• University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
King’s College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
Imperial College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
Aberdeen University Featured Masters Courses
"devices"×
0 miles

Masters Degrees (Devices)

We have 534 Masters Degrees (Devices)

  • "devices" ×
  • clear all
Showing 1 to 15 of 534
Order by 
The MSc in Medical and Healthcare Devices is a unique and flexible course for graduates, scientists and technologists. Read more
The MSc in Medical and Healthcare Devices is a unique and flexible course for graduates, scientists and technologists. Study on the course will build an excellent range of knowledge and expertise if you are looking to begin a career in the sector or it will enhance and support your personal development if you are already working in this field.

As a student on the course you will develop an understanding of the properties of advanced materials and how they affect the design of medical and healthcare devices. You will study intelligent bioengineering systems and consider how smart materials, micro-electronics and mechanical and information technology knowledge are used in the development of these devices.

These studies will be supported by considering the principles that underpin the development and application of advanced materials and also regulations, procedures and principles that are applied to this sector. In addition, you will study the use of healthcare and medical devices in the specific context of human anatomy, physiology, illness, disease and rehabilitation.

The MSc Medical and Healthcare Devices course is interdisciplinary and will be delivered at the University of Bolton’s Institute for Materials Research and Innovation (IMRI) in collaboration with the Schools of Business & Creative Technologies (BCT) and Health & Social Sciences (HSS).

IMRI is a multidisciplinary centre in which research and innovation is carried out in collaboration with industry and other academic institutions. It is the leader in the UK – and is known internationally – for its research and applications development in the field of applied materials science and engineering.

Developments carried out within IMRI include new, designer and novel smart and multifunctional materials in fibres, films, foams and particles, at nano and micro levels, as well as associated processing technologies that have the potential for development to compete in the global marketplace.

Throughout your studies you will have opportunities to interact and collaborate with medical and healthcare device companies, UK medical and dental schools and the NHS.

Special features

Teaching for each module is delivered as a short course that will last no more than two weeks. The rest of your study is very flexible and may be carried out away from the University.

Class sizes are small which means you will be able to work closely with your fellow students and your tutor.

Your subject of study and your personal project means you have the opportunity to work in an area that is of personal interest or that is closely related to your role in your place of work.

You will study 6 modules:

Introduction to Medical Devices and Product Regulations;
Human Physiology and Biotechnology;
Biomedical Devices and Product Development;
Intelligent Bioengineering Systems;
Research Methods (including an introduction to innovation and intellectual property management);
Research Project.


For more information please visit http://www.bolton.ac.uk/postgrad

Read less
The photonics research groups in the physics departments of Heriot-Watt and St. Andrews Universities are internationally renowned, and have many links with industrial and university groups around the world. Read more

Overview

The photonics research groups in the physics departments of Heriot-Watt and St. Andrews Universities are internationally renowned, and have many links with industrial and university groups around the world. Major activities are based around optoelectronics, laser development, semiconductor physics, materials technology, ultra-fast phenomena, modern optics, and instrumentation. This expertise is brought to the teaching of our one-year taught MSc course (See http://www.postgraduate.hw.ac.uk/prog/msc-photonics-and-optoelectronic-devices/ ).

Previously called Optoelectronic and Laser Devices, this MSc course has been updated and enhanced, recognising the explosive growth of the UK and global photonics industry, fostered by the world-wide expansion in the exploitation of optical in telecommunications.

Students spend one semester at each university, and then undertake a three-month research project, normally in a UK company. Companies participating in recent years include Bookham Technologies, BAE Systems, Edinburgh Sensors, Cambridge Display Technology, Defence Science and Technology Laboratory, Indigo Photonics, Intense Photonics, Kamelian, Nortel, Renishaw, Rutherford Appleton Laboratory, Thales, Sharp and QinetiQ.

Find more information here http://www.phy.hw.ac.uk/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Photonics and Optoelectronic Devices. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

Students receive postgraduate training in modern optics and semiconductor physics tailored to the needs of the optoelectronics industries. Graduates gain an understanding of the fundamental properties of optoelectronic materials and optical fibres, and experience of the technology and operation of a wide range of laser semiconductor devices appropriate to the telecommunications, information technology, sensing, and manufacturing industries.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-photonics-and-optoelectronic-devices/

Read less
Offered in collaboration with Heriot-Watt University. This programme is aimed at graduates in physics or electrical engineering who seek postgraduate education in photonics to enhance their opportunities in industry/ commerce or in PhD research in photonics. Read more

MSc in Photonics and Optoelectronic Devices

• Offered in collaboration with Heriot-Watt University.

