• Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cardiff University Featured Masters Courses
University of Cambridge Featured Masters Courses
Swansea University Featured Masters Courses
"data" AND "mining"×
0 miles

Masters Degrees (Data Mining)

We have 313 Masters Degrees (Data Mining)

  • "data" AND "mining" ×
  • clear all
Showing 1 to 15 of 313
Order by 
With the rapid development of smart sensors, smartphones and social media, "big" data is ubiquitous. Read more

With the rapid development of smart sensors, smartphones and social media, "big" data is ubiquitous. This new MSc teaches the foundations of GIScience, database, spatial analysis, data mining and analytics to equip professionals with the tools and techniques to analyse, represent and model large and complex spatio-temporal datasets.

About this degree

Students will be equipped with computational foundations and skills needed for big data analytics including visualisation, prediction, clustering and simulation with statistical and machine learning approaches, as well as retrieving and mining big (open) data, web services and cloud computing, web and mobile applications, by practising with real case data and open software.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a dissertation/report (60 credits).

A Postgraduate Diploma, four core modules (60 credits), two optional modules (60 credits), full-time nine months is offered.

Core modules

  • GIS Principles and Technology
  • Principles of Spatial Analysis
  • Spatial Databases and Data Management
  • Spatio-temporal Analysis and Data Mining

Choose four options from the following:

  • Introductory Programming
  • Complex Networks and Web
  • Group Mini project: digital Visualisation (requires basic Java)
  • Mapping Science
  • Supervised Learning (requires Applied Machine Learning)
  • Web Mobile GIS
  • Information Retrieval & Data Mining (requires Introductory Programming)
  • Applied Machine Learning (requires Introductory Programming)

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, and laboratory practicals. Assessment is through examination, coursework, practicals, dissertation, and poster presentation.

Further information on modules and degree structure is available on the department website: Spatio-temporal Analytics and Big Data Mining MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Graduates from this programme are expected to find positions in consultancy, local government, public industry, and the information supply industry, as well as in continued research. Possible career paths could include: data scientist in the social media, finance, health, telecoms, retail or construction and planning industries; developer of spatial tools and specialised spatial software; researcher or entrepreneur.

Employability

Graduates will be equipped with essential principles and technical skills in managing, modelling, spatial and spatial-temporal analysis, visualising and simulating "big" spatio-temporal data, with emphasis on real development skills including: Java, JavaScript, Python and R. Business Intelligence (BI) skills will also be taught via practical case studies and close collaborations with leading industrial companies and institutions. All these skills are highly valued in big data analysis.

Why study this degree at UCL?

As one of the world’s top universities, UCL excels across the physical and engineering sciences, social sciences and humanities.

Spanning two UCL faculties, this interdisciplinary programme exploits the complementary research interests and teaching programmes of three departments (Civil, Environmental & Geomatic Engineering, Computer Science, and Geography).

Students on the Spatio-Temporal Analytics and Big Data Mining programme will be part of a vibrant, enthusiastic, and international research environment in which collaboration and free-ranging debate are strongly encouraged. This is supported by weekly research seminars and industrial seminars from top employers in the field.



Read less
This MSc provides you with the knowledge and skills to effectively develop, apply and research business intelligence systems. These are computerised information systems that enable organisations to gain business intelligence information and typically include some form of data mining functionality. Read more

About the course

This MSc provides you with the knowledge and skills to effectively develop, apply and research business intelligence systems. These are computerised information systems that enable organisations to gain business intelligence information and typically include some form of data mining functionality.

This course emphasises the concepts and techniques of business intelligence systems and their application and development, which are underpinned and exemplified via the learning of one or more contemporary ‘best of breed’ business intelligence software tools.

Reasons to study:

• Taught by SAS accredited teaching staff
you will be taught by experienced SAS accredited teaching staff providing you with expert knowledge and skills allowing you to work toward your SAS accreditation

• SAS endorsed course
enhance your employability and gain substantial knowledge and skills in SAS business intelligence software leading towards SAS data miner accreditation

• 50 years history of research and teaching in computing technology
benefit from our well established academic expertise and advance your skills in, and knowledge of, developing business intelligence systems and data mining solutions to business problems

• Gain an insight into real world solutions
attend guest lectures and seminars, which will give you a real understanding of the impact of their work

• Excellent graduate prospects
graduates have gone into roles such as BI/SQL developers, logistics data modeller’s and insight analysts at organisations including Cognisco, LLamasoft and Occam DM

Course Structure

Modules

First semester (September to January)

• Fundamentals of Business Intelligence Systems
• Analytics Programming
• Data Warehouse Design and OLAP
• Research Methods

Second semester (February to May)

• Data Mining
• Business Intelligence Systems Application and Development

Plus two from the following list:
• Management of Information Systems
• Human Factors in Systems Design
• Applied Computational Intelligence
• Artificial Neural Networks

Third semester (June to September)

•The individual project module.

Teaching and Assessment

Teaching will normally be delivered through formal lectures, informal seminars, tutorials, workshops, discussions and e-learning packages. Assessment will usually be carried out through a combination of individual and group work, presentations, reports, projects and exams.

Compulsory taught modules give you the opportunity to gain the fundamental knowledge and practices required to apply, develop and research business intelligence systems, while optional modules provide you with chances to study particular aspects of system application and development in more depth.

The individual project module allows you to undertake research into an aspect of business intelligence systems that interests you, and/or to perform appropriate business intelligence development tasks in response to a given practical problem.

Contact and learning hours

Full-time students will normally attend around 16 hours of timetabled taught sessions per week, and can expect to undertake around 24 further hours of self-directed independent study and research to support your assignments and dissertation.

