• Goldsmiths, University of London Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Cranfield University Featured Masters Courses
Imperial College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Leeds Featured Masters Courses
"data" AND "science" AND …×
0 miles

Masters Degrees (Data Science And Analytics)

We have 254 Masters Degrees (Data Science And Analytics)

  • "data" AND "science" AND "analytics" ×
  • clear all
Showing 1 to 15 of 254
Order by 
The MSc in Data Science & Analytics, jointly offered by the Department of Computer Science and the Department of Statistics, provides an education in the key principles of this rapidly expanding area. Read more
The MSc in Data Science & Analytics, jointly offered by the Department of Computer Science and the Department of Statistics, provides an education in the key principles of this rapidly expanding area. The combination of sophisticated computing and statistics modules will develop skills in database management, programming, summarisation, modelling and interpretation of data. The programme provides graduates with an opportunity, through development of a research project, to investigate the more applied elements of the disciplines.

Visit the website: http://www.ucc.ie/en/ckr49/

Course Details

The MSc in Data Science and Analytics is a significant collaboration between the Departments of Computer Science and Statistics; designed to provide graduates with the skills and knowledge required to help companies and public bodies deal with ever increasing and complex data. The programme emphasises the application of Computer Science and Statistics methodologies helping transform data into useful information that can support decision making.

Format

A typical 5 credit module:
• 2 lecture hours per week
• 1–2 hours of practicals per week
• Outside these regular hours students are required to study independently by reading and by working in the laboratories and on exercises.

Structure

Students must attain 90 credits through a combination of:

- Core Modules (30 credits)
- Elective Modules (30 credits)
- Dissertation (30 credits)

Part 1 (60 credits)

- Core Modules (30 credits) -

CS6405 Data Mining (5 credits) - Dr. Marc Van Dongen
ST6030 Foundations of Statistical Data Analytics (10 credits)
ST6033 Generalised Linear Modelling Techniques (5 credits)

- Database Modules -

Students who have adequate database experience take:

CS6408 Database Technology (5 credits) - Mr. Humphrey Sorensen
CS6409 Information Storage and Retrieval (5 credits) - Mr. Humphrey Sorensen

- Students who have not studied databases take:

CS6503 Introduction to Relational Databases (5 credits)
CS6505 Database Design and Administration (5 credits)

Elective Modules (30 credits)

Students must take at least 10 credits of CS (Computer Science) modules and at least 10 credits of ST (Statistics) modules from those listed below:

CS6322 Optimisation (5 credits) - Dr. Steve Prestwich
CS6323 Analysis of Networks and Complex Systems (5 credits) - Prof. Gregory Provan
CS6509 Internet Computing for Data Science (5 credits)
ST6032 Stochastic Modelling Techniques (5 credits)
ST6034 Multivariate Methods for Data Analysis (10 credits)
ST6035 Operations Research (5 credits)
ST6036 Stochastic Decision Science (5 credits)

- Programming Modules -

Students who have adequate programming experience take:

CS6406 Large-Scale Application Development and Integration l (5 credits) - Professor Gregory Provan
CS4607 Large-Scale Application Development and Integration ll (5 credits) - Professor Gregory Provan

- Students who have not studied programming take:

CS6506 Programming in Python (5 credits)
CS6507 Programme in Python with Data Science and Applications (5 credits) - Dr. Kieran Herley

Part 2 (30 credits)

Students select one of the following modules:

CS6500 Dissertation in Data Analytics (30 credits)
ST6090 Dissertation in Data Analytics (30 credits)

Assessment

Full details and regulations governing Examinations for each programme will be contained in the Marks and Standards 2015 Book and for each module in the Book of Modules 2015/2016 - http://www.ucc.ie/modules/

Postgraduate Diploma in Data Science and Analytics

Students who pass each of the taught modules may opt to exit the programme and be conferred with a Postgraduate Diploma in Data Science and Analytics.

Careers

This programme aims to prepare students to manage, analyse and interpret large heterogeneous data sources. Graduates will design, compare and select appropriate data analytic techniques, using software tools for data storage/management and analysis, machine learning, as well as probabilistic and statistical methods. Such abilities are at the core of companies that constantly face the need to deal with large data sets.

Companies currently seeking graduates with data analytics skills include: firms specialising in analytics, financial services and consulting, or governmental agencies.

Companies actively recruiting Computer Science graduates in 2014-15 include:

Accenture, Aer Lingus, Amazon, Apple, Bank of America Merrill Lynch, Bank of Ireland, BT, Cisco, CiTi-Technology, Cloudreach, Dell, Digital Turbine Asia Pacific, EMC, Enterprise Ireland, Ericsson, First Derivatives, Guidewire, IBM, Intel, Open Text, Paddy Power, Pilz, PWC, SAP Galway Transverse Technologies, Trend Micro, Uniwink, Version 1 (Software).

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
We are surrounded by data. The variety and amount we collect and store grows every day, from the simplest of retail transactions to the complex and intimate medical records of millions. Read more

We are surrounded by data. The variety and amount we collect and store grows every day, from the simplest of retail transactions to the complex and intimate medical records of millions.

Why do we store data? Where do we store it? How do we retrieve it? What do we use it for?

There is an increasing demand for individuals who can manage and control the way data is used. These individuals require an understanding of computer science and mathematics as well as a range of sector specific skills which can be applied in a variety of business environments.

The Data Science and Analytics MSc is a highly flexible course which offers the opportunity to develop a range of skills, including analysing structured and unstructured data, analysing large datasets and critically evaluating results in context, through a combination of compulsory and optional modules. By choosing appropriate modules you can follow specific pathways, in business management, healthcare or geographic information systems (GIS), which will allow you to tailor the programme to suit your background and needs.

The course combines expertise from the Schools of Computing, Geography and Mathematics with that of Leeds University Business School and the Yorkshire Centre for Health Informatics. This collaboration allows you to benefit from a range of data science perspectives and applications, supporting you to tailor your learning to your career ambitions.

Course content

The programme will equip students with the necessary knowledge and skills in data science.

Students on this programme will be benefit from being taught by experts from different academic units: the School of Mathematics (SoM); the School of Computing (SoC); the Yorkshire Centre for Health Informatics (YCHI); the Faculty of Medicine and Health (FoM); the School of Geography (SoG) and Leeds University Business School (LUBS).

Modules are available from each of these areas and in addition there are three new modules available in the SoM for students who are not from a mathematics/statistics background, while modules in the SoC will be suitable for students on this programme who are not from a computer science background.

The programme will therefore expose students to different perspectives on data science, including the mathematical and computational underpinnings of the subject and practical understanding of application in a specific context. In particular, we anticipate many projects for the dissertation will span at least two units with joint supervision. As well as emphasizing the application nature of the programme, the dissertation will feature strongly data elucidation, analysis, and interpretation of real-world problems.

Course structure

Compulsory modules

  • Data Science 15 credits
  • Learning Skills through Case Studies 15 credits
  • Dissertation in Data Science and Analytics 60 credits 

For more information on typical modules, read Data Science and Analytics MSc in the course catalogue

Learning and teaching

Teaching is by lectures, tutorials, seminars and supervised research projects.

Assessment

Assessment is by a range of methods, including formal examination, assignments, coursework, reports and practical activities.

Career opportunities

There is increasing demand for individuals who can manage and control the way data is used. These individuals require an understanding of computer science and mathematics as well as a range of sector specific skills.

The emerging era of ‘big data’ brought about by the digital technology revolution shows no signs of abating. In this era, demand for data scientists will continue to grow, with one report forecasting a shortage of 140,000 – 190,000 data scientists by 2018 in the US alone.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Our MSc in Data Science and Analytics aims to provide you with a comprehensive set of skills needed to handle, collect, store and analyse large and complex sets of data. Read more
Our MSc in Data Science and Analytics aims to provide you with a comprehensive set of skills needed to handle, collect, store and analyse large and complex sets of data. You will be taught by subject experts from both the School of Mathematics and the School of Computer Science and Informatics, which will allow you to see the topic from different perspectives and provides access to a wide range of modules across both Schools.

