• University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Reading Featured Masters Courses
Coventry University Featured Masters Courses
Bath Spa University Featured Masters Courses
"desalination"×
0 miles

Masters Degrees (Desalination)

We have 13 Masters Degrees (Desalination)

  • "desalination" ×
  • clear all
Showing 1 to 13 of 13
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Desalination and Water Re-use at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Desalination and Water Re-use at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University is a world-leader in the area of desalination for water treatment.

Key Features of Desalination and Water Re-use Programme

Pressure is increasing on our limited water resources. With more people requiring clean water, effective solutions need to come from reusing water in the most efficient way.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment.

The Centre benefits from world-leading expertise in the area of desalination for water treatment.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) research areas, broadly speaking, fit into one of three categories:

- Drinking water treatment: improved methods of portable water treatment, with a view to meeting tightening regulations at cheaper capital and operating costs.

- Waste-water treatment: technologies for the efficient removal of environmentally harmful materials and thus reduced emissions per output of discharge.

- Process-water treatment: methods for the treatment of process streams enabling the recycling of water and valuable chemical intermediates.

The MSc by Research Desalination and Water Re-use has a wide range of subject choices including:

- Modelling membrane processes

- Membrane and process characterisation

- Hazardous substances

- Ozonation and Advanced Oxidation Processes (AOPs)

- Pilot scale studies

MSc by Research in Desalination and Water Re-us typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

The new home of the Desalination and Water Re-use programme is at the innovative Bay Campus which provides some of the best university facilities in the UK, in an outstanding location.

The Desalination and Water Re-use programme also benefits from the facilities at the Centre for Water Advanced Technologies and Environmental Research (CWATER) at Swansea University.

Links with industry

One of the major strengths of Desalination and Water Re-use at Swansea University is the close and extensive involvement with local, national and international engineering companies. The Desalination and Water Re-use programme has links with the following companies:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
The Water Technology and Desalination MSc provides students with a sound understanding of a range of technologies that can be developed to provide safe, accessible water supply from saline groundwater and seawater. Read more
The Water Technology and Desalination MSc provides students with a sound understanding of a range of technologies that can be developed to provide safe, accessible water supply from saline groundwater and seawater. In particular, there is a technical focus on the design parameters and processes underpinning their efficient performance and operation.

Students will develop a critical awareness of the wider issues of resource management within the context of global change and the challenges presented by the need for desalination to be delivered on a technically robust and sustainable basis.

For more information on the programme content, please visit Heriot-Watt's online prospectus:
http://www.postgraduate.hw.ac.uk/prog/msc-water-technology-and-desalination/

About the programme

The Water Technology and Desalination programme is jointly offered through the Institute for Infrastructure and Environment at Heriot-Watt University and the International Desalination Association's (IDA) Desalination Academy and is therefore primarily designed for graduates in engineering, earth and environmental sciences or other related disciplines looking to extend their technical expertise, gain further learning to meet their desire for professional development or to advance their employment opportunities.

We also welcome professionals from other backgrounds who have relevant experience in the water industry.

Topics covered:
=============
The Water Technology and Desalination programme comprises 8 courses (7 mandatory and 1 optional). At MSc level students will also complete a research dissertation.

• Integrated Water Resource Management
• Thermal and Hybrid Processes
• Membrane Processes
• Water Conservation
• Intake, pre-treatment, post-treatment and Environmental Issues
• Water and Wastewater Treatment
• Desalination Economics and Management
• Marine Water Discharges (optional)
• Irrigation Water Management (optional)

Flexible study

The Water Technology and Desalination programme has been specifically designed for online Independent Distance Learning (IDL), to cater for the needs of our students who are often in employment or have other commitments, providing flexible study options that fit around work or family.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent.

We offer a range of English language courses: http://www.hw.ac.uk/study/english.htm

Read less
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering. Read more
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and including such famous people as James Watt.
◾This programme is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in any combination of a wide range of Mechanical Engineering areas.
◾This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Engineering Design whilst simultaneously enabling the students to deepen their knowledge of certain engineering disciplines, which have largely been chosen on the basis of the research and design teaching strengths of the Discipline. The choice includes Materials and Mechanics, Dynamics and Control, Desalination Technology and Thermal Science.
◾The compulsory design part deals with innovation aspects of industrial and mechanical design and the integration of design methods and techniques. Not only is design taught in this way, but also practised in its research activities, both explicitly and implicitly. It is practised explicitly through research in, for instance rapid design and manufacture, and implicitly through the design of, for instance, heart assist devices, paraplegic assist devices and mountain bike components together with apparatus for experiments and for demonstration.
◾You will broaden and/or deepen your knowledge of selected engineering disciplines, which have been chosen on the basis of our research strengths, including materials, vibration, control and desalination.
◾This programme has a September and January intake*.