Industry Association

This course was developed and is run in conjunction with SAS. SAS is the world's largest independent business analytics company. It provides an integrated set of software products and services to more than 45,000 customer sites in 118 countries. Across the globe, both the public and private sector use SAS software to assist in their efforts to compete and excel in a climate of unprecedented economic uncertainty and globalization.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students:
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
This course is designed to train highly qualified data analysts – or data scientists – to embark on careers in a wide range of industries. Read more
This course is designed to train highly qualified data analysts – or data scientists – to embark on careers in a wide range of industries. You’ll be given an excellent practical and theoretical grounding in data mining and statistics with the chance to customise your degree through modules in artificial intelligence, visualisation, programming and database manipulation.

Data Scientists are highly prized for their advanced, practical skill set and their increasing importance to the success of a modern business. Organisations in almost any industry need to source, analyse and utilise vast amounts of data to aid strategic decision-making, so you’ll have great graduate career prospects as well as a wide range of transferable skills.

We have a large Data Mining, Machine Learning and Statistics research group, which has made significant contributions to the field in the last 10 years, so you’ll be working directly with pioneering experts.

Read less
Machine learning, data mining and high-performance computing are concerned with the automated analysis of large-scale data by computer, in order to extract the useful knowledge hidden in it. Read more
Machine learning, data mining and high-performance computing are concerned with the automated analysis of large-scale data by computer, in order to extract the useful knowledge hidden in it. Using state-of-the-art artificial intelligence methods, this technology builds computer systems capable of learning from past experience, allowing them to adapt to new tasks, predict future developments, and provide intelligent decision support. Bristol's recent investment in the BlueCrystal supercomputer - and our Exabyte University research theme - show our commitment to research at the cutting edge in this area.

This programme is aimed at giving you a solid grounding in machine learning, data mining and high-performance computing technology, and will equip you with the skills necessary to construct and apply these tools and techniques to the solution of complex scientific and business problems.

Programme structure

Your course will cover the following core subjects:
-Introduction to Machine Learning
-Research Skills
-Statistical Pattern Recognition
-Uncertainty Modelling for Intelligent Systems

Depending on previous experience or preference, you are then able to take optional units which typically include:
-Artificial Intelligence with Logic Programming
-Bio-inspired Artificial Intelligence
-Cloud Computing
-Computational Bioinformatics
-Computational Genomics and Bioinformatics Algorithms
-Computational Neuroscience
-High Performance Computing
-Image Processing and Computer Vision
-Robotics Systems
-Server Software
-Web Technologies

You must then complete a project that involves researching, planning and implementing a major piece of work. The project must contain a significant scientific or technical component and will usually involve a software development component. It is usually submitted in September.

This programme is updated on an ongoing basis to keep it at the forefront of the discipline. Please refer to the University's programme catalogue for the latest information on the most up-to-date programme structure.

Careers

Skilled professionals and researchers who are able to apply these technologies to current problems are in high demand in today's job market.

Read less
The MSc in Data Science will provide you with the technical and practical skills to analyse the big data that is the key to success in future business, digital media and science. Read more

The MSc in Data Science will provide you with the technical and practical skills to analyse the big data that is the key to success in future business, digital media and science.

The rate at which we are able to create data is rapidly accelerating. According to IBM, globally, we currently produce over 2.5 quintillion bytes of data a day. This ranges from biomedical data to social media activity and climate monitoring to retail transactions. These enormous quantities of data hold the keys to success across many domains from business and marketing to treating cancer or mitigating climate change.

The pace at which we produce data is rapidly outstripping our ability to analyse and use it. Science and industry are crying out for a new generation of data scientists who combine the statistical skills of data analysis and the computational skills needed to carry out this analysis on a vast scale.

The MSc in Data Science provides you with these skills. 

Studying this Masters, you will learn the mathematical foundations of statistics, data mining and machine learning, and apply these to practical, real world data.

As well as these statistical skills, you will learn the computational techniques needed to efficiently analyse very large data sets. You will apply these skills to a range of real world data, under the guidance of experts in that domain. You will analyse trends in social media, make financial predictions and extract musical information from audio files. 

The degree will culminate in a final project in which you will you can apply your skills and follow your specialist interests. You will do a novel analysis of a real world data of your choice. 

The programme includes:

  • A firm grounding in the theory of data mining, statistics and machine learning
  • Hands-on practical real world applications such as social media, biomedical data and financial data with Hadoop (used by Yahoo!, Facebook, Google, Twitter, LinkedIn, IBM, Amazon, and many others), R and other specialised software
  • The opportunity to work with real-world software such as Apache

Modules & structure

You will study the following core modules:

You will also choose from an anually approved list of modules which may include:

Skills & careers

Data Science is one of the fastest growing sectors of employment internationally. Big Data is an important part of modern finance, retail, marketing, science, social science, medicine and government. 

The study of a combination of long established fields such as statistics, data mining, machine learning and databases with very modern and strongly related fields as big data management and analytics, sentiment analysis and social web mining, offers graduates an excellent opportunity for getting valuable skills in advanced data processing. 

This could lead to a variety of potential jobs including: 

  • Data Scientist
  • Data Mining Analyst
  • Big Data Analyst
  • Hadoop Developer
  • NoSQL Database Developer
  • R Programmer
  • Python Programmer
  • Researcher in Data Science and Data Mining

Find out more about employability at Goldsmiths.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Data Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Data Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

MSc in Data Science aims to equip students with a solid grounding in data science concepts and technologies for extracting information and constructing knowledge from data. Students of the MSc Data Science will study the computational principles, methods, and systems for a variety of real world applications that require mathematical foundations, programming skills, critical thinking, and ingenuity. Development of research skills will be an essential element of the Data Science programme so that students can bring a critical perspective to current data science discipline and apply this to future developments in a rapidly changing technological environment.