• This programme is aimed at graduates in physics or electrical engineering who seek postgraduate education in photonics to enhance their opportunities in industry/ commerce or in PhD research in photonics.

• The programme is tailored to balance fundamental understanding with industrial relevance.

• You gain an understanding of the fundamental properties of optoelectronic materials and devices with vocational training in modern optics, laser physics and semiconductor physics. You also gain practical experience in the operation of a wide range of laser devices and optoelectronic technologies.

• You develop an appreciation of the widespread practical applications of coherent light sources in communications, material processing and testing, optical processing, medical treatments and diagnostics, and environmental monitoring.

• The industrial project placement occupies 12-14 weeks from late May to August and is assessed in September after the submission of a dissertation.

• The admissions process will be run by the University of St Andrews in 2016 and by Heriot-Watt University in 2017.

Features

* In the UK Research Excellence Framework 2014, the quality of research undertaken by PHYESTA, the joint research School of Physics & Astronomy between the Universities of St Andrews and Edinburgh, was ranked third in the UK and top in Scotland.

* The School has around 40 academic staff, around 70 postdoctoral researchers, including 7 SUPA, EPSRC, STFC and Royal Society Research Fellows, around 80 research students and around 20 students on taught postgraduate courses.

* The MSc course in Photonics and Optoelectronic Devices is offered in collaboration with Heriot-Watt University, allowing students access to the expertise at both sites.

* St Andrews has recently opened £3.7 million of specialist research labs in photonic microfabrication and in high resolution condensed matter physics.

* We are a member of the Scottish Universities Physics Alliance (SUPA), whose Graduate School provides a comprehensive range of graduate level courses in physics and astronomy.

Postgraduate community

The postgraduate community in the School of Physics & Astronomy includes typically ten students in our MSc class, two to ten engineering doctorate students taking taught modules, plus around 80 PhD research students. Students on the MSc course come from all over the world, with a mix of students from the UK, EU and overseas.

You are taught by internationally-leading research experts, and the relatively small size of the School means that there can be real interaction between students and staff. Lecture classes are relatively small, ranging from about 30 students down to groups of just a few. The teaching staff are proud to have the reputation of being accessible to students, and enjoy explaining the excitement of physics and its applications to their students. Well-equipped teaching laboratories allow you to explore the science of photonics in “research mode”, and interact directly with academic staff and the School’s early-career researchers.

Teaching methods

• Teaching comprises lectures, tutorials, and laboratory work.
• The teaching laboratory offers the photonics students a wide choice of experiments.
• Work for lecture modules is assessed largely through examinations whereas the laboratory work is assessed in a continuous manner. Lecture courses are examined at the end of each semester.
• MSc students select their project topic part way through the course. This is assessed by the submission of a dissertation and an oral exam.
• You are also invited to attend relevant research seminars and departmental colloquia given by departmental research staff, specialists from other universities and specialists from industry.

Careers

The MSc programme aims to produce graduates with appropriate knowledge, skills and attitudes to go on to be successful in the photonics area, be it in industrial/commercial positions, or undertaking PhD study in universities.

Typically half the class will start PhD or EngD programmes after graduation, while the other half will take up industrial and commercial positions. Commercial destinations of graduates from a recent year-group include laser development, sales and marketing with consumer/office optoelectronics, product support of optical metrology equipment, theoretical modelling of photonic structures, university teaching, internship with a national laser lab, and semiconductor optoelectronics research.

Read less
Rapid growth in the global medical devices industry demands an innovative fusion of biomedical, materials sciences, manufacturing, and engineering knowledge - and the University of Auckland is responding to the challenge. Read more

Invest in your future

Rapid growth in the global medical devices industry demands an innovative fusion of biomedical, materials sciences, manufacturing, and engineering knowledge - and the University of Auckland is responding to the challenge.

This programme is aimed primarily at engineers and health professionals to provide them with the necessary broad range of knowledge in the various technologies underpinning medical devices.

Programme Structure

Taught or Research (120 points)
The programme is normally two semesters and will accommodate part-time enrolments. To best meet the needs of participants with different backgrounds, including those coming from industry, the programme is provided as both a research masters and a taught masters.

All students complete two core courses that give an overview of technology and practices related to medical devices.