*For suitable qualified candidates

Programme structure

Modes of delivery of the MSc in Mechanical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Core courses

◾Advanced manufacture
◾Integrated engineering design project.

Optional courses

◾Advanced thermal engineering
◾Control
◾Desalination technology
◾Dynamics
◾Lasers
◾Materials engineering
◾Mechanics of solids and structures
◾Vibration.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Mechanical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The MSc in Mechanical Engineering has been developed for students with different training backgrounds or from different educational origins; and it is particularly suitable if you currently work or intend to work in Mechanical Engineering industries.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors, in the area of Mechanical Engineering include: Babcock, Howdens, Doosan & Terex.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in a wide range of industries.

Career prospects

Career opportunities include positions in engineering design, materials and mechanics, dynamics, control, desalination technology and thermal science.

Graduates of this programme have gone on to positions such as:
Technical Engineer at Bridon International Ltd
Mechanical Engineer in a university
Mechanical Engineer for Oil and Gas at AKER Solutions
Project Engineer in state government.

Accreditation

The MSc Mechanical Engineering is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Read more
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Water, Waste and Environmental Engineering has been traditionally referred to as public health engineering in the United Kingdom. In this postgraduate course, the technical aspects of both natural and engineering environmental systems will be covered. There will be broad interdisciplinary subjects synthesizing knowledge from a wide spectrum of science and engineering, expanding the content of public health engineering, which in the UK has traditionally been responsible for developing the infrastructure for managing water and waste.

Students will develop engineering skills and be able to design, develop and apply concepts for water and waste as a resource based on environmental sensitivity and be competent in planning, modelling, design, construction, operations, maintenance and control of both engineered and natural water and earth resources.

Students who select this postgraduate programme will gain a skill set that will enable them to progress in the fields of:

- Environmental engineering
- Desalination and water reuse
- Water resources engineering
- Hydraulics and hydrology
- Environmental fluid hydraulics
- Environmental remediation
- Waste management
- Other specialities valued in both the private and public sectors.

The MSc in Water, Waste and Environmental Engineering will incorporate solid waste management, contaminated land treatment and the use of geographic information systems (GIS) with emphasis on management of the earth's resources.

The programme will explain the relationship between different earth resources including hydrosystems, both 'engineered' - hydro-power plants, water/wastewater treatment plants, sewers - and 'natural' - rivers, lakes, wetlands, irrigation districts, reservoirs etc., solid wastes, brownfield land, and geo-derived primary resources and their sustainable management.

The aims of the programme are:

- To show you how to design, implement and manage sustainable, risk-reduced eco-friendly solutions for reducing the environmental impact of exploitation of earth's resources in the context of environmental engineering-related issues facing global societies

- To provide you with the skills to further your careers in these areas

- To support you in understanding the innovative and pioneering approaches in this field and to be able to apply them to the solution of real-world problems in developing novel industrially-relevant solutions.

Visit the website http://www2.gre.ac.uk/study/courses/pg/enggen/wwee

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Environmental Engineering and Sustainability (15 credits)
Hydrosystems Engineering and Management (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Information Technologies for Environmental Engineering (15 credits)
Research, Planning and Communication (15 credits)
Waste Management and Remediation Technology (15 credits)
Desalination and Water Reuse (15 credits)
Water and Sanitation for Developing Countries (15 credits)
Water and Wastewater Engineering (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Environmental Engineering and Sustainability (15 credits)
Information Technologies for Environmental Engineering (15 credits)
Waste Management and Remediation Technology (15 credits)
Desalination and Water Reuse (15 credits)

-Year 2:
Students are required to study the following compulsory courses.

Hydrosystems Engineering and Management (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)
Water and Sanitation for Developing Countries (15 credits)
Water and Wastewater Engineering (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Teaching and learning

The number of contact hours (e.g. lectures, seminars and feedback on assignments) per module/course ranges from 50-75 hours for the one year full time programme or roughly equivalent to four hours per week per module. The expected self-study time is approximately 80-90 hours per module per year (roughly equivalent to four hours per week per module).