Key Features of the MSc Data Science

The MSc Data Science programme focuses on three core technical themes: data mining, machine learning, and visualisation. Data mining is fundamental to data science and the students will learn how to mine both structured data and unstructured data. Students will gain practical data mining experience and will gain a systematic understanding of the fundamental concepts of analysing complex and heterogeneous data. They will be able to manipulate large heterogeneous datasets, from storage to processing, be able to extract information from large datasets, gain experience of data mining algorithms and techniques, and be able to apply them in real world applications. Machine learning has proven to be an effective and exciting technology for data and it is of high value when it comes to employment. Students of the Data Science programme will learn the fundamentals of both conventional and state-of-the-art machine learning techniques, be able to apply the methods and techniques to synthesise solutions using machine learning, and will have the necessary practical skills to apply their understanding to big data problems. We will train students to explore a variety visualisation concepts and techniques for data analysis. Students will be able to apply important concepts in data visualisation, information visualisation, and visual analytics to support data process and knowledge discovery. The students of the Data Science programme also learn important mathematical concepts and methods required by a data scientist. A specifically designed module that is accessible to students with different background will cover the basics of algebra, optimisation techniques, statistics, and so on. More advanced mathematical concepts are integrated in individual modules where necessary.

The MSc Data Science programme delivers the practical components using a number of programming languages and software packages, such as Hadoop, Python, Matlab, C++, OpenGL, OpenCV, and Spark. Students will also be exposed to a range of closely related subject areas, including pattern recognition, high performance computing, GPU processing, computer vision, human computer interaction, and software validation and verification. The delivery of both core and optional modules leverage on the research strength and capacity in the department. The modules are delivered by lecturers who are actively engaged in world leading researches in this field. Students of the Data Science programme will benefit from state-of-the-art materials and contents, and will work on individual degree projects that can be research-led or application driven.

Modules

Modules for the MSc Data Science programme include:

- Visual Analytics

- Data Science Research Methods and Seminars

- Big Data and Data Mining

- Big Data and Machine Learning

- Mathematical Skills for Data Scientists

- Data Visualization

- Human Computer Interaction

- High Performance Computing in C/C++

- Graphics Processor Programming

- Computer Vision and Pattern Recognition

- Modelling and Verification Techniques

- Operating Systems and Architectures

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Career Destinations

- Data Analyst

- Data mining Developer

- Machine Learning Developer

- Visual Analytics Developer

- Visualisation Developer

- Visual Computing Software Developer

- Database Developer

- Data Science Researcher

- Computer Vision Developer

- Medical Computing Developer

- Informatics Developer

- Software Engineer



Read less
This course addresses the need to propel information-gathering and data organisation, and exploit potential information and knowledge hidden in routinely collected data to improve decision-making. Read more
This course addresses the need to propel information-gathering and data organisation, and exploit potential information and knowledge hidden in routinely collected data to improve decision-making. The course, which builds on the strength of two successful courses on data mining and on decision sciences, is more technology focused, and stretches the data mining and decision sciences theme to the broader agenda of business intelligence.

You will focus on developing solutions to real-world problems associated with the changing nature of IT infrastructure and increasing volumes of data, through the use of applications and case studies, while gaining a deep appreciation of the underlying models and techniques. You will also gain a greater understanding of the impact technological advances have on nature and practices adopted within the business intelligence and analytics practices, and know how to adapt to these changes.

Course content

Embedded into the course are two key themes. The first will help you to develop your skills in the use and application of various technologies, architectures, techniques, tools and methods. These include warehousing and data mining, distributed data management, and the technologies, architectures, and appropriate middleware and infrastructures supporting application layers. The second theme will enhance your knowledge of algorithms and the quantitative techniques suitable for analysing and mining data and developing decision models in a broad range of application areas. The project consolidates the taught subjects covered, while giving you the opportunity to pursue in-depth study in your chosen area.

Teaching approaches include lectures, tutorials, seminars and practical sessions. You will also learn through extensive course work, class presentations, group research work, and the use of a range of industry standard software such as R, Python, Simul8, Palisade Decision Tools, Hadoop and Oracle.

Taught modules may be assessed entirely through course work, or may include a two-hour exam at the end of the year.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-BIG DATA THEORY AND PRACTICE
-BUSINESS ANALYTICS
-DATA MINING AND MACHINE LEARNING
-RESEARCH METHODS AND PROFESSIONAL PRACTICE
-BUSINESS SYSTEMS POSTGRADUATE PROJECT

Option modules
-ADVANCED BIG DATA ANALYTICS
-BUSINESS OPTIMISATION
-DATA VISUALISATION AND DASHBOARDING
-DATA WAREHOUSING AND OLAP
-DATA REPOSITORIES PRINCIPLES AND TOOLS
-SIMULATION MODELLING: RISK, PROCESSES, AND SYSTEMS
-WEB AND SOCIAL MEDIA ANALYTICS

Associated careers

Graduates can expect to find employment as consultants, decision modelling or advanced data analyst, and members of technical and analytics teams supporting management decision making in diverse organisations. Typical employers include local authorities, PLCs (such as GlaxoSmithKline, Prudential, Santander and Unilever), public sector organisations (such as the NHS and primarily care trusts), retail head offices, the BBC, the Civil Service and the host of banks, brokers and regulators that makeup the city, along with all the specialist support consultancies in IT and market research and forecasting, all of the whom us data for the full range of decision making.