Students have a choice of completing a 90-point research portfolio or a smaller 60-point research project. In both cases the research is a significant component of the study programme and will involve working with a research group or being seconded to industry for a supervised research project that provides specialisation in a particular aspect of medical device technology. For participants without a medical background, a clinical secondment will be used to strengthen the experiential component of their learning.

Participants enrolled in the 90-point research portfolio will prepare a written thesis, while participants enrolled in the 60-point project will prepare a written project report. Both are examined following the standard the University of Auckland processes.

The taught masters option provides a wide variety of courses that participants can draw upon to best address their own areas of interest. Courses are lecture-based and delivered as modules, each taught by the University’s research specialists ensuring participants meet the multidisciplinary requirements of medical devices technology.

Electives

Elective enrolments may depend on your prior study and professional experience, but ultimately, choosing the appropriate courses and topics can allow you to concentrate on and develop strengths in your energy field of choice.

Our broad list of electives include courses in:
• Marketing for Scientific and Technical Personnel
• Frontiers in Biotechnology
• Law and Intellectual Property
• Research Commercialisation
• Commercialisation Project
• Science Enterprise Research Methods
• Product Development and Regulatory Environments
• Advanced Biomedical Imaging
• Advanced Imaging Technologies
• Microelectromechanical Systems
• Biomechatronic Systems

Next generation research at the Faculty of Engineering

The Faculty of Engineering is dedicated to providing you with all the facilities, flexibility and support needed for you to develop the skills needed for the workforce. We boast research themes and programmes that provoke interdisciplinary projects, bringing together expertise from our five departments, other faculties, and industry partners and research organisations. Collaborative study is strongly encouraged – postgraduates in particular have the benefit of experiencing cohorts with diverse academic and industry backgrounds.

You will gain access to world-renowned experts who actively demonstrate the positive impacts research have on society. High-performance equipment and labs beyond industry standards are at your fingertips. Our facilities extend beyond study hours – we take pride in our involvement in student events and associations across the University, and are dedicated to providing you with academic, personal and career advice. We encourage you to take advantage of our resources, and use them to expand the possibilities of your research and career path.

Read less
This MSc course provides engineers and physical scientists with knowledge and understanding of the medical devices used in diagnosis and treatment of patients. Read more

Why this course?

This MSc course provides engineers and physical scientists with knowledge and understanding of the medical devices used in diagnosis and treatment of patients.

The course is delivered by staff of the EPSRC-funded Centre for Doctoral Training in Medical Devices and Health Technologies (CDT), with colleagues from Engineering, the Life Sciences and Physical Sciences. There’s also input from clinical advisers from the NHS and elsewhere.

The training programme equips you with the basic knowledge and terminology in current life science subjects to allow you to explore topics in your own research project with direction from your supervisor.

You'll gain practical experience in the life science techniques and an appreciation of interdisciplinary project work.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/medicaldevicesmsc/

You’ll study

This credit-based modular degree comprises assessed instructional classes and project work.
You’ll also undertake a research project. You’ll choose from a list of relevant industrial or clinical projects, and submit a thesis.

Recent Projects

There's a range of projects topics you can choose from. Some of our more recent titles are:
- Vaccine delivery via high-throughput nanoparticle-enhanced cell imaging in microfluidic devices
- Development of an optically guided navigated orthopaedic surgical tool (OGNOST)
- Developing a means of diagnosing and assessing prosodic deficits in people with Parkinson's disease
- A plastic laser diagnostic platform for assessing the risk of cardiovascular disease

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The first and second semesters consist of taught classes, laboratory demonstrations, practical exercises and clinical visits.

Careers

This course will enable graduates to pursue a career in the medical device or research industry.

No.1 in the UK for Medical Technology

The Department of Biomedical Engineering is ranked No. 1 in the Complete University Guide League Tables 2016 for Medical Technology.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Make future breakthroughs within healthcare with the MSc Biomedical Engineering with Healthcare Technology Management course. This course is for inquisitive students who want to design, develop, apply or even manage the use of cutting-edge methods and devices that will revolutionise healthcare. Read more
Make future breakthroughs within healthcare with the MSc Biomedical Engineering with Healthcare Technology Management course.

Who is it for?

This course is for inquisitive students who want to design, develop, apply or even manage the use of cutting-edge methods and devices that will revolutionise healthcare. It is open to science and engineering graduates and those working within hospitals or related industry who want to work in healthcare organisations, in the medical devices industry, or in biomedical engineering research.