You will be taught by academics with a range of industrial and academia experience for each module.

Assessment

Project work, assignments and laboratory exercises in addition to substantial written examination of course materials will occur in most modules. The Environmental Engineering Research Project will require submission of a substantial final report/dissertation. Assessment of this module will involve participation in a poster and seminar presentation and a final oral examination.

Professional recognition

Accreditation will be sought from the Chartered Institution of Water and Environmental Management (CIWEM) and The Joint Board of Moderators (JBM) including the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and Institute of Highway Engineers.

Career options

Postgraduate students from this programme will find such employment opportunities as engineers, scientist and technical managers in the private sector (engineering design firms, engineering consultancy, project management, risk management and waste management), in the public sector (environmental protection engineering, regulations and standards, local government) and in non-governmental sectors (NGOs, environmental advocacy) or may wish to pursue further qualifications such as a PhD within the Faculty of Engineering and Science at the University of Greenwich to become even more specialised. Employers of environmental engineers include engineering consultancies (such as AECOM, Atkins, Mott MacDonald Group, Hyder), government agencies (such as Environment Agency, Scottish Environment Protection Agency) and NGOs (such as Oxfam, Engineers without Boarders, Water Aid).

Careers and employability

FACULTY OF ENGINEERING & SCIENCE
We work with employers to ensure our degrees provide students with the skills and knowledge they need to succeed in the world of work. They also provide a range of work experience opportunities for undergraduates in areas such as civil engineering, manufacturing and business information technology.

Students also benefit from the services provided by the university’s Guidance and Employability Team, including ‘JobShop’, mentoring, volunteering and the student ambassador scheme.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment. Read more
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment.

Chemical Engineering provides essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way. Chemical Engineers understand how to alter the chemical, biochemical or physical state of a substance, to create everything from health care products (face creams, shampoo, perfume, drugs) to food (dairy products, cereals, agro-chemicals) and water (desalination for freshwater) to energy (petroleum to nuclear fuels).

Your study at MSc level at Bradford will be a foundation for life aimed at developing a deep understanding of advanced technical principles, analytical tools, and competence in their application together with a wide range of management, personal and professional skills. The course will provide you with essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way.

Why Bradford?

Flexibility of career path – Choice of three routes:
-Chemical Engineering - advanced chemical engineering and process technology skills for exciting and challenging careers in chemical and process industries
-Petroleum Engineering -matches the needs in different areas of oil and gas production and in medium/small operating and consulting companies
-Polymer Engineering - design and operation of processes to engineer materials with advanced properties leading to careers in diverse manufacturing sectors

Research Strengths - Internationally acclaimed research activities in the following areas:
-Chemical and Petrochemical Engineering
-Polymers
-Energy
-Water
-Pharmaceutical engineering
-Coating and advanced materials engineering

Rankings

Top Five: Chemical Engineering at the University of Bradford is ranked 5th in the UK in the Guardian University League Table 2017/

[[Modules
MSc Chemical & Petroleum Engineering (Chemical Engineering Background)
-Desalination Technology
-Materials & Manufacturing Processes
-Transport Phenomena
-Design Optimisation
-Computational Fluid Dynamics
-Upstream Production & Refinery Operations
-Research Skills
-Food & Pharmaceutical Processes Engineering
-Polymer Engineering
-Risk Management
-Engineering Computational Methods
-MSc Project

MSc Chemical & Petroleum Engineering (non-Chemical Engineering Background)
-Desalination Technology
-Transport Phenomena
-Chemical Engineering Practice
-Material & Manufacturing Processes
-Design Optimisation
-Computational Fluid Dynamics
-Upstream Production & Refinery Operations
-Research Skills
-Food & Pharmaceutical Processes Engineering
-Polymer Engineering
-Risk Management
-Engineering Computational Methods
-MSc Project

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. Read more
The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. The programme content includes design engineering and other mechanical engineering disciplines.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and includes famous people as James Watt.
◾If you have a mechanical engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of mechanical engineering, this programme is designed for you.
◾You will learn to understand management principles and practices in an engineering environment, evaluate engineering information, and apply business and management tools. You will combine engineering and management knowledge and skills in projects and problem solving.
◾The programme is split into two semesters and a summer session. One semester will be based in the Business School and is aimed at developing knowledge and skills of management principles and techniques. An applied approach is adopted, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾During the other semester there will be a combination of compulsory and optional courses that will combine to provide the required credits in Mechanical Engineering.
◾In the summer session, a project will be undertaken by MSc students. The topic of the project can be either in Management, or Mechanical Engineering, in which case the topic will usually be closely allied with the research interests of the Discipline.
◾This programme has a September and January intake.