Professional recognition

This course is accredited by the British Computer society for partial fulfilment of the academic requirement for Chartered IT professional.

Read less
This course addresses the need to propel information-gathering and data organisation, and exploit potential information and knowledge hidden in routinely collected data to improve decision-making. Read more
This course addresses the need to propel information-gathering and data organisation, and exploit potential information and knowledge hidden in routinely collected data to improve decision-making. The course, which builds on the strength of two successful courses on data mining and on decision sciences, is more technology focused, and stretches the data mining and decision sciences theme to the broader agenda of business intelligence.

You will focus on developing solutions to real-world problems associated with the changing nature of IT infrastructure and increasing volumes of data, through the use of applications and case studies, while gaining a deep appreciation of the underlying models and techniques. You will also gain a greater understanding of the impact technological advances have on nature and practices adopted within the business intelligence and analytics practices, and know how to adapt to these changes.

Course content

Embedded into the course are two key themes. The first will help you to develop your skills in the use and application of various technologies, architectures, techniques, tools and methods. These include warehousing and data mining, distributed data management, and the technologies, architectures, and appropriate middleware and infrastructures supporting application layers. The second theme will enhance your knowledge of algorithms and the quantitative techniques suitable for analysing and mining data and developing decision models in a broad range of application areas. The project consolidates the taught subjects covered, while giving you the opportunity to pursue in-depth study in your chosen area.

Teaching approaches include lectures, tutorials, seminars and practical sessions. You will also learn through extensive course work, class presentations, group research work, and the use of a range of industry standard software such as R, Python, Simul8, Palisade Decision Tools, Hadoop and Oracle.

Taught modules may be assessed entirely through course work, or may include a two-hour exam at the end of the year.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-BIG DATA THEORY AND PRACTICE
-BUSINESS ANALYTICS
-DATA MINING AND MACHINE LEARNING
-RESEARCH METHODS AND PROFESSIONAL PRACTICE
-BUSINESS SYSTEMS POSTGRADUATE PROJECT

Option modules
-ADVANCED BIG DATA ANALYTICS
-BUSINESS OPTIMISATION
-DATA VISUALISATION AND DASHBOARDING
-DATA WAREHOUSING AND OLAP
-DATA REPOSITORIES PRINCIPLES AND TOOLS
-SIMULATION MODELLING: RISK, PROCESSES, AND SYSTEMS
-WEB AND SOCIAL MEDIA ANALYTICS

Associated careers

Graduates can expect to find employment as consultants, decision modelling or advanced data analyst, and members of technical and analytics teams supporting management decision making in diverse organisations. Typical employers include local authorities, PLCs (such as GlaxoSmithKline, Prudential, Santander and Unilever), public sector organisations (such as the NHS and primarily care trusts), retail head offices, the BBC, the Civil Service and the host of banks, brokers and regulators that makeup the city, along with all the specialist support consultancies in IT and market research and forecasting, all of the whom us data for the full range of decision making.

Professional recognition

This course is accredited by the British Computer society for partial fulfilment of the academic requirement for Chartered IT professional.

Read less
The operating officers of tomorrow master in Operations Management today. The program focuses on the effective management of the resources and activities that produce or deliver the goods and services of a business. Read more
The operating officers of tomorrow master in Operations Management today. The program focuses on the effective management of the resources and activities that produce or deliver the goods and services of a business. Operations managers oversee the people, materials, equipment and information resources that a business needs to produce and deliver its goods and services. Many of the most esteemed data systems operating the processes and activities of worldwide business are designed by operations managers.

Visit the website: http://manderson.cba.ua.edu/academics/departments/masters_program/master_of_science_in_operations_management

Choose from two track options:

Track 1: Operations Management

The master's program in Operations Management is offered both on campus and online. The degree requires 30 hours of coursework (10 courses). Full-time, on-campus students can complete the program in three semesters (fall/spring/summer). Students who want to pursue this degree program part-time while continuing to work can choose between the two-year and three-year schedules for completing the degree online.

Required Courses:

- OM 500 Management Science I
- OM 517 Supply Chain Modeling & Analysis
- OM 522 Operations Scheduling Problems
- OM 523 Inventory Management
- OM 524 Manufacturing Scheduling & Control Systems
- OM 540 Systems Simulation
- OM 596 Capstone Project
- ST 560 Statistical Methods

Track 2: Decision Analytics

The concept for this track is to offer an Operations Management master’s degree that combines the prescriptive modeling and analytical skills arising from the OM program with the data management and data mining skills arising from the SAS-UA Data Mining certification program offered in the Statistics program.

The Decision Analytics track consists of 10 courses: five from Operations Management, four from Statistics, and one from either Statistics or Management Information Systems.

- Required Courses:

- ST 560 Statistical methods in Research I
- ST 521 Statistical Data Management
- ST 531 Knowledge Discovery and Data Mining I
- ST532 Advanced Data Mining
- OM 500 Management Science and Spreadsheet Modeling
- OM 540 Systems Simulation
- OM 596 Capstone Project

- Two OM Elective Courses:

- OM 517 Supply Chain Modeling and Analysis
- OM 522 Operations Scheduling Problems
- OM 523 Inventory Management
- OM 524 Manufacturing Scheduling and Control Systems

*Choose two courses from this set of four courses.

- One Restricted Elective Course:

- ST 522 Advanced Statistical Data Management
- MIS 541 Business Analytics Support Systems

*Choose one of these two with consultation by program advisor.