The course will suit recent graduates and/or clinical engineers with a technical background or those working in healthcare who want to move into a management position.

Objectives

With several medical conditions requiring extensive and continuous monitoring and early and accurate diagnosis becoming increasingly desirable, technology for biomedical applications is rapidly becoming one of the key ingredients of today and tomorrow’s medical care.

From miniaturised home diagnostic instruments to therapeutic devices and to large scale hospital imaging and monitoring systems, healthcare is becoming increasingly dependent on technology. This course meets the growing need for biomedical and clinical engineers across the world by focusing on the design of medical devices from conception to application.

One of the few accredited courses of its kind in London, the programme concentrates on the use of biomedical-driven engineering design and technology in healthcare settings so you can approach this multidisciplinary topic from the biological and medical perspective; the technological design and development perspective; and from the perspective of managing the organisation and maintenance of large scale equipment and IT systems in a hospital.

This MSc in Biomedical Engineering with Healthcare Technology Management course has been created in consultation and close collaboration with clinicians, biomedical engineering researchers and medical technology industrial partners. The programme fosters close links with the NHS and internationally-renowned hospitals including St. Bartholomew's (Barts) and the Royal London Hospital and Great Ormond street so that you can gain a comprehensive insight into the applied use and the management of medical technology and apply your knowledge in real-world clinical settings.

Placements

In the last few years there have been some limited opportunities for our top students to carry out their projects through placements within hospital-based healthcare technology groups or specialist London-based biomedical technology companies. Placement-based projects are also offered to selected students in City’s leading Research Centre for Biomedical Engineering (RCBE). As we continue our cutting-edge research and industrial and clinical collaborations, you will also have this opportunity.

Academic facilities

As a student on this course you will have the opportunity to work with cutting-edge test and measurement instrumentation – oscilloscopes, function generators, analysers – as well as specialist signal generators and analysers. The equipment is predominantly provided by the world-leading test and measurement equipment manufacturer Keysight, who have partnered with City to provide branding to our electronics laboratories. You also have access to brand new teaching labs and a dedicated postgraduate teaching lab. And as part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught through face-to-face lectures in small groups, where there is a lot of interaction and feedback. Laboratory sessions run alongside the lectures, giving you the opportunity to develop your problem-solving and design skills. You also learn software skills in certain modules, which are taught inside computer labs. We also arrange hospital visits so you gain hands-on experience of different clinical environments.

We arrange tutorials for setting coursework, highlight important subject areas, conduct practical demonstrations, and offer support with revision. You are assessed by written examinations at the end of each term, and coursework assignments, which are set at various times throughout the term.

You also work towards an individual project, which is assessed in the form of a written thesis and an oral examination at the end of the summer. The project can be based on any area of biomedical engineering, telemedicine or technology management and will be supervised by an academic or clinical scientist with expertise in the subject area. Many projects are based in hospital clinical engineering departments, or if you are a part-time student, you can base the project on your own workplace. You will have regular contact with the supervisor to make sure the project progresses satisfactorily. Some of the programme’s current students are working on a project focusing on devices that use brain signals to move external objects such as a remote control car and a prosthetic arm.

Some of the previous projects students have worked on include:
-A cursor controller based on electrooculography (EOG)
-Modelling a closed-loop automated anaesthesia system
-Design of a movement artefact-resistant wearable heart rate/activity monitor
-Review of progress towards a fully autonomous artificial mechanical heart
-Design of smartphone-based healthcare diagnostic devices and sensors.

If you successfully complete eight modules and the dissertation you will be awarded 180 credits and a Masters level qualification. Alternatively, if you do not complete the dissertation but have successfully completed eight modules, you will be awarded 120 credits and a postgraduate diploma. Completing four modules (60 credits) will lead to a postgraduate certificate.

Modules

Along with the 60 credit dissertation eight core modules cover diverse subject areas including biomedical electronics and instrumentation, technology infrastructure management, as well as the latest advances in medical imaging and patient monitoring.

The course includes a special module which gives you an introduction to anatomy, physiology and pathology designed for non-clinical science graduates.