Throughout the course you will develop data handling and extraction skills, programming skills, machine learning and informatics skills, and problem solving and modelling skills. You will undertake case studies and project work which will give you the opportunity to put your skills into practice and provides valuable experience of working in the field. The dissertation project, typically undertaken with an industrial partner, will allow you to work with complex data in a creative manner and a problem-solving environment, as well as to communicate your ideas and findings effectively.

This programme is available on a one year full-time basis or a three-year part-time basis.

Distinctive features:

• A three-stage degree with exit points at PG Certificate, PG Diploma and Master’s level, allowing you to go into as much depth as you like.

• Acquire transferable data science and analytics skills that are highly sought after in a broad range of sectors.

• Learn from experts across the Schools of Mathematics and Computer Science and Informatics, and related University research groups specialising in various applications of data science and analytics, for example the Data Innovation Research Institute, Social Data Science Lab, and Health Modelling Centre Cymru.

• Gain valuable work experience; we have some placement opportunities available with industrial partners in the UK and abroad.

Structure

There are three stages to this programme. During the first stage, you will study a number of core modules covering fundamental subjects such as statistics, pattern recognition, data mining and optimisation. You may choose to exit after this first stage, at which point you may be able to obtain a PG Certificate qualification.

The second stage consists of a range of optional modules where you can explore subjects of interest to you and relevant your potential career path, for example web and social computing, time series and forecasting, supply chain modelling and visual communication and information design. You may choose to exit after the second stage, at which point you may be able to obtain a PG Diploma qualification.

The third and final stage consists of a three-month dissertation project, which will typically involve working with a company on a real problem of importance. Following successful completion of all modules and the dissertation, you may be able to obtain a Master’s qualification.

As a full-time student, you will complete all modules and your dissertation project in year one.

Part-time students will typically only need to be in the University for lectures and workshops for the equivalent of one day per week over 24 weeks for years 1 and 2. The dissertation project is undertaken during year 3.

Core modules:

Pattern Recognition and Data Mining
Statistical Methods
Optimisation Methods
Dissertation

Optional modules:

Information Processing in Python
Computer Science Topic 1: Web and Social Computing
Web Application Development
Distributed and Cloud Computing
Informatics
Visual Communication and Information Design
Time Series and Forecasting
Supply Chain Modelling
Statistics and Operational Research in Government
Credit Risk Scoring

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, seminars, computer workshops and tutorials.

Programming skills and the use of relevant software packages will be taught in our dedicated computer suites. We often invite industry experts to give presentations, which our students are welcome to attend.

We will allocate three supervisors to you for your dissertation project. Usually your supervisors will be two members of academic staff with an interest or specialism in your field of research and a sponsor supervisor from the organisation you will work with during your project. You should meet regularly with your supervisor throughout your project.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies, and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Trevithick Library, which holds our collection of mathematical and computer science-related resources, as well as to the other Cardiff University Libraries.

We will provide you with a copy of the Student Handbook, which contains details of each School’s policies and procedures. We also support students through the University’s virtual learning environment, Learning Central, where you can ask questions in a forum or find course-related documents.

Cardiff University also offers a wide range of support services which are open to our students, such as the Graduate Centre, counselling and wellbeing, financial and careers advisors, the international office and the Student Union.

Feedback:

We offer written and oral feedback, depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are usually happy to give advice and guidance on your progress. We aim to provide you with feedback in a timely manner after you have submitted an assessment.

Assessment

We will assess your progress throughout the course. These assessments may take the form of written exam papers, in-module assignments, and the project dissertation, where knowledge and technical competence will be appraised. We may also use group work, oral presentations and poster displays to test communication, critical thinking and problem solving skills.

Career prospects

Data is increasingly cheap and ubiquitous, and is being collected on a massive scale. There is a significant and growing demand for professionals who can work efficiently and effectively with handling such complex and sizeable data and to extract insights to help inform decision-making. The skills you gain during the programme will equip you for graduate roles in this field. This new MSc programme enhances the already well-established related postgraduate taught programmes that the School of Mathematics offers, and is expected to be as successful in the recruiting of our graduates. Previous postgraduates have gone on to work with a variety of companies and Government organisations including the Office for National Statistics, Lloyds Banking Group, Nationwide, British Airways, Network Rail, UK Government, The Financial Times, Virgin Media, Welsh Water and Admiral Insurance.

If you prefer to continue on a more academic career pathway, you may choose to continue your studies with a PhD.

Placement

You will undertake a three-month placement for your dissertation project, based with one of our industrial partners in the UK or abroad.

We employ a dedicated Knowledge Exchange Officer who will work with you to obtain a placement and support you throughout your project.

Past placements achieved by our students have been with companies such as Admiral, British Airways, Lloyds Banking Group, Welsh Water, Office for National Statistics, Sainsbury’s, Virgin Media, Transport for London, and Deloitte.

Read less
Data is being collected at an unprecedented speed and scale – but 'big data' is of little use without 'big insight'. The skills required to develop such insight are in short supply and the shortage of skilled workers in the data analytics market is cited as a key barrier. Read more

About the course

Data is being collected at an unprecedented speed and scale – but 'big data' is of little use without 'big insight'. The skills required to develop such insight are in short supply and the shortage of skilled workers in the data analytics market is cited as a key barrier.

The Data Science and Analytics MSc programme provides these skills, combining a strong academic programme with hands-on experience of leading commercial technology – and the chance to gain industry certification.

You will develop both your critical awareness of the state-of-the-art in data science and the practical skills that help you apply data science more effectively in the business, science and social world.

The programme is run in conjunction with SAS, a market leader in business analytics software and services, and the largest independent vendor in the business intelligence market.

Brunel's programme is unique in being the only current MSc programme that is fully integrated with SAS, providing the SAS base certification.

Aims

The Harvard Business Review calls data science the “sexiest job of the 21st century” – with demand for graduates with SAS skills rapidly rising across financial, retail and government sectors. Data science is now in vogue.

From government, social networks and ecommerce sites to sensors, smart meters and mobile networks, data is being collected at an unprecedented speed and scale – creating an expanding job market for qualified data analysts.

The practical aspects of many of the modules will allow you to gain hands-on experience of several commercial SAS tools (e.g. SAS BASE, Enterprise Guide, Enterprise Miner and Visual Analytics). This experience is designed, in part, to develop skills in preparation for the SAS certification part of the programme.

By the end of the course you should be able to:

Comprehend the key concepts and nuances of the disciplines that need to be synthesised for effective data science.
Demonstrate a critical understanding of the challenges and issues arising from taking heterogeneous data at volume and scale, understanding what it represents and turning that understanding into insight for business, scientific or social innovation (i.e. data science).
Develop a practical understanding of the skills, tools and techniques necessary for the effective application of data science.
Apply a practical understanding of data science to problems in social, business and scientific domains.
Evaluate the effectiveness of applied data science in relation to the issues addressed.

Course Content

Your studies on the course will cover the modules listed below. The practical aspects of many of the modules will allow you to gain hands-on experience of several commercial SAS tools (e.g. SAS BASE, Enterprise Guide, Enterprise Miner and Visual Analytics). That experience is designed, in part, to develop skills for the SAS certification that partners the programme.

Typical Modules:

Digital Innovation
Quantitative Data Analysis
High Performance Computational Infrastructures
Systems Project Management
Big Data Analytics
Research Methods
Data Visualisation
Learning Development Project
Dissertation

Special Features

SAS Certification
As an integral part of the programme, you will gain hands-on experience of commercial SAS tools – SAS being the market leader in business analytics software and services, and the largest independent vendor in the business intelligence market.
You will have the opportunity to obtain SAS certification (e.g. SAS Base Programming) which is a recognised industry qualification, following a two week SAS certification ‘boot camp’ preparation course.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Teaching

Module are typically presented in a mixture of lecture and seminar/lab format. However, where appropriate other teaching methods will also be incorporated. All our learning environments are supported by the market leader in Virtual Learning Environments (VLE), the BlackboardLearn system.