How to apply: http://graduate.ua.edu/prospects/application/

Fund your studies

Student Financial Aid provides comprehensive information and services regarding opportunities to finance the cost of education at The University of Alabama. We recognize that financial assistance is an important key to helping reach your educational and career goals. The financial aid staff is dedicated to making the financial aid process as straightforward as possible. Visit the website to find out more: http://financialaid.ua.edu/

Read less
Businesses now frequently possess and want to exploit huge, high volume, varied dynamic data sets, known as big data. Analytics is a subset of what has become to be called Business Intelligence. Read more

About the course

Businesses now frequently possess and want to exploit huge, high volume, varied dynamic data sets, known as big data. Analytics is a subset of what has become to be called Business Intelligence. This is a set of technologies and processes used to understand data and analyse business performance.

Data Analytics MSc, developed and run with SAS, has been specifically designed to equip you with the skills and abilities to address this shortage. On successful completion of the course you will have developed your analytic and technical knowledge, and enhanced your professional skills within a Business Intelligence context.

You will be equipped with the relevant skills for employment in any field of data science (such as business intelligence, data mining, SAS programming and database design) within any target industry, with the additional option to complete a placement year in industry to further enhance your employability.

There is a growing need for professionals who can combine both analytical and software techniques in appropriate ways to allow the processing of ‘big data’. Data Analytics MSc is designed to provide these analytics and processing skills embedded within a business intelligence context.

Reasons to study:

• Taught by SAS accredited teaching staff
you will be taught by experienced SAS accredited teaching staff providing you with expert knowledge and skills

• Developed to fill skills shortage
course content has been developed to enhance your employability and gain substantial knowledge and equipping you with the skills required in for the use of the SAS software as well as Hadoop Distributed File System (HDFS) in industry

• 50 years history of research and teaching in computing technology
benefit from our well established academic expertise and advance your skills in, and knowledge of, data analytics to business problems

• Industry placement opportunity
you can chose to undertake a year-long work placement gaining valuable experience and skills as well as networking opportunities to build your industry contacts

• Excellent graduate prospects
equipped with the relevant skills for business intelligence and data mining roles including SAS Programming, Database Design and Business Intelligence

Course Structure

Modules

First semester (September to January)

• Statistics
• Fundamentals of Business Intelligence Systems
• Analytics Programming
• Data Warehouse Design and OLAP

Second semester (February to May)

• Business Intelligence Systems Application and Development
• Big Data Analytics
• Data Mining
• Research Methods

Third semester (June to September)

• Individual project

Teaching and Assessment

Teaching will normally be delivered through formal lectures, informal seminars, tutorials, workshops, discussions and e-learning packages. Assessment will usually be carried out through a combination of individual and group work, presentations, reports, projects and exams.

The course is run in association with SAS, the leading independent vendor in the business intelligence industry, and you will gain substantial SAS software skills as part of your study.

First semester modules provide you with fundamental abilities in the use of statistics so that you can gain insights and practice of using business intelligence systems and analytics programming to exploit multidimensional data sets.

In the second semester you are exposed to a variety of business intelligence systems, including those that use big data and data mining techniques. A further module prepares students to undertake an individual research project. This project module allows you to undertake extensive research into an aspect of big data, and/or provides an opportunity to develop and demonstrate your analytical and processing abilities in response to a given practical problem.

Contact and learning hours

You will normally attend 3 hours of timetabled taught sessions each week for each module undertaken during term time, for full time study this would be 12 hours per week during term time. You are expected to undertake around 24 further hours of independent study and assignments as required per week.

Industry Association

The Data Analytics MSc was developed and is run in conjunction with SAS. SAS is the world's largest independent business analytics company. It provides an integrated set of software products and services to more than 45,000 customer sites in 118 countries. Across the globe, both the public and private sector use SAS software to assist in their efforts to compete and excel in a climate of unprecedented economic uncertainty and globalization.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students:
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Health Data Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Health Data Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Healthcare, with an already established strong relationship with Information & Communication Technologies (ICT), is continuously expanding the knowledge forefront as new methods of acquiring data concerning the health of human beings are developed.

Processing this data to extract valuable information about a population (epidemiological applications) or the individual (personalised healthcare applications) is the work of health data scientists. Their work has the potential to improve quality of life on a large scale.

Swansea University is the first institution in the UK to offer this taught master's programme in Health Data Science designed to develop the essential skills and knowledge required of the Health Data Scientist.

Key Features of the Health Data Science Programme

- A one year full-time taught master's programme designed to develop the essential skills and knowledge required of the Health Data Scientist.

- The Health Data Science course is also available for three years part-time study.

- An integrated programme of studies tailored to the essential skill set required for Data Scientists operating within healthcare organisations covering key topics in computation, data modeling, visualisation, machine learning and key methodologies in the analysis of linked health data.

- Hands on experiential learning from the professionals behind the Secure Anonymised Information Linkage (SAIL) Databank, a UK-exemplar project for the large scale mining of healthcare data within a secure environment.

- Strong collaboration links with colleagues from the Centre for Health Services Research of the University of Western Australia, a group of leading experts in the analysis of linked health data.

- The Health Data Science course is based within the award winning Centres for Excellence for Administrative Data and eHealth Research of Swansea University, awarded by the Economic and Social Research Council (ESRC) and Medical Research Council (MRC), enhancing the quality of the course.

Who should study MSc Health Data Science?

The Health Data Science course is suitable for those working in healthcare with roles involving the analysis of health data and also computer scientists with experience in working with data from the healthcare domain, as well as biomedical engineers and other similar professions.

Course Structure

Students must complete 6 modules of 20 credits each and produce a 60 credits dissertation on a Health Data Science project. Each module of the programme requires a short period of attendance that is augmented by preparatory and reflective material supplied via the course website before and after attendance.