The most innovative areas of biomedical and clinical engineering are covered and the content draws from our research expertise in biomedical sensors, bio-optics, medical imaging, signal processing and modelling. You will learn from academic lecturers as well as clinical scientists drawn from our collaborating institutions and departments, which include:
-Charing Cross Hospital, London
-The Royal London Hospital
-St Bartholomew's Hospital, London
-Basildon Hospital
-Department of Radiography, School of Community and Health Sciences, City, University of London

Modules
-Anatomy, Physiology and Pathology (15 credits)
-Physiological Measurement (15 credits)
-Biomedical Instrumentation (15 credits)
-Medical Electronics (15 credits)
-Cardiovascular Diagnostics and Therapy (15 credits)
-Medical Imaging Modalities (15 credits)
-Clinical Engineering Practice (15 credits)
-Healthcare Technology Management (15 credits)

Career prospects

This exciting MSc programme offers a well-rounded background and specialised knowledge for those seeking a professional career as biomedical engineers in medical technology companies or research groups but is also uniquely placed for offering skills to clinical engineers in the NHS and international healthcare organisations.

Alumnus Alex Serdaris is now working as field clinical engineer for E&E Medical and alumna Despoina Sklia is working as a technical support specialist at Royal Brompton & Harefield NHS Foundation Trust. Other Alumni are carrying out research in City’s Research Centre for Biomedical Engineering (RCBE).

Applicants may wish to apply for vacancies in the NHS, private sector or international healthcare organisations. Students are encouraged to become members of the Institute of Physics and Engineering in Medicine (IPEM) where they will be put in touch with the Clinical Engineering community and any opportunities that arise around the UK during their studies. Application to the Clinical Scientist training programme is encouraged and fully supported.

The Careers, Student Development & Outreach team provides a professional, high quality careers and information service for students and recent graduates of City, University of London, in collaboration with employers and other institutional academic and service departments. The course also prepares graduates who plan to work in biomedical engineering research and work within an academic setting.

Read less
Electronic and Electrical Engineering is a broad and rapidly-expanding set of disciplines. Read more

About the course

Electronic and Electrical Engineering is a broad and rapidly-expanding set of disciplines. Building on core teaching in electrical machines, electronic materials, and the way that electronic circuits interact, this course will allow you to choose from a wide range of optional modules from all our active research areas to tailor your learning in a way that meets with your requirements.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Major Research Project.

Examples of optional modules

AC Machines; Advanced Control of Electric Devices; Energy Storage Management; Motion Control and Servo Drives; Permanent Magnet Machines and Actuators; Power Electronic Converters; Power Semiconductor Devices; Advanced Computer Systems; Advanced Integrated Electronics; Advanced Signal Processing; Semiconductor Materials; Principles of Semiconductor Device Technology; Packaging and Reliability of Microsystems; Nanoscale Electronic Devices; Energy Efficient Semiconductor Devices; Optical Communication Devices and Systems; Computer Vision; Electronic Communication Technologies; Data Coding Techniques for Communications and Storage; Principles of Communications; Antennas, Propagation and Satellite Systems; Mobile Networks and Physical Layer Protocols; System Design; Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols.

Teaching and assessment

We deliver research-led teaching with individual support for your research project and dissertation. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology. Read more

The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

The programme covers the fundamentals behind nanotechnology and moves on to discuss its implementation using nanomaterials – such as graphene – and the use of advanced tools of nanotechnology which allow us to see at the nanoscale, before discussing future trends and applications for energy generation and storage.

You will gain specialised, practical skills through an individual research project within our research groups, using state-of-the-art equipment and facilities. Completion of the programme will provide you with the skills essential to furthering your career in this rapidly emerging field.

The delivery of media content relies on many layers of sophisticated signal engineering that can process images, video, speech and audio – and signal processing is at the heart of all multimedia systems.

Our Mobile Media Communications programme explains the algorithms and intricacies surrounding transmission and delivery of audio and video content. Particular emphasis is given to networking and data compression, in addition to the foundations of pattern recognition.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and an extended project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Nanotechnology at Surrey

We are one of the leading institutions developing nanotechnology and the next generation of materials and nanoelectronic devices.

Taught by internationally-recognised experts within the University’s Advanced Technology Institute (ATI), on this programme you will discover the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

You will gain specialised skills through an individual research project within our research groups, using state-of- the-art equipment and facilities.

The ATI is a £10 million investment in advanced research and is the flagship institute of the University of Surrey in the area of nanotechnology and nanomaterials. The ATI brings together under one roof the major research activities of the University from the Department of Electronic Engineering and the Department of Physics in the area of nanotechnology and electronic devices.

