fifth module involves an assessed work placement during the summer months. Modules include work placement, theoretical remote sensing, digital image processing and advanced remote sensing, introductory GIS systems and science and GIS in practice with optional programming, spatial databases and geophysics modules.

Career Options

The MSc in GIS and Remote Sensing is first and foremost a course to skill students for work in a wide range of employment areas. These include a wide range of government and semi-state agencies, local authorities and the voluntary sector, especially in areas associated with the environment and planning. In addition, graduates have worked in a wide range of private sector organisations and businesses, where the ability to work with and critically managed big spatial data is increasingly valued. Successful students have also proceeded to PhD level research and gained employment in academia.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHN58
The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
This programme provides graduates and working professionals with a broad training in signal processing and communications. Read more

This programme provides graduates and working professionals with a broad training in signal processing and communications. It is suitable for recent graduates who wish to develop the specialist knowledge and skills relevant to this industry and is also suitable as advanced study in preparation for research work in an academic or industrial environment or in a specialist consultancy organisation.

Engineers or other professionals wishing to participate in the MSc programme may do so on a part-time basis.

Our students gain a thorough understanding of theoretical foundations as well as advanced topics at the cutting edge of research in signal processing and communications, including compressive sensing, deep neural networks, wireless communication theory, and numerical Bayesian methods.

The MSc project provides a good opportunity for students to work on state-of-the-art research problems in signal processing and communications.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses

  • Discrete-Time Signal Analysis
  • Digital Communication Fundamentals
  • Probability, Estimation Theory and Random Signals (PETARS)
  • Image Processing
  • Digital Signal Processing Laboratory

Semester 2 courses

  • Adaptive Signal Processing
  • Advanced Coding Techniques
  • Advanced Wireless Communication
  • Array Processing Methods and MIMO Systems
  • Advanced Concepts in Signal Processing
  • Pre-dissertation project preparation and report

Career opportunities

With our excellent employability record and internationally respected reputation, the University of Edinburgh is a reliable choice for developing your engineering career.

This programme will appeal to graduates who wish to pursue a career in an industry such as communications, radar, medical imaging or anywhere else signal processing is applied.



Read less
This degree provides in-depth training for students interested in a career in industry or in research-oriented institutions focused on image and video analysis, and deep learning. Read more

This degree provides in-depth training for students interested in a career in industry or in research-oriented institutions focused on image and video analysis, and deep learning.

State-of-the-art computer-vision and machine-learning approaches for image and video analysis are covered in the course, as well as low-level image processing methods.

Students also have the chance to substantially expand their programming skills through projects they undertake.

Read about the experience of a previous student on this course, Gianmarco Addari.

Programme structure

This programme is studied full-time over 12 months and part-time from 24 to 60 months. It consists of eight taught modules and a standard project. 

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Technical characteristics of the pathway

This programme in Computer Vision, Robotics and Machine Learning aims to provide a high-quality advanced training in aspects of computer vision for extracting information from image and video content or enhancing its visual quality using machine learning codes.

Computer vision technology uses sophisticated signal processing and data analysis methods to support access to visual information, whether it is for business, security, personal use or entertainment.

The core modules cover the fundamentals of how to represent image and video information digitally, including processing, filtering and feature extraction techniques.

An important aspect of the programme is the software implementation of such processes. Students will be able to tailor their learning experience through selection of elective modules to suit their career aspirations.

Key to the programme is cross-linking between core methods and systems for image and video analysis applications. The programme has strong links to current research in the Department of Electronic Engineering’s Centre for Vision, Speech and Signal Processing.

Facilities, equipment and support

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab. The Faculty’s student common room is also covered by the University’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices.

Specialist experimental and research facilities, for computationally demanding projects or those requiring specialist equipment, are provided by the Centre for Vision, Speech and Signal Processing (CVSSP).

Career prospects

Computer vision specialists are be valuable in all industries that require intelligent processing and interpretation of image and video. This includes industries in directly related fields such as:

  • Multimedia indexing and retrieval (Google, Microsoft, Apple)
  • Motion capture (Foundry)
  • Media production (BBC, Foundry)
  • Medical Imaging (Siemens)
  • Security and Defence (BAE, EADS, Qinetiq)
  • Robotics (SSTL)

Studying for Msc degree in Computer Vision offers variety, challenge and stimulation. It is not just the introduction to a rewarding career, but also offers an intellectually demanding and exciting opportunity to break through boundaries in research.

Many of the most remarkable advancements in the past 60 years have only been possible through the curiosity and ingenuity of engineers. Our graduates have a consistently strong record of gaining employment with leading companies.

Employers value the skills and experience that enable our graduates to make a positive contribution in their jobs from day one.

Industrial collaborations

We draw on our industry experience to inform and enrich our teaching, bringing theoretical subjects to life. Our industrial collaborations include:

  • Research and technology transfer projects with industrial partners such as the BBC, Foundry, LionHead and BAE
  • A number of our academics offer MSc projects in collaboration with our industrial partners

Research perspectives

This course gives an excellent preparation for continuing onto PhD studies in computer vision related domains.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Research profile. The Institute for Digital Communications (IDCOM) is the UK's leading research institute in signal processing and communications and is home to the Li-Fi research and development centre. Read more

Research profile

The Institute for Digital Communications (IDCOM) is the UK's leading research institute in signal processing and communications and is home to the Li-Fi research and development centre. We have three major centres of activity; signal processing, communications systems and tomographic imaging. Our programme of research delivers world leading research in signal and image processing and communications from fundamental theoretical and algorithmic work through to its translation to specific audio, imaging, radar/sonar, and communications applications.