Attendance Pattern

Health Data Science students are required to attend the University for 1 week (5 consecutive days) for each module in Part One. Attendance during Part Two is negotiated with the supervisor.

Modules

Modules on the Health Data Science programme typically include:

Scientific Computing and Health Care

Health Data Modelling

Introductory Analysis of Linked Health Data

Machine Learning in Healthcare

Health Data Visualisation

Advanced Analysis of Linked Health Data

Professional Development

The College of Medicine offers the modules on the Health Data Science course as standalone opportunities for prospective students to undertake continued professional development (CPD) in the area of Health Data Science.

You can enroll on the individual modules for the Health Data Science programme as either an Associate Student (who will be required to complete the module(s) assessments) or as a Non-Associate Student (who can attend all teaching sessions but will not be required to complete any assessments).

For information and advice on applying for any of the continuing education opportunities, please contact the College directly at .

Employability

Postgraduate study has many benefits, including enhanced employability, career progression, intellectual reward and the opportunity to change direction with a conversion course.

From the moment you arrive in Swansea, specialist staff in Careers and Employability will help you plan and prepare for your future. They will help you identify and develop skills that will enable you to make the most of your postgraduate degree and enhance your career options. The services they offer will ensure that you have the best possible chance of success in the job market.

The student experience at Swansea University offers a wide range of opportunities for personal and professional development through involvement in many aspects of student life.

Co-curricular opportunities to develop employability skills include national and international work experience and study abroad programmes and volunteering, together with students' union and athletic union societies, social and leisure activities.

For the MSc Health Data Science course, we are in the process of identifying opportunities for our students to complete volunteering placements with a number of our collaborative partners.



Read less
The GIS (Geographical Information Science) MSc provides an education in the theoretical, scientific and practical aspects of GIS. Read more
The GIS (Geographical Information Science) MSc provides an education in the theoretical, scientific and practical aspects of GIS. It prepares students for technical and analytical GIS roles and is in high demand; we have very close links with industry and the majority of our students find employment prior to contemplating their degree.

Degree information

Students gain a solid grounding in the scientific principles underpinning the computational and analytical foundations of GISc. Our staff are world-leading experts in the areas of programming location-enabled Apps, spatial and 3D databases, big spatio-temporal analytics, citizen science and and human computer interaction, and the MSc therefore is able to offer a wide range of options and specialisations.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research project (60 credits). A Postgraduate Diploma, four core modules (60 credits), four optional modules (60 credits), full-time nine months is offered.

Core modules - core modules introduce the theory underpinning GIS, along with programming skills (python) and the basics of spatial analysis and statistcs. You'll learn to critically engage with GIS rather than just pushing buttons - how does the way data is captured and modelled influence the results of your analysis? Do you get the same results from two different GIS packages? Knowing what is inside the 'black box' means you understand analytical results and their limitations.
-GIS Principles and Technology
-Principles of Spatial Analysis
-Mapping Science
-Representations, Structures and Algorithms

Optional modules - term two is where you start to specialise, chosing modules that fit your interests, intended career choice and/or prepare you for your dissertation. At this point you can chose a heavilty technical route (e.g. databases, programming, human computer interaction) a more analytical route (spatio-temporal data mining, network and locational analysis, databases) or a mixture of the two routes. You will need to chose four modules in total. At least 30 credits of optional modules selected from :
-Geographical Information System Design
-Spatio-Temporal Analysis and Data Mining
-Web and Mobile GIS – Apps and Programming
-Spatial Databases and Data Management

Plus no more than 30 credits of optional modules (all term two) selected from :
-Airborne Data Acquisition
-Applied Building Information Modelling
-Network and Locational Analysis
-Image Understanding
-Ocean and Coastal Zone Management
-Positioning
-Research Methods
-Terrestrial Data Acquisition

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words. Where appropriate, this may be undertaken in conjunction with one of our many industrial partners, including Arup, Joint Research Centre, British Red Cross, Transport for London.

Teaching and learning
The programme is delivered through lectures, practical classes, demonstrations and tutorials, and is supported by a series of external speakers from industry and visits to industrial who give weekly seminars describing how GIS is used in their field as well as what they are looking for when recruiting graduate GIS students. Assessment is through unseen examinations, group and individual coursework, formal and oral presentations, and the dissertation.

Careers

There are excellent employment prospects for our graduates, with starting salaries of around £25,000. Recent GIS graduates have found openings with large engineering design firms (such as Arup or WSP), specialist consultancy firms such as Deloitte or Informed Solutions, in leading professional software companies (such as ESRI or Google), with local authorities, for organisations such as Shell, Tesco, the Environment Agency, Transport for London, NHS and the Ordnance Survey.

Employability
Students will develop specific skills including a fundamental understanding of GIS and its application to real-world problems, through theoretical lectures covering the foundations of the science – how data is captured, map creation, generalisation, spatial data management, spatial analysis, data quality and error, and spatial algorithms. Students will develop strong technical (python, R, Java, HTML, Javascript, SQL) and analytical skills (data mining, human computer interaction and usability), and in order to fully understand the principles behind GIS will make use of multiple GIS packages, both proprietary and free/open source (ArcGIS, QGIS).

Why study this degree at UCL?

This highly regarded MSc has been running for nearly 30 years and is taught by internationally recognised academics. Our specialist GIS laboratory offers the latest open source and proprietary software and our unique dual focus on the computer science and analytical aspects of GIS means that you will be able to develop your skills in multiple directions.

Our close links with industry (a strong alumni group and weekly industrial seminars) mean that you will be able to directly link your classroom learning with your future career as a GIS professional; you can also undertake your dissertation with an industrial partner.