Assessment

Your learning will be evaluated through a combination of in module assessments and more traditional exams, with module specific assessments – for example, presentations within the Learning Development Project.

Read less
The MSc in Data Science and Analytics is a 12 month conversion course (new in 2017) designed to give students the knowledge and skills to collect, process analyse and visualise data in order to extract useful information, explore patterns and evaluate models. Read more

Overview

The MSc in Data Science and Analytics is a 12 month conversion course (new in 2017) designed to give students the knowledge and skills to collect, process analyse and visualise data in order to extract useful information, explore patterns and evaluate models. The course is a collaboration between the Departments of Mathematics & Statistics, Computer Science and the National Centre for Geocomputation.

Course Structure

Students will gain skills in programming, statistics and databases, followed by an advanced module on statistical machine learning. The course includes material on the social and ethical consequences of the use of data and the implications for business and government. Applications from many industry sectors will be explored in our Case Studies module. In the Project module, students will put these technical skills in to practice. They will also gain experience in report writing, presentations and teamwork. Students also do a 30-credit thesis.

Career Options

The Data Analytics jobs market is expanding in Ireland. Jobs are available in any industry or sector that collects data, ranging from IT, to Healthcare, Finance, Food science and Travel.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code

MHR64

If you need any additional guidance, please contact the programme director, Dr Catherine Hurley ().
The following documents should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:
Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Data Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Data Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

MSc in Data Science aims to equip students with a solid grounding in data science concepts and technologies for extracting information and constructing knowledge from data. Students of the MSc Data Science will study the computational principles, methods, and systems for a variety of real world applications that require mathematical foundations, programming skills, critical thinking, and ingenuity. Development of research skills will be an essential element of the Data Science programme so that students can bring a critical perspective to current data science discipline and apply this to future developments in a rapidly changing technological environment.

Key Features of the MSc Data Science

The MSc Data Science programme focuses on three core technical themes: data mining, machine learning, and visualisation. Data mining is fundamental to data science and the students will learn how to mine both structured data and unstructured data. Students will gain practical data mining experience and will gain a systematic understanding of the fundamental concepts of analysing complex and heterogeneous data. They will be able to manipulate large heterogeneous datasets, from storage to processing, be able to extract information from large datasets, gain experience of data mining algorithms and techniques, and be able to apply them in real world applications. Machine learning has proven to be an effective and exciting technology for data and it is of high value when it comes to employment. Students of the Data Science programme will learn the fundamentals of both conventional and state-of-the-art machine learning techniques, be able to apply the methods and techniques to synthesise solutions using machine learning, and will have the necessary practical skills to apply their understanding to big data problems. We will train students to explore a variety visualisation concepts and techniques for data analysis. Students will be able to apply important concepts in data visualisation, information visualisation, and visual analytics to support data process and knowledge discovery. The students of the Data Science programme also learn important mathematical concepts and methods required by a data scientist. A specifically designed module that is accessible to students with different background will cover the basics of algebra, optimisation techniques, statistics, and so on. More advanced mathematical concepts are integrated in individual modules where necessary.

The MSc Data Science programme delivers the practical components using a number of programming languages and software packages, such as Hadoop, Python, Matlab, C++, OpenGL, OpenCV, and Spark. Students will also be exposed to a range of closely related subject areas, including pattern recognition, high performance computing, GPU processing, computer vision, human computer interaction, and software validation and verification. The delivery of both core and optional modules leverage on the research strength and capacity in the department. The modules are delivered by lecturers who are actively engaged in world leading researches in this field. Students of the Data Science programme will benefit from state-of-the-art materials and contents, and will work on individual degree projects that can be research-led or application driven.

Modules

Modules for the MSc Data Science programme include:

- Visual Analytics

- Data Science Research Methods and Seminars

- Big Data and Data Mining

- Big Data and Machine Learning

- Mathematical Skills for Data Scientists

- Data Visualization

- Human Computer Interaction

- High Performance Computing in C/C++

- Graphics Processor Programming

- Computer Vision and Pattern Recognition

- Modelling and Verification Techniques

- Operating Systems and Architectures

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Career Destinations

- Data Analyst

- Data mining Developer

- Machine Learning Developer

- Visual Analytics Developer

- Visualisation Developer

- Visual Computing Software Developer

- Database Developer

- Data Science Researcher

- Computer Vision Developer

- Medical Computing Developer

- Informatics Developer

- Software Engineer



Read less
Data science is an emerging new area of science. With City’s MSc in Data Science you can develop the skills and knowledge to analyse data in many forms and communicate insights. Read more
Data science is an emerging new area of science. With City’s MSc in Data Science you can develop the skills and knowledge to analyse data in many forms and communicate insights.

Who is it for?

This programme is for students who have a numerate first degree or can demonstrate numerate skills. Students are often at the early stages of their careers in diverse professions including economics, statistics and computer science.

Students will have a curiosity about data, and will want to learn new techniques to boost their career and be part of exciting current industry developments. The MSc in Data Science includes some complex programming tasks because of the applied nature of the course, so many students have a mathematics or statistics background and enjoy working with algorithms.

Objectives

The demand for data scientists in the UK has grown more than ten-fold in the past five years *. The amount of data in the world is growing exponentially. From analysing tyre performance to detecting problem gamblers, wherever data exists, there are opportunities to apply it.

City’s MSc Data Science programme covers the intersection of computer science and statistics, machine learning and practical applications. We explore areas such as visualisation because we believe that data science is about generating insight into data as well as its communication in practice.

The programme focuses on machine learning as the most exciting technology for data and we have learned from our own graduates that this is of high value when it comes to employment within the field. At City, we have excellent expertise in machine learning and the facilities students need to learn the technical aspects of data analysis. We also have a world-leading centre for data visualisation, where students get exposed to the latest developments on presenting and communicating their results – a highly sought after skill.

Placements

There is the opportunity to do an internship as part of the programme. The final project, which is normally three months for a full-time student, can be extended to six months if you want to study within a specific organisation. When it comes to the big data and data science area, we have established relationships with organisations including the BBC, Microsoft and The British Library so you can be confident that with City, your access to professional experience is unparalleled. One recent student undertook an internship with Google and has since secured a job within the company.

Academic facilities

The School's computer science laboratories are equipped with the latest up-to-date hardware and software. From Oracle’s leading commercial object-relational database server to PCs with state-of-the-art NVidia GPUs for computer graphics, you will have access to an array of tools to support your learning.

The MSc Data Science programme offers two (three by mid 2016) dedicated computer servers for the Big Data module, which you can also use for your final project to analyse large data sets. We give you the opportunity to undertake training in MATLAB, the most popular numerical and technical programming environment, while you study.

Scholarships

A scholarship for the full fees of the MSc will be offered to an outstanding applicant. The scholarship is available to UK/EU and overseas students, studying full-time. To be considered for the scholarship, please include with your full application a one-page essay with your answer to the question:

'What are the challenges that Data Science faces and how would you address those challenges?'

The submission deadline for anyone wishing to be considered for the scholarship is: 1 MAY 2017

Teaching and learning

The teaching and learning methods we use mean that students’ specialist knowledge and autonomy increase as they progress through each module. Active researchers guide your progress in the areas of machine learning, data visualization, and high-performance computing, which culminates with an individual project. This is an original piece of research conducted with academic supervision, but largely independently and, where appropriate, in collaboration with industrial partners.

Taught modules are delivered through a series of 20 hours of lectures and 10 hours of tutorials/laboratory sessions. Lectures are normally used to:
-Present and exemplify the concepts underpinning a particular subject.
-Highlight the most significant aspects of the syllabus.
-Indicate additional topics and resources for private study.

Tutorials help you develop the skills to apply the concepts we have covered in the lectures. We normally achieve this through practical problem solving contexts.

Laboratory sessions give you the opportunity to apply concepts and techniques using state-of-the-art software, environments and development tools.