Aims of the programme:
◾To understand management principles and practices in an engineering environment.
◾To evaluate engineering information, and subsequent application of business and management.
◾To combine engineering and management knowledge and skills in projects and problem solving.

Programme structure

TThere are two semesters of taught material and a summer session working on a project or dissertation for MSc students. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen mechanical engineering subjects.

Core course
◾Integrated systems design project.

Optional courses
◾Desalination technology
◾Dynamics
◾Materials engineering
◾Vibration.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to mechanical engineering projects, and January entry students have a choice of mechanical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾You will gain first-hand experience of managing an engineering project through the integrated systems design project, allowing development of skills in project management, quality management and accountancy.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can either choose a topic from a list of MSc projects in Mechanical Engineering or the Management portion of your degree. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾In addition to providing an in-depth area in engineering, the programme aims to give graduate engineers with little or no Management experience, the opportunity to develop the knowledge and skills needed for modern engineering or technology management.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors, in the area of Mechanical Engineering include: Babcock, Howdens, Doosan & Terex.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in Mechanical Engineering industries.

Career prospects

Career opportunities include positions in project management, engineering design, materials & mechanics, dynamics, control and desalination technology.

Graduates of this programme have gone on to positions such as:
Technology Engineer at Procter and Gamble
Quality Engineer at Worcester Bosch.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Key Features of MSc in Chemical Engineering

The MSc Chemical Engineering course is built upon the wide range of research in chemical engineering at Swansea University. This includes engineering applications of nanotechnology, bioengineering, biomedical engineering, cell and tissue engineering, chemical engineering, colloid science and engineering, desalination, pharmaceutical engineering, polymer engineering, rheology, separation processes, transport processes, and water and wastewater engineering.

The MSc Chemical Engineering research project provides an opportunity to work with a member of academic staff in one of the above, or related, area of research. The project may also involve collaboration with industry.

The taught component of the MSc Chemical Engineering course covers specific areas of advanced chemical engineering as well as the complex regulations that are found in the engineering workplace. It also provides an opportunity for the development of personal and transferable skills such as project planning, communication skills, and entrepreneurship.

As a student on the Master's course in Chemical Engineering, you will advance your technical knowledge, which can lead to further research or a career in chemical engineering.

Modules

Modules on the MSc Chemical Engineering course typically include:

Complex Fluids and Rheology

Entrepreneurship for Engineers

Colloid and Interface Science

Communication Skills for Research Engineers

Water and Wastewater Engineering

Membrane Technology

Environmental Analysis and Legislation

Optimisation

Desalination

Polymers: Properties and Design

Principles of Nanomedicine

Nanoscale Structures and Devices

Pollutant Transport by Groundwater Flows

MSc Research Practice

MSc Dissertation - Chemical Engineering

Accreditation

The MSc Chemical Engineering at Swansea University is accredited by the Institution of Chemical Engineers (IChemE).

The MSc Chemical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Swansea staff have research links with local, national, and international companies. An industrial advisory board, consisting of eight industrialists from a range of chemical engineering backgrounds, ensure our courses maintain their industrial relevance.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Careers

The demand for Chemical Engineering graduates remains excellent with the highest starting salaries out of all engineering disciplines.

Chemical engineers find employment in a variety of public and private sector industries, applying the principles of chemical engineering to health, energy, food, the environment, medicine, petrochemicals and pharmaceuticals.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition of delivering pioneering innovative process engineering solutions. As we have a wide range of research in chemical engineering, Swansea University provides an excellent base for your research as an MSc by Research student in Chemical Engineering.