As well as weekly industrial seminars, you will have the option to do an industry-linked project, and you will be able to attend our annual GIS careers event, which is co-organized with the UK Assocation of Geographic Infrormation.

Read less
Big data is the description used to encompass the huge amounts of data that is common to many businesses. It has been described as the next frontier for innovation, competition and productivity in business. Read more

Big data is the description used to encompass the huge amounts of data that is common to many businesses. It has been described as the next frontier for innovation, competition and productivity in business. It is essential for companies to embrace so that they can understand their customers better, develop new products and cut operational costs.

This course has been developed to create graduates who can become data scientists capable of working with the massive amounts of data now common to many businesses. It is aimed at people who want to move into this rapidly expanding and exciting area.

The modules on this course help you develop the core skills and expertise needed by the data scientist. The course can be split into three main areas, statistics, computing and management.

In the statistics section you study modules on data mining and data modelling. These modules cover the three main data areas, which are ensuring that data is reliable and of a high quality, searching the data to discover new information and presenting interpretations of that data to the end user.

The computing section covers areas related to data integration, massive datasets stored in the cloud, how data is stored and utilised within the distributed systems of an enterprise and how organisations can utilise data to change and improve business processes.

The management modules are focused on developing your core skills around professionalism and research. All of which are valuable skills during your university studies and in your career.

Our partnerships with business inform the course design, ensuring the content is relevant, up to date and meets the needs of industry. These partnerships also enable the inclusion of some leading edge software such as SAS, SAP Hana, and Hadroop within the course. You may be able to study abroad as part of the Erasmus programme.

Key areas of study

Key areas of study include • data quality and analysis • technologies to store and mine data • professionalism and research

Professional recognition

This course includes the SAP Business Intelligence with SAP BW 7.3 and SAP BI 4.0 e-academy (UB130e). You also have the opportunity to sit the SAP certification exam and the SAS 9 base certification exam.

Sheffield Hallam is a member of the SAS Student Academy, the SAP Student Academy and founding member of the SAP University Alliance.

Course structure

Full time – September start – typically 12 or 18 months

Part time – September start – typically 36 months

Core modules

  • research skills and principles
  • industrial expertise
  • data integration
  • statistical modelling
  • data mining
  • handling data in the cloud
  • big data and distributed systems
  • social and economic aspects of the cloud
  • advanced statistical modelling
  • dissertation

Options

Choose one from :

  • organisational dynamics
  • social and economic aspects of the cloud

Assessment

  • essays
  • assignments
  • computer-based tests
  • practical projects
  • presentations
  • vivas

Employability

Many jobs for data scientists, data analysts and data mining analysts are available with salaries ranging from £35,000 to £80,000.

Jobs typically list the skills to be in areas such as statistical analysis and machine learning techniques, database and programming technologies, and expertise in statistical theory, which are all areas you cover on this course.

You also gain skills and knowledge in HaDoop, MapReduce, Java, SAS, MSQL which are some of the common technologies used in data scientist roles.



Read less
Drawing on our research excellence in this area, this innovative programme of study in big data and business intelligence is designed to give graduates a competitive advantage in the modern, fast growing business domain. Read more
Drawing on our research excellence in this area, this innovative programme of study in big data and business intelligence is designed to give graduates a competitive advantage in the modern, fast growing business domain. This is one of the first MSc programmes in the UK covering these leading-edge technologies. The programme provides students with the deeper knowledge, advanced skills and understanding that will allow them to contribute to the development and design of big data systems as well as distributed/internet-enabled decision support application software systems, using appropriate technologies, architectures and techniques (e.g. data analytics, business intelligence, NoSQL, data mining, data warehousing, distributed data management and technologies, Hadoop, etc.).

Additionally, the programme enables students to understand and assess the security and legal implications of e-commerce applications and provides students with appropriate knowledge of business and commerce relevant to transacting business on the internet. The courses take a software engineering approach to the construction of applications and focus on modern software engineering methods, tools and techniques that enable an integrated life-cycle software development view.

Through our short course centre opportunity may also be provided to study for the following professional qualifications: Microsoft Technology Associate Exams; Certified Professional Java SE Programmer; Java Certified Associate; Oracle Certified Associate (OCA).

Visit the website http://www2.gre.ac.uk/study/courses/pg/com/cgbdbi

Computing - General

Come and study in the award-winning Department of Computing & Information Systems on the magnificent Greenwich Campus. Welcoming home and international students from all backgrounds, CIS provides an exciting, diverse and friendly environment in which to study.

The latest university league table published in the Sunday Times, has rated the computer science department as seventh in the UK for teaching excellence.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)
Data Warehousing (15 credits)
Database Architectures and Administration (15 credits)
Database Tools (15 credits)
Business Intelligence and Data Mining (15 credits)
Enterprise Systems Integration (15 credits)
Big Data (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 15 credits from this list of options.

Requirements Analysis & Methods (15 credits)
Software Tools and Techniques (15 credits)
User Centred Web Engineering (15 credits)

Students are required to choose 15 credits from this list of options.

System Modelling (15 credits)
Systems Development Management and Governance (15 credits)
Programming Enterprise Components (15 credits)
Multi-structured Data and NoSQL Technology (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Database Architectures and Administration (15 credits)
Business Intelligence and Data Mining (15 credits)
Enterprise Systems Integration (15 credits)
Big Data (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

- Year 2:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)
Data Warehousing (15 credits)
Database Tools (15 credits)

Students are required to choose 15 credits from this list of options.

Requirements Analysis & Methods (15 credits)
Software Tools and Techniques (15 credits)
User Centred Web Engineering (15 credits)

Students are required to choose 15 credits from this list of options.