In addition to lectures, laboratory sessions and tutorial support, you also have access to a personal tutor. This is an academic member of staff from whom you can gain learning support throughout your degree. In addition, City’s online learning environment Moodle contains resources for each of the modules from lecture notes and lab materials, to coursework feedback, model answers, and an interactive discussion forum.

We expect you to study independently and complete coursework for each module. This should amount to approximately 120 hours per module if you are studying full time. Each module is assessed through a combination of written examination and coursework, where you will need to answer theoretical and practical questions to demonstrate that you can analyse and apply data science methods and techniques.

The individual project is a substantial task. It is your opportunity to develop a research-related topic under the supervision of an academic member of staff. This is the moment when you can apply what you have learnt to solve a real-world problem using large datasets from industry, academia or government and use your knowledge of collecting and processing real data, designing and implementing big data methods and applying and evaluating data analysis, visualisation and prediction techniques. At the end of the project you submit a substantial MSc project report, which becomes the mode of assessment for this part of the programme.

Course content

Data science is the area of study concerned with the extraction of insight from large collections of data.

The course covers the study, integration and application of advanced methods and techniques from:
-Data analysis and machine learning
-Data visualisation and visual analytics
-High-performance, parallel and distributed computing
-Knowledge representation and reasoning
-Neural computation
-Signal processing
-Data management and information retrieval.

It gives you the opportunity to specialise so, once you graduate, you can apply data science to any sector from health to retail. By engaging with researchers and industrial partners during the programme, you can develop your knowledge and skills within a real-world context in each of the above areas.

Core modules
-Principles of data science (15 credits)
-Machine learning (15 credits)
-Big Data (15 credits)
-Neural computing (15 credits)
-Visual analytics (15 credits)
-Research methods and professional issues (15 credits)

Elective modules
-Advanced programming: concurrency (15 credits)
-Readings in computer science (15 credits)
-Advanced databases (15 credits)
-Information retrieval (15 credits)
-Data visualisation (15 credits)
-Digital signal processing and audio programming (15 credits)
-Cloud computing (15 credits)
-Computer vision (15 credits)
-Software agents (15 credits)

Individual project - (60 credits)

Career prospects

From health to retail, and from the IT industry to government, the Data Science MSc will prepare you for a successful career as a data scientist. You will graduate with specialist skills in data acquisition, information extraction, aggregation and representation, data analysis, knowledge extraction and explanation, which are in high demand.

City's unique internships, our emphasis on machine learning and visual analytics, together with our links with the industry and Tech City, should help you gain employment as a specialist in data analysis and visualization. Graduates starting a new business can benefit from City's London City Incubator and City's links with Tech City, providing support for start-up businesses.

Read less
1. Big Challenges being addressed by this programme – motivation. Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills.
• Accenture, Gartner and McKinsey have all identified Data Analytics as one of the fastest growing employment areas in computing and one most likely to make an impact in the future.
• The Irish Government’s policy is for Ireland to become a leading country in Europe for big data and analytics, which would result in 21,000 potential new employment opportunities in Ireland alone.
• CNN has listed jobs in this area in their Top 10 best new jobs in America.

2. Programme objectives & purpose

This is an advanced programme that provides Computing graduates with advanced knowledge and skills in the emerging growth area of Data Analytics. It includes advanced topics such as Large-Scale Data Analytics, Information Retrieval, Advanced Topics in Machine Learning and Data Mining, Natural Language Processing, Data Visualisation and Web-Mining. It also includes foundational modules in topics such as Statistics, Regression Analysis and Programming for Data Analytics. Students on the programme further deepen their knowledge of Data Analytics by working on a project either in conjunction with a research group or with an industry partner.

Graduates will be excellently qualified to pursue careers in national and multinational industries in a wide range of areas. Our graduates currently work for companies as diverse as IBM, SAP, Cisco, Avaya, Google, Fujitsu and Merck Pharmaceuticals as well as many specialised companies and startups. Opportunities will be found in:
• Multinational companies, in Ireland and elsewhere, that provide services and solutions for analytics and big data or whose business depend on analytics and big data technologies;
• Innovative small to medium-sized companies and leading-edge start-ups who provide analytics solutions, services and products or use data analytics to develop competitive advantage
• Companies looking to extend their research and development units with highly trained data analytic specialists
• PhD-level research in NUI Galway, elsewhere in Ireland, or abroad

3. What’s special about CoEI/NUIG in this area:

• The MSc in Computer Science (Data Analytics) is being delivered by the Discipline of Information Technology in collaboration with the Insight Centre for Data Analytics (http://insight-centre.org) and with input from the School of Mathematics, Statistics and Applied Mathematics in NUI Galway
• The Discipline of Information Technology at NUI Galway has 25-year track record of education, academic research, and industry collaboration in the field of Computer Science
• The Insight centre at NUI Galway is Europe’s largest research centre for Data Analytics

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Foundational Modules:

• Tools and Techniques for Large Scale Data Analytics
• Programming for Data Analytics
• Machine Learning and Data Mining
• Modern Information Management
• Probability and Statistics
• Discrete Mathematics
• Applied Regression Models
• Digital Signal Processing

Sample Advanced Modules:

• Advanced Topics in Machine Learning and Information Retrieval
• Web Mining and Analytics
• Systems Modelling and Simulation
• Natural Language Processing
• Data Visualisation
• Linked Data Analytics
• Case Studies in Data Analytics
• Embedded Signal Analysis and Processing

6. Testimonials

Ms. Gofran Shukair, MSc, Research Engineer at ZenDesk, Ireland

After graduating with an MSc at NUI Galway, Gofran worked with Fujitsu’s Irish Research Lab as a research engineer before moving to a software engineering position at Zendesk, Ireland.

“The mix of technical and soft skills I gained through my Masters studies at NUI Galway is invaluable. I had the chance to work with great people and to apply my work on real world problems. With the data management and analysis skills I gained, I am currently pursuing my research in an international research project with one of the leading IT companies. I will be always thankful for studying at NUI Galway, a great historic place based in a culturally-rich vibrant city with an international mix of young and ambitious students that made me eager to learn and contribute back the moment I graduated.”

For further details

visit http://www.nuigalway.ie/courses/taught-postgraduate-courses/msc-in-computer-science-data-analytics.html

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC) https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Computer Science – Data Analytics - PAC code GYE06

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Visit the M.Sc. Computer Science – Data Analytics page on the National University of Ireland, Galway web site for more details!

Read less
There has been a recent upsurge in commercial interest in the new role of "data scientist". A data scientist is a person who excels at manipulating and analysing data, particularly large data sets that don't fit easily into tabular structures (so-called "Big Data"). Read more
There has been a recent upsurge in commercial interest in the new role of "data scientist". A data scientist is a person who excels at manipulating and analysing data, particularly large data sets that don't fit easily into tabular structures (so-called "Big Data").

Why study Data Science at Dundee?

The School of Computing has been working on 'big data' and data analysis for at least five years; not only working with data but also developing new algorithms and techniques for data scientists. The School already runs the most successful Business Intelligence Masters course in the UK.

This course will be led by Professor Mark Whitehorn and Andy Cobley. Mark is an emeritus professor at the University of Dundee and also runs a successful consultancy company that specialises in BI, Data Sciences and analytics. Andy is the course organiser for both the existing BI course and the new Data Science course.

This course will enhance your employability by providing you with knowledge, skills and understanding of data science research and implementation. You will also acquire skills in the professional procedures necessary to ensure that data science research and implementation is both valid and actionable and engage with contemporary debate about the role, ethics and utility of data science in commercial and other settings.

What is the difference between Data Science and Business Intelligence?

There is clearly a huge overlap with Business Intelligence. A BI specialist will need to understand data and data analytics. However there is a bias towards understanding how data is stored in the current operational systems within an enterprise the design and the implementation of an analytical system such as a data warehouse. A data scientist will be less concerned with the construction of a data warehouse and more interested in the message the specific sets of data can deliver.