Technical characteristics of the pathway

The Programme in Nanotechnology and Nanoelectronic Devicesaims to provide a high-quality qualification in the most important aspects of the nanotechnologies, with a particular emphasis on nanoelectronics and nanoelectronic devices.

After an introduction to the basic aspects of quantum physics and nano-engineering relevant to modern nanoelectronics, students can tailor their specific learning experience through study of device-oriented elective modules, as suits their career aspirations.

Key to the Programme is the cross-linking of current research themes in interdisciplinary areas such as photonics and biology, through the use of nanoelectronic devices as the interface at the nanoscale level.

The Programme has strong links to current research in the University's Advanced Technology Institute; this Institute includes academic staff from both the EE and the Physics Departments.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Nowadays, the term Healthcare indicates a process that requires to create a new complex and multifactorial system in which technological factors, organizational, and human dimensions must find a balanced mix to provide safe and high quality care for patients. Read more

Nowadays, the term Healthcare indicates a process that requires to create a new complex and multifactorial system in which technological factors, organizational, and human dimensions must find a balanced mix to provide safe and high quality care for patients. This also requires clinically effective and well-designed medical devices, as well as effective and reliable healthcare services based upon innovative technologies and systems, and the related organizational models to be implemented.

In the last 20 years the technological development of biomedical devices has reached an enormous progress, in terms of high performance and reliability, and also for safety and quality. Today medicine involves the use of many equipment and devices for the diagnosis, therapy and rehabilitation and to support the correct clinical decision or the best treatment. Healthcare industry is requiring this multidisciplinary approach and know-how.

The Specializing Master Product Service System Design for Healthcare aims at providing the students with the fundamentals for designing biomedical devices, starting from the basics of methodologies and technologies for the measurement of physiological signals in clinical and home care applications.

Thanks to the proposed educational activity in the areas of:

  • Research and development,
  • Testing and certification,
  • Regulatory systems and reference models,
  • Marketing and analysis of user needs,

the main career opportunities with a strong orientation to the USER Centred Design and product innovation, process and service with leading-edge technologies, are expected in the following areas:

  • Industrial and Services: for R&D, market analysis and user needs, 
  • Clinical: design and application of systems for diagnosis, cure and theraphy, prevention and rehabilitation,
  • Policy makers and/or policy managers in Healthcare and in technologies for healthcare.

Degree awarded

The Specializing Master grants 62 CFU, equivalent to 62 ECTS. Upon completion, students earn a Politecnico di Milano first-level Specializing Master diploma.

Didactics

The training modules are designed to meet the need for an international panorama of growing competitiveness in which the designer should be able to increase the product value by generating innovations thanks to the technology available.

The mostly used devices will be analyzed and presented during the course. Standards, norms and reference services are another fundamental part of the Specializing Master providing the reference framework for how to develop devices and products for healthcare. Design Methods and Ergonomics will be also presented as reference methodologies in designing innovative product-service systems in healthcare, as well as to support methodologically and with reference data the design of new systems. For a better understanding and participation, visits to medical facilities (hospitals and laboratories) will be proposed.

A final workshop to develop innovative systems will conclude the Specializing Master as practical demonstration of the achieved goals. A stage in selected companies/institutions will make the students to experience the acquired knowledge.

Attendance to the activity is mandatory for at least 75% of the course. 

The modules will cover the following teaching areas:

  • Organizational and management models of the new healthcare processes
  • Technologies and systems
  • Environments and Users
  • Design Methodologies, Standards, Ergonomics in Healthcare Design
  • standard and innovative clinical Challenges
  • Design of products and systems for Healthcare

Internship of 325 hours.

For more info, please visit http://polidesign.net/en/healthcare



Read less
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Read more
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in this exciting area and will have the knowledge and skills to enable them to design and build microscale devices.

Taught Modules:

Introduction to Nanotechnology & Microsystems: Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Mini Project: Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the research project.

RF and Optical MEMs: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering: This module provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering: This module builds on the knowledge of microengineering and microfabrication gained in module IES4003 Microengineering and provides practical microfabrication experience. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. The module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.



Research Project
After the successful completions of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. Read more
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. The course will provide ample opportunity to develop practical skill sets. The student will also develop an in-depth understanding of the scientific principles and use of the underlying components such as medical transducers, biosensors and state-of-the-art tools and algorithms used to implement and test diagnostic devices, therapeutic devices, medical imaging equipment and medical instrumentation devices.