Key Features of MSc by Research in Chemical Engineering

There is a wide range of research in chemical engineering at Swansea University. This includes:

Membrane separation

Biochemical engineering

Biomanufacturing

Engineering applications of nanotechnology

Bioengineering, biomedical engineering

Cell and tissue engineering

Colloid science and engineering

Desalination

Pharmaceutical engineering

Polymer engineering

Rheology

Separation processes

Transport processes

Water and wastewater engineering

The MSc by Research in Chemical Engineering at Swansea University provides an opportunity to work with a member of academic staff in one of the above, or related, area of research.

The MSc by Research in Chemical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Links with industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Swansea University has resources specific to Chemical Engineering.

Research

Research in Chemical Engineering at Swansea is located within the Systems and Process Engineering Research Centre which has a number of focused research groups including the Centre for Water Advanced Technologies and Environmental Research (CWATER), the Centre for Complex Fluids Processing and the Multidisciplinary Nanotechnology Centre.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment. The Centre benefits from world-leading expertise in the areas of desalination and membrane technologies for water treatment.

The Centre for Complex Fluids Processing is internationally recognised for its leading and innovative research on the processing of complex fluids which is a major feature of modern industry. Such fluids are extremely diverse in origin and composition - ranging, for example, from fermentation broths and food products to inks and mineral slurries. However, underlying this diversity are certain properties that must be understood if the processing is to be effective and efficient. These include flow behaviour in process equipment, how the components of the fluid determine its overall properties and how individual components may be selectively separated.

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.



Read less
Our Mechanical Engineering MSc programme is accredited by the Institution of Mechanical Engineers (IMechE). It comprises advanced topics in mechanical engineering and features our popular industrially linked projects. Read more

Our Mechanical Engineering MSc programme is accredited by the Institution of Mechanical Engineers (IMechE). It comprises advanced topics in mechanical engineering and features our popular industrially linked projects. You will benefit from the teaching leadership of some of the world experts in their fields, in a state-of-the-art working environment, and will receive a number of networking opportunities to enhance your career prospects.

Mechanical engineering combines scientific principles, mathematics and realisation. Scientific principles underpin all aspects of engineering, while mathematics is the language used to quantify and optimise solutions. Realisation encapsulates the whole range of creative abilities which distinguish the engineer from the scientist; that is, to conceive, make and actually bring to fruition something which has never existed before.

The course comprises advanced topics in mechanical engineering, with modules that have been developed to complement departmental research, along with our strong industrial links. Modules and projects are delivered by academic staff who have international expertise in their discipline.

The knowledge and experience that you will acquire during your MSc study will enable you to take advantage of the many senior engineering and technology employment opportunities available at home and abroad. At the same time, you will be developing capabilities that are much valued by employers more generally, where your problem solving, analytical skills and team working abilities will be in demand. During your Masters degree, you will participate in exciting projects that are both challenging and linked into real industrial need, and where possible, connected to an industrial partner. These projects have led to employment for many alumni of the course. Examples are:

  • Control design for a mobile robot used for nuclear decommissioning tasks
  • Fire resistance of FRP-Concrete columns
  • Wave powered eddy current heat generator for sea water desalination technologies
  • Investigation of advanced air cooling using synthetic jets
  • Exploration of Stability and Buckling of Various Structural Configurations of Composite Materials Under Different Environmental Loads
  • Design and Control of High Performance Cars with Active Aerodynamic Systems
  • Improved solar thermal system


Read less
The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles. Read more

About the course

The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles.

Brunel’s MSc in Water Engineering is unique in providing specialist knowledge on the critical sub-topics of water and wastewater management and engineering, desalination systems, building water services engineering, industrial waste water management, and water in health care.

The programme demonstrates the links between theory and practice by including input from our industrial partners and through site visits. This is a key aspect for establishing a competitive and high added value course that provides adequate links with industry.

Features of the course include:

Students’ skills in gathering and understanding complex information from a variety of sources (including engineering, scientific and socio-economic information) will be developed in an advanced research methods module. 

Issues relating to risk and health and safety will be introduced in the research methods module and built on in specialist modules. 

Generic modules in financial and project management will underpin specialist modules focusing on water engineering topics.

Real problem-solving examples – starting from basic principles, to the identified problem, the solution, the implementation process and was implemented and the end result. 

Real case studies – demonstrating how environmental and economic sustainability is considered within civil engineering, particularly in water resources management.

Aims

Problems associated with water resources, access, distribution and quality are amongst the most important global issues in this century. Water quality and scarcity issues are being exacerbated by rising populations, economic growth and climate change*.