However, without some understanding of data warehouses the data scientist will find it difficult to interrogate the data for its secrets. For this reason there is overlap between the two courses.

If you already have a strong grounding in Business Intelligence and would like to upgrade your knowledge to include topics from the Data Science MSc, we offer the relevant Data Science modules either on a stand alone basis or as a PGCert.

What's so good about Data Science at Dundee?

Our facilities will give you 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

A booming Postgraduate culture where the School of Computing maintains a friendly, intimate and supportive atmosphere, and we take pride in the fact that we know all of our students - you're far more than just a matriculation number to us. We have a thriving postgraduate department with regular seminars and guest speakers.

Duncan Ross (Director of Data Sciences at Teradata) has said that: "The first and most important trait is curiosity. Insane curiosity. In many walks of life evolution selects against the kind of person who decides to find out what happens 'if I push that button'. Data Science selects for it."

How you will be taught

The programme will be delivered by Prof. Mark Whitehorn with input from Andy Cobley, Yasmeen Ahmad, Chris Hillman and other specialists from within the School of Computing in an innovative blend of live co-presented master-classes, video seminars and recorded materials. A series of guest speakers from industry will provide case studies across both semesters.

The programme will be provided predominantly on-campus, with two intensive study weeks in each of the semesters. Other classes may be taken off-campus using the university’s VLE, remote desktop, Adobe Connect and video conferencing systems along with telephone conferencing.

What you will study

Semester 1
Big Data - 20 Credits
Business Intelligent Systems - 20 Credits
Data Analysis and Visualisation - 20 Credits

Semester 2
Analytical Database Models and Design - 20 Credits
Advanced statistics and data mining - 20 credits
MDX - 20 Credits

Semester 3
Data Science Mini Project - 20 credits (for Certificate)
Data Science Research Project - 60 credits

PGCert:
The PGCert is intended for students who have a strong grounding in Business Intelligence and would like to upgrade their knowledge to include topics from the Data Science MSc. The modules are available stand alone for those who want to take their time studying the material and perhaps build up to a PGCert.

The three modules that make up the PGCert are:
Big Data
Advanced Anlaysis
Mini Project

For more information about the content of the course, please visit the course webpage on the School of Computing website.

How you will be assessed

Assessment will be by examination, practical coursework and research project.

Careers

Various job sites now report an increase in jobs carrying the title of data scientist. Other career opportunities are in intelligence analysis, data management/database maintenance, data processing manager, database development and research, business intelligence consultant and more.

Read less
Master in BIG DATA. Read more
Master in BIG DATA : Data Analytics, Data Science, Data Architecture”, accredited by the French Ministry of Higher Education and Research, draws on the recognized excellence of our engineering school in business intelligence and has grown from the specializations in Decision Support, Business Intelligence and Business Analytics. The Master is primarily going to appeal to international students, "free movers" or those from our partner universities or for high-potential foreign engineers who are looking for an international career in the domain of Business Analytics.

This program leads to a Master degree and a Diplôma accredited by the French Ministry of Higher Education and research.

Objectives

Business Intelligence and now Business Analytics have become key elements of all companies.

The objective of this Master is to train specialists in information systems and decision support, holding a large range of mathematic- and computer-based tools which would allow them to deal with real problems, analyzing their complexity and bringing efficient algorithmic and architectural solutions. Big Data is going to be the Next Big Thing over the coming 10 years.

The targeted applications concern optimization in the processing of large amounts of data (known as Big Data), logistics, industrial automation, but above all it’s the development of BI systems architecture. These applications have a role in most business domains: logistics, production, finance, marketing, client relation management.

The need for trained engineering specialists in these domains is growing constantly: recent studies show a large demand of training in these areas.

Distinctive points of this course

• The triple skill-set with architecture (BI), data mining and business resource optimization.
• This master will be run by a multidisciplinary group: statistics, data mining, operational research, architecture.
• The undertaking of interdisciplinary projects.
• The methods and techniques taught in this program come from cutting-edge domains in industry and research, such as: opinion mining, social networks and big data, optimization, resource allocation and BI systems architecture.
• The Master is closely backed up by research: several students are completing their end-of-studies project on themes from the [email protected] laboratory, followed and supported by members from the laboratory (PhD students and researcher teachers).
• The training on the tools used in industry dedicated to data mining, operational research and Business Intelligence gives the students a plus in their employability after completion.
• Industrial partnerships with companies very involved in Big Data have been developed:
• SAS via the academic program and a ‘chaire d’entreprise’ (business chair), allowing our students access to Business Intelligence modules such as Enterprise Miner (data mining) and SAS-OR (in operational research).

Practical information

The Master’s degree counts for 120 ECTS (European Credit Transfer System) in total and lasts two years. The training lasts 1252 hours (611 hours in M1 and 641 hours in M2). The semesters are divided as follows:
• M1 courses take place from September until June and count for a total of 60 ECTS
• M2 courses take place from September until mid-April and count for a total of 42ECTS
• A five-month internship (in France) from mid- April until mid- September for 9 ECTS is required and a Master thesis for 9 ECTS.

Non-French speakers will be asked to participate to a one week intensive French course that precedes the start of the program and allows students to gain the linguistic knowledge necessary for daily interactions.

[[Organization ]]
M1 modules are taught from September to June (60 ECTS, 611 h)
• Data exploration
• Inferential Statistics (3 ECTS, 30h, 1 S*)
• Data Analysis (2 ECTS, 2h, 1 S)
• Mathematics for Computer science
• Partial Differential Equations and Finite Differences (3 ECTS, 30h, 1 S)
• Operational Research: Linear Optimization (2 ECTS, 20h, 1 S)
• Combinatory Optimization (2 ECTS, 18h, 1 S)
• Complexity theory (1 ECTS, 9h, 1 S)
• Simulation and Stochastic Process (3 ECTS, 30h, 2 S**)
• Introduction to Predictive Modelling (2ECTS, 21h, 2 S)
• Deterministic and Stochastic Optimization (3 ECTS, 30h, 2 S)
• Introduction to Data Mining (2 ECTS, 21h, 2 S)
• Software and Architecture
• Object-Oriented Modelling (OOM) with UML (3 ECTS, 30h, 1 S)
• Object-Oriented Design and Programming with Java (2 ECTS, 30h, 1 S)
• Relational Database: Modelling and Design (3ECTS, 30h, 1 S)
• PLSQL (2 ECTS, 21h, 2 S)
• Architecture and Network Programming (3 ECTS, 30h, 2 S)
• Parallel Programming (3 ECTS, 30h, 2 S)
• Engineering Science
• Signal and System (3 ECTS, 21 h, 1 S)
• Signal processing (3 ECTS, 30h, 1 S)

• Research Initiation
• Scientific Paper review (1 ECTS, 9h, 1 S)
• Final research project on BIG DATA (5 ECTS, 50h, 2 S)
• Project Management
• AGIL Methods & Transverse Project (2 ECTS, 21h, 2 S)
• Languages and workshops
• French and Foreign languages (6 ECTS, 61h, 1&2 S)
• Personal and Professional Project (1 ECTS, 15, 1 S)
*1 S= 1st semester, ** 2 S= 2nd semester

M2 Program: from September to September (60 ECTS, 641h)
M2 level is a collection of modules, giving in total 60 ECTS (42 ECTS for the modules taught from September to April, plus 9 ECTS for the internship and 9 ECTS for the Master thesis).