The Institute has excellent research facilities, including state-of-the-art computing systems and laboratories for agile tomography, and audio signal processing, as well as the Li-Fi research and development centre for visible light communications. Internationally recognised for our research on communications systems and signal processing, we offer research topics including: green radio; visible light communications; cognitive radio; compressive sensing; distributed sensor signal processing; and agile tomography.

IDCOM holds the only UK Research Council platform award in sensor signal processing, in collaboration with the joint research institute in signal and image processing and Heriot-Watt University, recognising our world leading research status.

Training and support

The development of transferable skills is a vital part of postgraduate training and a vibrant, interdisciplinary training programme is offered to all research students by the University’s Institute for Academic Development (IAD). The programme concentrates on the professional development of postgraduates, providing courses directly linked to postgraduate study.

Courses run by the IAD are free and have been designed to be as flexible as possible so that you can tailor the content and timing to your own requirements.

Our researchers are strongly encouraged to present their research at conferences and in journal during the course of their PhD.

Every year, the Graduate School organises a Postgraduate Research Conference to showcase the research carried out by students across the Research Institutes

Our researchers are also encouraged and supported to attend transferable skills courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

Facilities

The Institute has excellent research facilities, including state-of-the-art computing systems and laboratories for usability engineering, audio signal processing and visible light communications.



Read less
This course equips you with the theory and practice necessary to begin a career as a design or development engineer in communications and signal processing. Read more
This course equips you with the theory and practice necessary to begin a career as a design or development engineer in communications and signal processing. You will also develop transferable skills in research and knowledge acquisition.

Highlights of the course include:
-Unparalleled coverage of all major disciplines in communications engineering and signal analysis methodology
-The comprehensive treatment of advanced communication systems from theoretical and practical approaches
-Innovative educational techniques designed to equip you with practical knowledge
-Design skills and research methodologies

On completing the course, many students progress into employment as design and development engineers in telecommunications and digital signal processing areas or onto a higher research degree.

Our Communications and Signal Processing MSc derives its uniqueness from research strengths in communications and digital signal processing in the School of Electrical and Electronic Engineering. All course lecturers have a world-wide reputation for high quality research at the leading edge of the subject. They have many years of experience with industrial projects and in running short courses for industry.

Research projects cover a range of applications in areas of:
-Wireless networks
-Future generation communication technologies
-Error control coding
-Digital signal and image processing
-Biometrics identification and authentication

Accreditation

The course is accredited by the Institution of Engineering and Technology (IET) and Engineering Council, and therefore provides a good foundation for professional registration.

Facilities

The School of Electrical and Electronic Engineering has a suite of world-class research and teaching laboratories. These have the latest electronic instruments and computer aided design software for Digital Signal Processing (DSP) and Field-programmable gate array (FPGA) devices.

The facilities are among the most advanced of their type. This enables us to join the global race to develop ambient intelligence systems involving tiny sensors and computing devices embedded in much of what we use.

Read less
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. Read more
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. The School enjoys an international reputation for its work and prides itself in allowing students the freedom to realise their maximum potential.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

We undertake high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Visit the website https://www.kent.ac.uk/courses/postgraduate/262/electronic-engineering

Project opportunities

Some projects available for postgraduate research degrees (http://www.eda.kent.ac.uk/postgraduate/projects_funding/pgr_projects.aspx).

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
This M.Sc. course provides a foundation in the technologies and media relevant to the digital media sector. The course runs full-time over a twelve-month period. Read more
This M.Sc. course provides a foundation in the technologies and media relevant to the digital media sector. The course runs full-time over a twelve-month period. Formal teaching is divided into two twelve-week semesters.

Each student selects and commences a research project, which must be submitted in the form of a dissertation of 12,000 words by mid March. Students will also complete a final project, which can be a collaborative development with a number of students from the class . There is significant emphasis on theory rather than on media or software applications. A special laboratory is provided for the class where students can become familiar with software applications.

The courses offered include: Introduction to Programming; XML/HTML; Audio Technologies; Sensors; Interactive Authoring; Graphic Design; Image Processing; Cultural and Critical Studies; Research Methodologies; Client/Server Technologies and Networking; Interactive Narrative; Mobile Computing; Image Processing and 3-D Modelling; Game Development and Production; Legal Issues in Digital Publishing.; Digital Media Enterprises.

This course is especially suited to graduates with a primary degree in either Humanities or in Computer Science as both disciplines are important to the digital media sector. Applications will be accepted from good honors graduates in any discipline or from mature students with relevant industry experience.

This course has been co-funded under the National Development Plan (Graduate Skills Conversion Programme) for EU fee paying students.

Read less
Course Summary. This programme is structured around topics in systems and signal processing, with specialisms in control and systems theory, image processing and machine learning. Read more

Course Summary

This programme is structured around topics in systems and signal processing, with specialisms in control and systems theory, image processing and machine learning. Skills developed are sought after by industry (biotech, financial services, systems engineering, medical imaging, etc) and the academic research community. The modules have a high mathematical content and much of the material is computationally based, developing strong transferable skills in algorithmic development and programming.

Modules

Semester one: Signal Processing; Control System Design; Machine Learning; Computer Vision.

Semester two: Advanced Systems and Signal Processing; Digital Control System Design; Applied Control Systems; Biological Inspired Robotics; Advanced Computer Vision; Image Processing; Advanced Machine Learning; Computational Finance; Computational Biology; Biometrics.

Plus three-month independent research project culminating in a dissertation.

Visit our website for further information.



Read less

Show 10 15 30 per page



Cookie Policy    X