Brunel's programme in Water Engineering aims to develop world class and leading edge experts on water sustainability who are able to tackle the industry’s complex challenges at a senior level. During the programme you will also learn about the development and application of models that estimate the carbon and water footprint within the energy and food sector.

The MSc is delivered by experienced industry professionals who bring significant practical experience to the course – and the University’s complete suite of engineering facilities and world-class research experience are set up for development and engineering of advanced systems, testing a variety of processes, designs and software tools.

*Recent figures indicate that 1.1 billion people worldwide do not have access to clean drinking water, while 2.6 billion do not have adequate sanitation (source: WHO/UNICEF 2005). 

Course Content

The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the water engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

- To provide education at postgraduate level in civil engineering. 
- To develop the versatility and depth to deal with new, complex and unusual challenges across a range of water engineering issues, drawing on an understanding of all aspects of water engineering principles. 
- To develop imagination, initiative and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations. 
- To provide a pathway that will prepare graduates for successful careers including, where appropriate, progression to Chartered Engineer status.

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

- The principles of water engineering, including fluid mechanics, hydrology, and sustainable design. 
- Specialist areas that impact on the successful application of water engineering knowledge projects, e.g. sustainable construction management, financial management and risk analysis. 
- The interplay between engineering and sustainability in complex, real-world situations.

At the cognitive level students will be able to:

- Select, use and evaluate appropriate investigative techniques.
- Assemble and critically analyse relevant primary and secondary data.
- Recognise and assess the problems and critically evaluate solutions to challenges in managing water engineering projects.
- Evaluate the environmental and financial sustainability of current and potential civil engineering activities.

Personal and transferable skills that students develop will allow them to:

- Define and organise a substantial advanced investigation. 
- Select and employ appropriate advanced research methods. 
- Organise technical information into a concise, coherent document.
- Effectively employ a variety of communication styles aimed at different audiences. 
- Plan, manage, evaluate and orally-presented personal projects. 
- Work as part of, and lead, a team.

Typical Modules

Each taught module will count for 15 credits, approximating to 150 learning hours. The Master's programme can be taken full time, over 12 months. The first eight months of the full time course will eight taught modules. For the final four months, students will complete a dissertation counting for 60 credits. Modules cover:

Sustainable Project Management
GIS and Data Analysis
Water Infrastructure Engineering
Risk and Financial Management
Hydrology & Hydraulics
Water Treatment Engineering
Water Process Engineering
Research Methods
Civil Engineering Dissertation

Teaching

Our philosophy is to underpin theoretical aspects of the subject with hands-on experience in applying water engineering techniques. Although you may move on to project management and supervision roles, we feel it important that your knowledge is firmly based on an understanding of how things are done. To this end, industrial partners will provide guest lectures on specialist topics.

In addition to teaching, water engineering staff at Brunel are active researchers. This keeps us at the cutting edge of developments and, we hope, allows us to pass on our enthusiasm for the subject.

How many hours of study are involved?

Contact between students and academic staff is relatively high at around 20 hours per week to assist you in adjusting to university life. As the course progresses the number of contact hours is steadily reduced as you undertake more project-based work.

How will I be taught?

Lectures:
These provide a broad overview of the main concepts and ideas you need to understand and give you a framework on which to expand your knowledge by private study.
Laboratories:
Practicals are generally two- or three-hour sessions in which you can practise your observational and analytical skills, and develop a deeper understanding of theoretical concepts.
Design Studios:
In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.
Site visits:
Learning from real-world examples in an important part of the course. You will visit sites featuring a range of water engineering approaches and asked to evaluate what you see.
One-to-one:
On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Assessment

Several methods of assessment are employed on the course. There are written examinations and coursework. You will undertake projects, assignments, essays, laboratory work and short tests.

Project work is commonplace and is usually completed in groups to imitate the everyday experience in an engineering firm, where specialists must pool their talents to design a solution to a problem.

In this situation you can develop your management and leadership skills and ensure that all members of the group deliver their best. Group members share the mark gained, so it is up to each individual to get the most out of everyone else.

Special Features

Extensive facilities
Students can make the most of laboratory facilities which are extensive, modern and well equipped. We have recently made a major investment in our Joseph Bazalgette Laboratories which includes hydraulic testing laboratory equipment and facilities such as our open channel flow flumes.