Computer technologies
• Web Services (3 ECTS, 24h, 1 S)
• NOSQL (2 ECTS, 20h, 1 S)
• Java EE (3 ECTS, 24, 1S)
Data exploration
• Semantic web and Ontology (2 ECTS, 20h, 1 S)
• Data mining: application (2 ECTS, 20h, 1S)
• Social Network Analysis (2ECTS, 18h, 1S)
• Collective intelligence: Web Mining and Multimedia indexation (2 ECTS, 20h, 2 S)
• Enterprise Miner SAS (2 ECTS, 20h, 2 S)
• Text Mining and natural language (2 ECTS, 20h, 2 S)
Operations Research
• Thorough operational research: modelling and business application (2 ECTS, 21h, 1 S)
• Game theory (1 ECTS, 10h, 1 S)
• Forecasting models (2 ECTS, 20h, 1 S)
• Constraint programming (2 ECTS, 20h, 2 S)
• Multi-objective and multi-criteria optimisation (2 ECTS, 20h, 2 S)
• SAS OR (2 ECTS, 20h, 2 S)
Research Initiation Initiative
• Scientific Paper review (1 ECTS, 10h, 1 S)
• Final research project on BIG DATA (2 ECTS, 39, 2 S)
BI Architecture
• BI Theory (2 ECTS, 20h, 2 S)
• BI Practice (2 ECTS, 20h, 2 S)
Languages and workshops (4 ECTS, 105h, 1&2 S)
• French as a Foreign language
• CV workshop
• Personal and Professional Project
Internship
• Internship (9 ECTS, 22 weeks minimum)
Thesis
• Master thesis (9 ECTS, 150h)

Teaching

Fourteen external teachers (lecturers from universities, teacher-researchers, professors etc.), supported by a piloting committee, will bring together the training given in Cergy.

All the classes will be taught in English, with the exception of:
• The class of FLE (French as a foreign language), where the objective is to teach the students how to understand and express themselves in French.
• Cultural Openness, where the objective is to enrich the students’ knowledge of French culture.
The EISTI offers an e-learning site to all its students, which complements everything the students will learn through their presence and participation in class:
• class documents, practical work and tutorials online
• questions and discussions between teachers and students, and among students
• a possibility of handing work in online

All Master’s students are equipped with a laptop for the duration of the program that remains the property of the EISTI.

Read less
This degree, offered by the Department of Computer Science, will teach you both the foundational aspects and the practical skills that prepare you for handling… Read more
This degree, offered by the Department of Computer Science, will teach you both the foundational aspects and the practical skills that prepare you for handling and analysing different types of data in different fields, thus responding to the needs of a huge variety of companies and organisations, from retailers such as Tesco or Amazon, to manufacturers like BMW, to health-care providers, and to public administration.

See the website https://www.royalholloway.ac.uk/computerscience/coursefinder/mscdatascienceandanalytics.aspx

Why choose this course?

- Big Data is now part of every sector and function of the global economy. Planning and strategic decision-making processes rely on large pools of data that need to be captured, aggregated, stored, and analysed.

- You will acquire both the foundational knowledge and the practical skills that prepare you for handling and analysing different types of data in different fields, thus responding to the needs of a huge variety of companies and organisations from retailers such as Tesco or Amazon, to manufacturers like BMW, health-care providers, or public administration. People with this set of skills are in short supply and high demand.

- You will have the opportunity to choose options among an exciting range of topics in Computer Science, Economics, Information Security, Management and Mathematics.

- You will also be well prepared to pursue studies at PhD level, which several companies prefer for their research laboratories and more advanced roles.

- Industry connections have informed the content and design of the course. External contacts in both academia and industry enrich the programme of seminars and guest lectures, which are an integral part of the course.

- Royal Holloway is located in the ‘M4 corridor’, west of London, a major high-technology hub also called ‘England’s Silicon Valley’.

- Royal Holloway is a very prestigious university in which to study. We are ranked not only as one of the 16 most beautiful universities in the world, but also one of the best: in 2012/13, the Times Higher Education World University Rankings placed the College 15th in the UK, 45th in Europe and 119th in the world.

Department research and industry highlights

- The excellence of our research in Machine Learning – the science behind ‘Big Data’ – is recognized worldwide, and the topics taught reflect that excellence.

- In the most recent Research Assessment Exercise (RAE 2008), the Department ranked 11th among UK Computer Science departments for its research output.

- The Department is ranked third in the UK for graduate employability by the Times Good University Guide 2013.

- The Department has an Industrial Liason Board that comprises senior representatives from Microsoft, Cognex, CSC, Bank of America Merrill Lynch, Kalido, Bathwick Group, Pentatonix, Blackrock, Oracle, Investec and QubeSoft.

Course content and structure

You will take taught modules during Term One (October to December) and Term Two (January to March). Examinations are held in May. You then take an industrial placement, after which you come back for your project/dissertation (12 weeks).
Please visit our websitefor additional information on this degree.

On completion of the course graduates will have:
- A highly analytical approach to problem solving.
- A strong background in data modelling and business intelligence.
- Knowledge of computational and statistical data analysis.
- A background in machine learning, statistics, and data mining.
- Ability to develop, validate, and use effectively machine learning models and statistical models.
- Ability to apply machine learning and data mining techniques to Information Retrieval and Natural Language Processing.
- Knowledge of and ability to work with software to automate tasks and perform data analysis.
- Knowledge of and ability to work with structured, unstructured, and time-series data.
- Ability to extract value and insight from data.
- Knowledge of and ability to work with methods and techniques such as clustering, regression, support vector machines, boosting, decision trees, neural networks.
- Appreciation and knowledge of non-statistical approaches to data analysis and machine learning.
- Ability to work with software packages such as MATLAB and R.
- Knowledge of and ability to work with relational databases (SQL), non-relational databases (mongodb), as well as with Hadoop/pig scripting and other big data manipulation techniques.
- Knowledge of and ability to work with Python, Perl, and Shell Scripting.

Assessment

Assessment is carried out by a variety of methods including coursework and a dissertation. The placement is assessed as part of your degree.

Employability & career opportunities

Our graduates are among the most employable in the UK – we rank third in the UK for graduate employability – and, in recent years, have entered many different Computer Science-related roles including network systems design and engineering, web development and production. Other graduates choose to enter careers with a management or financial slant. Our graduates have found employment at a wide range of organisations including Logica, British Telecom, British Aerospace, Microsoft, Amazon.com, American Express, Sky and Orbis Technology. At the same time, this course also equips you with a solid foundation for continued PhD studies.

Your careers ambitions are supported by our College Careers Service, located right next door to the Department. They offer application and interview coaching, career strategy discussions, and the opportunity to network with major employers on campus. Our careers service is provided by the Careers Group, the main provider of graduate recruitment services in London.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This degree, offered by the Department of Computer Science, will teach you both the foundational aspects and the practical skills that prepare you for handling… Read more
This degree, offered by the Department of Computer Science, will teach you both the foundational aspects and the practical skills that prepare you for handling and analysing different types of data in different fields, thus responding to the needs of a huge variety of companies and organisations, from retailers such as Tesco or Amazon, to manufacturers like BMW, to health-care providers, and to public administration.

As part of the course, you will take an industrial placement, where you will gain valuable experience by putting your knowledge and skills into practice.

See the website https://www.royalholloway.ac.uk/computerscience/coursefinder/mscdatascienceandanalytics(yearinindustry).aspx

Why choose this course?

- Big Data is now part of every sector and function of the global economy. Planning and strategic decision-making processes rely on large pools of data that need to be captured, aggregated, stored, and analysed.

- You will acquire both the foundational knowledge and the practical skills that prepare you for handling and analysing different types of data in different fields, thus responding to the needs of a huge variety of companies and organisations from retailers such as Tesco or Amazon, to manufacturers like BMW, health-care providers, or public administration. People with this set of skills are in short supply and high demand.

- You will have the opportunity to choose options among an exciting range of topics in Computer Science, Economics, Information Security, Management and Mathematics.

- You will also be well prepared to pursue studies at PhD level, which several companies prefer for their research laboratories and more advanced roles.

- Taking a placement is an excellent opportunity to gain industrial experience (which gives you an extra edge when applying for jobs in the future) and acquire skills that can only be fully picked up in a work environment.

- Industry connections have informed the content and design of the course. External contacts in both academia and industry enrich the programme of seminars and guest lectures, which are an integral part of the course.

- Royal Holloway is located in the ‘M4 corridor’, west of London, a major high-technology hub also called ‘England’s Silicon Valley’.