System Modelling (15 credits)
Systems Development Management and Governance (15 credits)
Programming Enterprise Components (15 credits)
Multi-structured Data and NoSQL Technology (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, coursework and a project.

Professional recognition

This programme is accredited by the British Computer Society (BCS). On successful graduation from this degree, the student will have fulfilled the academic requirement for registration as a Chartered IT Professional (CITP) and partially fulfilled the education requirement for registration as a Chartered Engineer (CEng) or Chartered Scientist (CSci). For a full Chartered status there are additional requirements, including work experience. The programme also has accreditation from the European Quality Assurance Network for Informatics Education (EQANIE).

Career options

Graduates from this programme can pursue careers as data scientists, database designers and administrators, consultants, senior team members, programmers, analysts.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
IN BRIEF. Study a course that is unique in the UK and has been specifically developed to meet the skills gap. Course content can be applied to very diverse fields- there are many job opportunities in this area. Read more

IN BRIEF:

  • Study a course that is unique in the UK and has been specifically developed to meet the skills gap. Course content can be applied to very diverse fields- there are many job opportunities in this area.
  • Gain SAS certification.
  • Learn to tell a story from data. Become immersed in Big Data techniques and platforms, working with real-world messy data to gain experience across the data science stack.
  • Part-time study option
  • International students can apply

COURSE SUMMARY

Have you ever wanted to ‘Mung’ data? Apply Machine Learning techniques? Search for hidden patterns? Be part of Big Data?      

This course is your opportunity to specialize as a Data Scientist, one of the most in demand roles across all sectors including health, retail, and energy. Companies such as Google and Microsoft, and also public organisations such as the NHS are struggling to fill their vacancies in this field due to    a  lack of suitably qualified people. This course is unique in the UK in that it has been developed as a MSc conversion course – if you have a good honours degree in any discipline with a demonstrable mathematical aptitude, an enquiring mind, a practical and analytical approach to problem solving,    and  an ambition for a career in data science; then this course is for you.    

During your time with us, you will develop an awareness of the latest developments in the fields of Data Science and Big Data including advanced databases, data mining and big data tools such as Hadoop. You will also gain substantial knowledge and skills with the SAS business intelligence software suite  due  to    the  partnership of the University with the SAS Student Academy.  

"We are especially pleased to endorse the new MSc in Data Science. With the explosion of interest and investment in data science teams, our customers cannot get enough graduates with SAS-based analytical skills. Courses such as this new MSc are an important step forward by the University to addressing this skills shortage, especially amongst home students." - SAS

COURSE DETAILS

This course covers a very comprehensive range of topics split in to four large modules worth 30 credits each plus the MSc Project worth 60 credits. External speakers from blue-chip and local companies will give seminars to complement your learning, that will be real-world case studies related to the subjects you are studying in your modules. These are designed to improve the breadth of your learning and could lead to ideas that you can develop for your MSc Project.

TEACHING

The course is focused around the underpinning knowledge and practical skills needed for employment within the data sciences industry. There will be 22 hours of lectures; 11 hours of tutorials and 22 hours workshops; 2 hours of examination-based assessment; and 245 hours of independent study, assessed coursework and preparation for examination. This makes a total of 300 hours total learning experience.

  • Lectures will be used to introduce ideas, and to stimulate group discussions.
  • Tutorials will be used to develop problem solving strategies and to provide practice and feedback with scenarios to help with exam preparation.
  • Workshops will be used to develop expertise in SAS tools, by analysing example datasets of increasing complexity.

ASSESSMENT

  • 50% of the assessment will comprise a practical project where students will be given some data, will devise and carry out an analysis strategy and will present their interpretations and explain their strategy. 
  • 50% will comprise an examination, which will assess more theoretical aspects of the course and will explore students’ immediate response to unseen scenarios or data.

CAREER PROSPECTS

A recent report by e-Skills and SAS (Big Data Analytics: An assessment of the demand for labour and skills, 2012-1017) indicates the demand forecast for staff with big data skills is predicted to ”rise by 92% between 2012 and 2017, and by 2017 there will be at least 28,000 job openings for big data staff in the UK each year…”

With this qualification, you’ll be equipped with the skill set and technical knowledge relevant for the data science and big data job market.

FURTHER STUDY

The Informatics Research Centre in the School of Computing, Science and Engineering at the University of Salford builds on the history, success and achievements of the research in Computer Science and Information Systems developed at the University of Salford over the last thirty years.

Evolving around Data and Information in all their types and usages, the Centre covers all phases and processes from data pre-processing to engineering and visualisation. The Centre is developing novel methods and systems for the analysis and recognition of various data sets, learning behaviours and causal models. The techniques and systems developed have a wide range of potential applications including digitisation of historical documents, medical diagnosis, semantic tagging, segmentation of types of viewers and their behaviours, text mining and retrieval and data visualisation.

Forensic computing, digital investigation and Cyber security is another area of expertise supported by the centre both at the theoretical and application levels.

Many students go on to further research in the fields of:

  • Actionable Knowledge Discovery and Semantic Web
  • Software Engineering and applications
  • Big Data, Data Mining and Analytics
  • Image and document processing and analysis
  • Cyber Security and Forensics
  • Information visualisation and virtual environments

FACILITIES

Facilities include a new Dell Cloud Computing platform with OpenStack and lab workstations, providing access to software platforms and languages specialized in Machine Learning, Data Mining, Statistical Analysis and Big Data including:

  • R, SAS Enterprise Guide & Miner, Python, Apache Hadoop & Spark, RapidMiner
  • NoSQL databases ie MongoDB


Read less

Show 10 15 30 per page



Cookie Policy    X