Personal tutors
Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

World-class research
The College is 'research intensive' – most of our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

Strong industry links
We have excellent links with business and industry in the UK and overseas. This means:
Your degree is designed to meet the needs of industry and the marketplace.
The latest developments in the commercial world feed into your course.
You have greater choice and quality of professional placements.
We have more contacts to help you find a job when you graduate.

Visting Professors 
The Royal Academy of Engineering - UK’s national academy for engineering has appointed senior industrial engineers as visiting professors at Brunel University London.
The Visting Professors Scheme provides financial support for experienced industrial engineers to deliver face-to-face teaching and mentoring at a host of institutions. Our engineering undergraduates will benefit from an enhanced understanding of the role of engineering and the way it is practised, along with its challenges and demands. 

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course has been designed in close consultation with the industry and is accredited as a designated 'technical' MSc degree by the Join Board of Moderators (JBM). The JBM is made up of Institution of Highways and Transport and the Institution of Highway Engineeres respectively.

1. This means this course provides Further Learning for a Chartered Engineer who holds a CEng accredited first degree (full JBM listing of accredited degrees).
2. As a designated ‘technical’ MSc, it will also allow suitable holders of an IEng accredited first degree to meet the educational base for a Chartered Engineer.

Read less
The Water Technology programme is a two year programme with a joint degree. The programme is offered jointly by Wageningen University, University Twente and University of Groningen with education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden. Read more

MSc Water Technology

The Water Technology programme is a two year programme with a joint degree. The programme is offered jointly by Wageningen University, University Twente and University of Groningen with education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden

Programme summary

There are a lot of new and existing global problems related to the availability and quality of water for personal, agricultural and industrial use. And these problems require sustainable solutions with a minimal impact on the environment. Water technology has unfortunately not been a focal point of most academic research and education programmes, despite its enormous importance to society. Instead, the expertise of various research groups is usually concentrated on other processes and in some cases, only later dedicated to water treatment in spin-off projects. New technologies will be necessary to develop new concepts for the treatment of waste water. And also for the production of clean water from alternative sources like salt (sea) water, waste water or humid air in order to minimise the use of precious groundwater. These challenges require academically trained experts who can think out-of-the-box and help to find practical solutions in the near future. A dedicated joint Master Water Technology programme has been created to train and educate these experts.

The MSc Water Technology is situated in Leeuwarden, the capital of water technology, and is offered jointly by three Dutch universities: Wageningen University, the University of Twente and the University of Groningen. A combined technological approach, based on state-of-the-art universities in science and technology, will search for solutions to several developments within business and society; with a worldwide impact on the demand for and use of water. One dedicated Master programme with joint degree allows for flexibility and can be adapted to the changing needs of the labour market. Wageningen University offers a strong focus on environmental sciences, the University of Twente on science and technology, and the University of Groningen on fundamental sciences. Students will be educated in the multidisciplinary laboratory of the technological top institute for water technology called Wetsus.

The MSc Water Technology programme specifically targets students interested in beta science and technology. The programme offers a unique combination of scientific insights and technological applications from the field of Biotechnology and Chemical Engineering. This combined approach for problem solving within the global framework of water problems is an asset to the programme. The programme is a valuable addition for postgraduate students with a completed bachelor degree in Environmental Engineering, Chemical Engineering and Biotechnology; or in related fields with a strong knowledge of mathematics, physics, chemistry and/or biology, and with affinity of water processes. Students are challenged with examples and case studies of real (research) problems that they might encounter as water professionals.

Students apply for the MSc Water Technology programme at Wageningen University, but will be registered at the other two universities as well. They will have access to the facilities of all three universities. Upon the successful completion of the programme, students receive one joint degree MSc Water Technology issued by all participating universities.

Specialisations

There are no official specialisations within the programme Water Technology. Students specialise themselves by doing a thesis within one of the research fields. Some examples are: Priority compounds, Virus Control, Applied water physics, Desalination, Concentrates, Biofouling, Aquatic worms, Advanced waste water treatment, Algae, Separation at source, Resource recovery, Membrane processes and operation for wastewater treatment and reuse and Sensoring.