- Royal Holloway is a very prestigious university in which to study. We are ranked not only as one of the 16 most beautiful universities in the world, but also one of the best: in 2012/13, the Times Higher Education World University Rankings placed the College 15th in the UK, 45th in Europe and 119th in the world.

Department research and industry highlights

- The excellence of our research in Machine Learning – the science behind ‘Big Data’ – is recognized worldwide, and the topics taught reflect that excellence.

- In the most recent Research Assessment Exercise (RAE 2008), the Department ranked 11th among UK Computer Science departments for its research output.

- The Department is ranked third in the UK for graduate employability by the Times Good University Guide 2013.

- The Department has an Industrial Liaison Board that comprises senior representatives from Microsoft, Cognex, CSC, Bank of America Merrill Lynch, Kalido, Bathwick Group, Pentatonix, Blackrock, Oracle, Investec and QubeSoft.

Course content and structure

You will take taught modules during Term One (October to December) and Term Two (January to March). Examinations are held in May. You then take an industrial placement, after which you come back for your project/dissertation (12 weeks).

Your placement will take up to one year and, if you are an overseas student, your visa will cover the two years of the programme. The placement attracts a salary and is assessed as part of your degree. You will be assigned a supervisor by the host company, who is responsible for directing your work. You will be assigned an academic supervisor, who visits to check if you are integrating successfully and the type of work being undertaken is appropriate, and supports you in general during your placement. If you cannot or decide not to take a placement, you revert to the normal one-year degree.

On completion of the course graduates will have:
Throughout your degree, you will have the opportunity to acquire the following skills:

- A highly analytical approach to problem solving.
- A strong background in data modelling and business intelligence.
- Knowledge of computational and statistical data analysis.
- A background in machine learning, statistics, and data mining.
- Ability to develop, validate, and use effectively machine learning models and statistical models.
- Ability to apply machine learning and data mining techniques to Information Retrieval and Natural Language Processing.
- Knowledge of and ability to work with software to automate tasks and perform data analysis.
- Knowledge of and ability to work with structured, unstructured, and time-series data.
- Ability to extract value and insight from data.
- Knowledge of and ability to work with methods and techniques such as clustering, regression, support vector machines, boosting, decision trees, neural networks.
- Appreciation and knowledge of non-statistical approaches to data analysis and machine learning.
- Ability to work with software packages such as MATLAB and R.
- Knowledge of and ability to work with relational databases (SQL), non-relational databases (mongodb), as well as with Hadoop/pig scripting and other big data manipulation techniques.
- Knowledge of and ability to work with Python, Perl, and Shell Scripting.
- Work experience and appreciation of how your work fits into the organizational and development processes of a company.

Assessment

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation. The placement is assessed as part of your degree.

Employability & career opportunities

Our graduates are among the most employable in the UK – we rank third in the UK for graduate employability – and, in recent years, have entered many different Computer Science-related roles including network systems design and engineering, web development and production. Other graduates choose to enter careers with a management or financial slant.

Our graduates have found employment at a wide range of organisations including Logica, British Telecom, British Aerospace, Microsoft, Amazon.com, American Express, Sky and Orbis Technology. At the same time, this course also equips you with a solid foundation for continued PhD studies.

Your careers ambitions are supported by our College Careers Service, located right next door to the Department. They offer application and interview coaching, career strategy discussions, and the opportunity to network with major employers on campus. Our careers service is provided by the Careers Group, the main provider of graduate recruitment services in London.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
Our IT systems and devices are constantly creating data and the amount of data created and stored grows exponentially. Data, and in particular patterns and trends within data, have the ability to inform and provide valuable insights, that help us predict and diagnose specific outcomes. Read more
Our IT systems and devices are constantly creating data and the amount of data created and stored grows exponentially. Data, and in particular patterns and trends within data, have the ability to inform and provide valuable insights, that help us predict and diagnose specific outcomes. Whilst the amount of data grows, the science of gaining insights from this data grows with it. Industry, research institutions and government all seek to extract value from data to improve products and services, serve their customers better and run more operationally efficient organisations. Data Scientists use their mathematical, computational and presentational skills to mine data for value and their skills are highly sort after. There is a significant shortage of skilled Data Scientists and so there are many job opportunities available.

Course content
We have designed this MSc course in consultation with industry partners.

This has enabled us to understand their needs for Data Scientists, what skills will be required and on successful completion of this course individuals will be highly employable within businesses.

Having this close understanding of what industry needs makes this course relatively unique and the very best suited to these looking for a career in the Data Sciences.

The course will be of specific interest to :

A mathematics graduate wishing to use your skills in a vocational business based environment
A computer science graduate wishing to follow a vocational route
Individuals currently working in Business and looking to grow their career through gaining Data Science and Business Analytics skills
Six modules go to make up this MSc:

Data Science Foundation
Managing Data
Data Exploration and Analysis
Mathematics
Machine Learning & Cognitive Computing
Data Visualisation and Presentation
The 1 year full time MSc course will be stimulating and interactive, making use of lectures, self-learning, workshops and hands-on projects.

You will be assigned a Personal Tutor from the start of your course who will work with you throughout your studies to help you achieve your academic best.

The knowledge we provide you with in these areas will give you all of the essential know-how on methods, tools and techniques to deliver in your career as a Data Scientist.

We believe Data Science is very much an intellectual ‘contact sport’ and through this course we provide you with every opportunity to put your theoretical knowledge into practice.

The project work we have imbedded within the course has been chosen and developed based on real-world scenarios across a range of industry and government sectors and is specifically designed to:

Provide an essential link between your theoretical learning and real-world challenges
Create an environment where you decide the methods and tools best suited to the challenge based on what you have learnt
Recreate some of the challenges facing industry and Government today and those very similar to what you will encounter in the workplace as a Data Scientist
Be adaptable to reflect new methods / tools and scenarios in this fast developing discipline
Be able upon completion of the projects to reference your experience in working with such challenges

Fees for 2017

Home fees - 1 year full-time: £8000.00

International fees: £10,920.00

Our facilities
You will undertake your workshops in training rooms that are bang up-to-date with design features, touch screen electronic white boards and high speed wifi; housed across three stunning Georgian mansions.

All of our current students love the learning environment, the culture, camaraderie and the fact that tutors know them by name so they are more than just a ‘face in the crowd’.

You will have access to the very best IT facilities in order to support your studies. These range from computer labs to access to cloud analytics from the leading providers.

We will use software from the academic programs of the major enterprise I.T. vendors such as IBM and Amazon as well as commonly used open source programs and frameworks.

From September 2018, many of the teaching sessions will take place in the purpose-built Engineering and Digital Technology building in the Bognor Regis campus.

What's more, you have lots of other facilities on this dedicated university campus including latest books, journals and online data in a truly modern library, an IT centre, a student zone complete with Costa Coffee, a gym and much more.

Where this can take you
The course has been designed to provide you with a very practical understanding of the issues associated with sourcing, curating, analysing and presenting data in business and other public sector and not-for-profit organisations.

On completion of your MSc studies and successful graduation, you will have very transferable skills and can choose to move directly in to the workplace perhaps in retail, banking, government or transport.

Indicative modules
Data Science Foundation (20 Credits)
Managing Data (20 Credits)
Data Exploration and Analysis (20 Credits)
Mathematics (20 Credits)
Machine Learning & Cognitive Computing (20 Credits)
Data Visualisation and Presentation (20 Credits)
Dissertation/Project (60 Credits)


Teaching and Assessment
Our approach to supporting your learning, and how your learning is assessed, is designed to mirror the workplace environment. With this in mind, key features of our approach to learning and assessment include the following:

We place a lot of emphasis on course work related activity.
Opportunities to work with organisations on current commercial/business problems and projects. These experiences are used to provide the basis for assessments that enable you to apply your learning within authentic commercial situations.

Read less
What's the "sexiest job of the 21st century"? According to Harvard Business Review, it's data scientist. A job devoted to giving structure to large quantities of formless data. Read more
What's the "sexiest job of the 21st century"? According to Harvard Business Review, it's data scientist. A job devoted to giving structure to large quantities of formless data. Ever-changing, ever-challenging big data.