The course broadens the discussion of medical equipment and its design by investigating a range of issues including medical equipment regulation, user requirements, impacts of risk, regulatory practice, legislation, quality insurance mechanisms, certification, ethics and ‘health and safety’ assessment. The course will enable a student with an interest in medical electronics to re-focus existing knowledge gained in software engineering, embedded systems engineering and/or electronic systems engineering and will deliver a set specialist practical skills and a deeper understanding of the underlying principles of medical physics. A graduate from this course will be able to immediately participate in this multi-disciplined engineering sector of biomedical and medical instrumentation systems design.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

Read less
Got a love for computing and technology? Hoping to build on the skills you learnt during your undergraduate studies? This essential applied computing masters is well suited to students from a business IT or computing background, helping you to build on existing skills and develop advanced theoretical and practical proficiencies. Read more

Overview

Got a love for computing and technology? Hoping to build on the skills you learnt during your undergraduate studies? This essential applied computing masters is well suited to students from a business IT or computing background, helping you to build on existing skills and develop advanced theoretical and practical proficiencies.

- Students study a curriculum developed with input from an industry liaison panel, ensuring that the course content is up to date and meets the needs of employers.
- This curriculum covers a range of relevant computing disciplines including business IT, software development, security, web design, computer networking, big data analytics, user experience and mobile technologies.
- The Southampton Solent University campus hosts regular British Computer Society (BCS) professional development events.
- Graduates will be well prepared to pursue Cisco Certified Networking Professional (CCNP), BCS agile and BCS software testing certifications.
- Learners have access to a range of professional software suites and state-of-the-art IT laboratories.
- Available labs depend on student specialism, but can include eye tracking / UX facilities or dedicated networking security labs.
- The course comes to a close with students conducting their own research projects. This can be an excellent way to specialise knowledge towards desired careers, or act as a springboard for PhD study.
- This course can be delivered flexibly over two years, allowing students to fit studies around their work.

The industry -

The UK’s IT industry is worth £58 billion annually. With employment of IT professionals expected to grow nearly twice as fast as the UK average between now and 2020 (e-skills UK), it looks like demand for well-qualified information technology graduates is set to remain strong.

A postgraduate qualification can put you at the forefront of this demand, demonstrating your commitment to the industry and your ability to carry out in-depth computing research.

The programme -

Southampton Solent University’s applied computing masters programme places a unique focus on graduate employability, focusing on developing the specific skills that industry employers are seeking.

One of the ways that the course team ensure the curriculum is achieving this goal is through regular consultations with an industry liaison panel. This panel advises the course team on the latest industry developments and the course content is changed accordingly.

These strong links with industry have provided previous School of Media Arts and Technology students with access to a range of work experience opportunities, case studies and guest lectures.

Computing students at Southampton Solent have the opportunity to use industry standard facilities throughout their studies. Our EC Council certified security and networking labs feature a wide variety of equipment from Cisco (including Cisco Packet Tracer), Fluke and HP, as well as high-fidelity simulation systems like the market-leading Opnet. Students also have free access to our devices lab, where they can test their web design projects on a variety of different computing devices.

Students are supported to develop a range of transferable skills throughout the course. These include project management, problem solving and analytical skills that empower students to work in a range of different industries after graduation. Students will also develop high-level academic skills, perfect for those who are hoping to pursue a PhD.

Course Content

Programme specification document - http://mycourse.solent.ac.uk/course/view.php?id=6152

Teaching, learning and assessment -

With few formal lectures, most units are taught in small class-based sessions, usually in IT labs.

For the research and development project you will be assigned a project tutor, who will advise and support you.

Assessment -

The course is assessed through a mixture of coursework assignments, group work, videos, presentations, a project research paper and a final poster presentation.

Teaching -

The course’s teaching staff have a wide range of academic, research and professional experience that they bring to their teaching. Research interests include data mining, learning technologies, gamification, wireless systems, computer systems and OpenStreetMap applications.

Our facilities -

During your studies you will learn to build information systems using a variety of professional-grade software packages. You will also have access to our state-of-the-art IT laboratories; depending on your choice of options you may have access to our specialised network security laboratory or usability lab with eye-tracking facilities.

You’ll have access to our devices lab, a special test area integrated with our existing software development spaces. The devices lab consists of a range of the latest mobile devices mounted on flexible tethers, allowing you to test your websites and apps on real equipment.