Your future career

This study domain is becoming more and more relevant due to the urgent need for new technologies to meet global water problems. Water technology for public drinking water production and sewage water treatment is a very large market. Furthermore, the largest use of fresh water is for irrigation purposes. The industrial water supply and industrial waste water treatment also represent a significant market. There is no question that businesses involved in water technology will grow tremendously. Besides this, human capital is a basic condition to guarantee the success and continuity of the development of sustainable technologies. In many EU countries, the lack of talented technological professionals is becoming an increasingly limiting factor. The programme prepares students for a professional position in the broad area of water technology. Graduates have good national and international career prospects in business and research.

Student Stefanie Stubbé.
"Wetsus gave me the opportunity to get personalized education: teachers that take the time for you and fellow students that challenge and collaborate with you at the same time. Water technology is going to be huge in the future; I already experienced that at several companies when I searched for an internship. Although it is sometimes hard work and far away from the "city-life" in the Netherlands; I've never regretted my choice to start this Master!"

Related programmes:
MSc Biotechnology
MSc Environmental Sciences

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Bioprocess Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Bioprocess Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition delivering pioneering innovative process engineering solutions.

Key Features of MSc by Research in Bioprocess Engineering

Our research on Bioprocess Engineering builds on established process engineering areas with application to energy, health, food, water and the environment.

One of our major strengths is our close and extensive involvement with local, national and international engineering companies.

There is a wide range of research at Swansea University. This includes:

- Bioengineering, biomedical engineering

- Desalination

- Pharmaceutical engineering

- Polymer engineering

- Separation processes

- Transport processes

- Water and wastewater engineering

MSc by Research in Bioprocess Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Students enrolled on the MSc by Research in Bioprocess Engineering benefit from the facilities at the Centre for Water Advanced Technologies and Environmental Research (CWATER) at Swansea University.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Links with Industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero



Read less
http://www.qatar.tamu.edu/admissions/graduate-admissions/. Texas A&M at Qatar offers two graduate degrees in chemical engineering. Read more
http://www.qatar.tamu.edu/admissions/graduate-admissions/

Texas A&M at Qatar offers two graduate degrees in chemical engineering: the Master of Science (M.S.), thesis option only, and Master of Engineering (M.Eng.). The M.S. degree program includes a significant research component in addition to graduate course work.

Information about specific program course work and examinations is available upon request and at chen.qatar.tamu.edu/Pages/Home.aspx.

Some research areas available within the program include liquefied natural gas safety, water and environmental management, desalination, gas-to-liquid conversion, applied catalysis, design and simulation of chemical reactors, energy efficiency, process integration and optimization, oil and gas processing, nonlinear modeling, and process dynamics and control. Modern equipment and computational tools are available in numerous laboratories to perform research in these and other areas.

The Master of Science curriculum is designed to develop new understanding through research and creativity.

Degree Plan

The student’s advisory committee, in consultation with the student, will develop the proposed degree plan. The degree plan must be completed and filed with the Office of Graduate and Professional Studies prior to the deadline imposed by the student’s college and no later than 90  days prior to the date of the final oral examination or thesis defense.

A student should submit the degree plan using the online Document Processing Submission System located at ogsdpss.tamu.edu.

A student submitting a proposed degree plan for a Master of Science degree at Texas A&M at Qatar should designate on the official degree plan form the program option “thesis option.”

Additional course work may be added to the approved degree plan by petition if it is deemed necessary by the advisory committee to correct deficiencies in the student’s academic preparation. No changes can be made to the degree plan once the student’s
Request for Final Examination or Request for Final Examination Exemption is approved by the Office of Graduate and Professional Studies.

Credit Requirement

A minimum of 32 semester credit hours of approved courses and research is required for the Master of Science degree.
Ordinarily, the student will devote the major portion of his or her time to work in one or two closely related fields. Other work will be in supporting fields of interest.

Foreign Languages

No specific language requirement exists for the Master of Science degree.

Thesis Proposal

For the thesis option Master of Science degree, the student must prepare a thesis proposal for approval by the advisory committee and the program chair. This proposal must be submitted to the Office of Graduate and Professional Studies at least 20 working days
prior to the submission of the request for the final examination.

Compliance issues must be addressed if a graduate student is performing research involving human subjects, animals, infectious biohazards, and recombinant DNA. A student involved in this type of research must check with the Office of Research Compliance
and Biosafety at +1 (979) 458-1467 to address questions about all research compliance responsibilities. Additional information can also be obtained on the website rcb.tamu.edu.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X