The Master of Data Science (MDS) teaches you how to explore data and discover its potential – how to find innovative solutions to real problems in science, business and government, from technology start-ups to global organisations.With a degree in science, engineering, arts or computing, you can pursue a Master of Data Science, gaining skills in data management, data analytics and data processing – skills needed in this fast-growing field.

The MDS expands your knowledge of the analytical, organisational and computational aspects of data. You learn to manage data and gain an understanding of its impact on society.

The MDS caters to students from a variety of backgrounds by including foundation units in programming, databases and maths or statistics. However, if you have this background from previous studies or work experience, you may accelerate your study with an exemption from these units, or choose to take more data science electives.

The core coursework covers data science objectives, data analysis and data management. You then select data science electives such as applied data analysis, visualisation, data pre-processing, big data handling and data in society. You can also choose to take the Advanced Data Analytics stream where you build deeper skills in data analytics and machine learning.

Our highly regarded faculty takes great pride in developing the most up-to-date material while maintaining a solid core of established theory and platforms, including Python and R (two of the most popular open-source programming languages for data analysis), Hadoop and Spark (for distributed processing). You also gain hands-on experience with state-of-the-art tools and get exposure to key industry players.

In your final semester, you may take part in an Industry Experience team project, working with industry mentors to develop data-driven IT solutions. Or you may undertake a minor-thesis research project, investigating cutting-edge problems under the supervision of internationally recognised researchers.

Visit the website http://www.study.monash/courses/find-a-course/2016/data-science-c6004?domestic=true

Course Structure

The course is structured in three parts, A, B and C. All students complete Part B (core studies). Depending upon prior qualifications, you may receive credit for Part A (foundation studies) or Part C (advanced studies) or a combination of the two.

Note that if you are eligible for credit for prior studies you may elect not to receive the credit.

PART A. Foundations for advanced data science studies
These studies will provide an orientation to the field of data science at graduate level. They are intended for students whose previous qualification is not in a cognate field.

PART B. Core Master's study
These studies draw on best practices within the broad realm of data science practice and research. You will gain a critical understanding of theoretical and practical issues relating to data science. Your study will focus on your choice either of data science or advanced data analytics.

PART C. Advanced practice
The focus of these studies is professional or scholarly work that can contribute to a portfolio of professional development. You have two options.

The first option is a program of coursework involving advanced study and an Industry experience studio project.

The second option is a research pathway including a thesis. Students wishing to use this Masters course as a pathway to a higher degree by research should take this second option.

Students admitted to the course, who have a recognised honours degree in a discipline cognate to data science, will receive credit for Part C, however, should they wish to complete a 24 point research project as part of the course they should consult with the course coordinator.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/information-technology

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/data-science-c6004?domestic=true#making-the-application

Read less
Our MSc in data analytics is designed to create rounded data analytics problem-solvers. Read more
Our MSc in data analytics is designed to create rounded data analytics problem-solvers.

This course focuses on the uses of data analytics techniques within business contexts, making informed decisions about appropriate technology to extract knowledge from data and understanding the theoretical principles by which such technology operates.

You'll gain a comprehensive skill set that will enable you to work in a variety of sectors using a blended learning approach that combines theory, intensive practice and industrial engagement.

Strathclyde's MSc in data analytics is unique by bringing together essential skills from three departments, Management Science, Mathematics & Statistics, and Computer & Information Sciences (CIS), in order to address the needs of a fast-growing industry.

This collaboration avoids the narrow interpretation of this subject offered by competitor institutions and presents significant opportunities for businesses to recruit data analytics experts with a high-level expertise and knowledge.

What you’ll study

The course will have a duration of 1 year, with two semesters of classes (120 credits in total) followed by an MSc dissertation project (60 credits) during the summer.

The class Data Analytics in Practice (20 credits) will be run over both semesters to provide you with a practical environment to apply methodological learnings from other classes into challenging projects from industry.

Semester 1

Semester 1 will additionally consist of five 10-credit core modules as listed under 'Course Content' which will provide the technical background to students. The contributions in Semester 1 will be split evenly between three departments.

This semester is designed to provide you with the fundamental technical analytics knowledge from all three departments.
-Computer & Information Sciences courses will cover core techniques including machine learning and data mining as well as data visualisation and big data platforms
-Mathematics courses will ensure you gain strong computational skills while establishing a broad knowledge of statistical tools essential for analytics
-Management Science courses will build the foundations of business skills including problem structuring as well as decision analysis, in addition to providing essential practical skills

Semester 2

Semester 2 will additionally consist of a 10-credit core module as well as 40 credits worth of elective modules. To ensure breadth of knowledge, you'll be required to choose electives from at least two departments. This semester is designed to extend your core skills and provide you with opportunities through a broad range of electives to specialise in areas that you are particularly interested to excel.

The only technical core class will provide you with a thorough theoretical and practical understanding of optimisation techniques essential for data analytics, whereas each of the three departments will offer four to five elective courses, the majority of which are accessible to everyone on the course without any prerequisites. The final component of the MSc course will be a summer dissertation project, which can be completed either through a client-based project or a desk-based research project, depending on your interests. You will submit your dissertation in September to complete your degree requirements (pending any resits).

Work placement

You will have optional opportunities to complete your MSc summer dissertation projects in client-based projects, where a number of host organisations will be arranged by the department. These projects will be normally unpaid, however, all costs such as travel and accommodation will be covered by the host organisation if out of town.

Major projects

The taught modules on the programme introduce you to a variety of tools, techniques, methods and models. However, the practical reality of applying analytical methods in business is often far removed from the classroom. Working with decision-makers on real issues presents a variety of challenges.

For example, data may well be ambiguous and hard to come by, it may be far from obvious which data analytics methods can be applied and managers will need to be convinced of the business merits of any suggested solutions. While traditional teaching can alert students to such issues, understanding needs to be reinforced by experience.

This is primarily addressed by the core module ‘Data Analytics in Practice’, which takes place over both semesters. Every year, case studies and challenging projects are presented to our students by various organisations.

Facilities

Strathclyde Business School (SBS) is one of the 76 triple-accredited business schools in the world, and is one of the largest of its kind in Europe. SBS was also recently selected as the "Business School of the Year" in Times Higher Education (THE) Awards."

The three departments involved in this course work together to provide a dynamic, fully-rounded and varied programme of specialist and cross-disciplinary postgraduate course.

Guest lectures

Every year, guest speakers attend our course, sharing their invaluable experiences. As part of the Data Analytics in Practice module, we host several presentations from external bodies.

Course content

Compulsory classes
-Big Data Fundamentals
-Big Data Tools & Techniques
-Data Analytics in R
-Business & Decision Modelling
-Optimisation for Analytics
-Data Analytics in Practice
-Dissertation in Data Analytics

Optional classes
Students are required to choose 40 credits worth of elective classes, and at least from two departments. All optional classes take place in Semester 2.

Learning & teaching

The course is delivered in various ways. While most classes have regular lectures, tutorials and hands-on software sessions, experiential learning is a crucial part of the course. This is delivered through projects and case studies with various external organisations, and MSc projects.

There are also guest lectures and recruitment events throughout the year, as well as a number of career support sessions that provide you with invaluable career information and generic job hunting skills such as CV writing and how to handle interviews.

Assessment

Every module has its own methods of assessment appropriate to the nature of the material. These include written assignments, exams, practical team projects, presentations and individual projects. Many modules involve more than one method of assessment to realise your potential.

Careers

The aim of the MSc in data analytics is to develop graduates who can use data analytics technology, understand the statistical principles behind the technologies and understand how to apply these technologies to solve business problems.

Graduates will be able to bridge the various knowledge domains that are relevant for tackling data analytics problems as well as being able to identify emerging themes and directions within data analytics. Graduates will display abilities across the three component disciplines.

Read less

Show 10 15 30 per page



Cookie Policy    X