Web-based learning -

Solent’s virtual learning environment provides quick online access to assignments, lecture notes, suggested reading and other course information.

Why Solent?

What do we offer?

From a vibrant city centre campus to our first class facilities, this is where you can find out why you should choose Solent.

Facilities - http://www.solent.ac.uk/about/facilities/facilities.aspx

City living- http://www.solent.ac.uk/studying/southampton/living-in-southampton.aspx

Accommodation - http://www.solent.ac.uk/studying/accommodation/accommodation.aspx

Career Potential

The option choices within the course structure provides students with the opportunity for in-depth study at postgraduate level in selected areas of specialism in computing and business IT – laying the groundwork for a successful career in management, strategic planning or system development.

Suitable roles for graduates include:

- Business Analyst
- Project manager
- Database manager
- Digital marketer
- Software developer
- Web Developer
- Application development
- Project manager
- Senior database analyst
- Senior user experience analyst
- Software architect
- Network deployment specialist.

Links with industry -

Course content is developed with input from an industrial liaison panel, making sure that your studies include the latest technology and working practice from industry experts.

You’ll also have the chance to work directly with real-world companies on live briefs, events and projects, while regular BCS meetings hosted at the University are your chance to build professional connections and secure valuable work experience opportunities.

Transferable skills -

This course will develop your academic, presentation, IT, analytical and project-management skills.

Further study -

If you are interested in research, the course offers opportunities to continue on to PhD study.

Tuition fees

The tuition fees for the 2016/2017 academic year are:

UK and EU full-time fees: £7,210

International full-time fees: £12,380

UK and EU part-time fees: £3,605 per year

International part-time fees: £6,190 per year

Graduation costs -

Graduation is the ceremony to celebrate the achievements of your studies. For graduates in 2015, there is no charge to attend graduation, but you will be required to pay for the rental of your academic gown (approximately £42 per graduate, depending on your award). You may also wish to purchase official photography packages, which range in price from £15 to £200+. Graduation is not compulsory, so if you prefer to have your award sent to you, there is no cost.
For more details, please visit: http://www.solent.ac.uk/studying/graduation/home.aspx

Next steps

Would you like to build on the skills you developed at undergraduate level? Hoping to boost your career prospects? With first-class facilities, an employer led curriculum and an experienced teaching team, Southampton Solent University’s MSc Applied Computing programme is the perfect way to improve your employability and develop advanced computing skills.

Read less
Summary. This programme outlines the micro and nanotechnology aspects of electronic engineering, with a focus on microelectromechanical systems and nanoelectronics. Read more

Summary

This programme outlines the micro and nanotechnology aspects of electronic engineering, with a focus on microelectromechanical systems and nanoelectronics. These technologies underpin research and development of miniaturised sensors, for example mobile phone motion and position detectors, and of nanoscale logic and memory devices for next-generation consumer electronics and future quantum devices. The programme also addresses microfluidic technology for biodevices such as point-of-care diagnostics, and covers the fundamentals of photonic circuits and devices. The modules cover state-of-the-art design, fabrication and characterisation methodologies, utilising industry-standard tools and involve our extensive cleanroom complex.

Modules

Semester one: Microfabrication; Microsensor Technologies; Nanoelectronic Devices; Advanced Memory and Storage; Microfluidics and Lab-on-a-Chip; Bionanotechnology; Introduction to Silicon Photonics.

Semester two: Bio/Micro/Nano Systems; Green Electronics; Nanofabrication and Microscopy; Quantum Devices and Technology; Medical and Electrical Technologies; Photonic Materials.

Plus three-month independent research project culminating in a dissertation.

Visit our website for more information.



Read less
This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications. Read more

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Semiconductor Materials; Principles of Semiconductor Device Technology; Packaging and Reliability of Microsystems; Nanoscale Electronic Devices; Energy Efficient Semiconductor Devices; Optical Communication Devices and Systems; Compound Semiconductor Device Manufacture; Major Research Project.

Teaching and assessment

Research-led teaching, lectures, laboratories, seminars and tutorials. A large practical module covers the design, manufacture and characterisation of a semiconductor component, such as a laser or light emitting diode. This involves background tutorials and hands-on practical work in the UK’s national III-V semiconductor facility. Assessment is by examinations, coursework or reports, and a dissertation with poster presentation.

Read less

Show 10 15 30 per page



Cookie Policy    X