• Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
King’s College London Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
University of Leeds Featured Masters Courses
University of Greenwich Featured Masters Courses
University of Kent Featured Masters Courses
"crops"×
0 miles

Masters Degrees (Crops)

  • "crops" ×
  • clear all
Showing 1 to 15 of 45
Order by 
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Read more
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Taught content will equip the graduate with the expertise needed to work independently in a range of areas of current commercial plant science, at supervisory or management level, or in applied research. As well as ensuring a thorough grounding in basic science and horticultural technology, the modern molecular biology content is particularly relevant, since new technologies are rapidly entering the commercial arena. The independent research project will be set in a research institution or appropriate local industry, and will be designed around the student's interests and expertise.

The MSc focuses on methods used in the evaluation and improvement of conventional crops that feed the growing world population, but also alternative protected crops and ornamentals along with postharvest management, business and environmental concerns, and plant stress and disease in a changing climate.

Experts in this increasingly important area are needed in businesses nationally and internationally, in research and innovation, and at government and agency level where the ability to understand and follow current developments is required to guide and direct global sustainable solutions to population change.

The aims of the programme are:
• To provide knowledge of the science of plant biology and its application in the commercial and research arena
• To introduce the practicalities of horticulture and agriculture technologies including consideration of sustainability
• To examine the commercial aspects of this business area, including the planning, execution and evaluation of trials to exploit and develop novel approaches, practices, and crops
• To allow the student to synthesise, evaluate and critically judge which technologies and research findings are of value and appropriate to their current or future employment environment in a UK or international setting.

Visit the website http://www.gre.ac.uk/pg/engsci/aps

Food and Agricultural Sciences

The Natural Resources Institute (NRI) has an internationally-recognised academic reputation and provides taught postgraduate courses in a wonderful environment for students.

NRI provide research, consultancy, training and advisory services to underpin sustainable development, economic growth and poverty reduction. The majority of our activities focus on the harnessing of natural and human capital for the benefit of developing countries, though much of our expertise has proved to be of growing relevance to industrialised nations.

What you'll study

• Molecular and plant biology principles for plant improvement
• Research methods in plant science
• Independent research project
• Plant growth and cropping technology

Options:
• Agroforestry
• Agronomy and crop physiology
• Applications and aspects of commercial crop science
• Food and markets
• Planning for personal and professional development
• Plant disease management

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Examinations, coursework, research project dissertation.

Specialist equipment/facilities

Molecular biology laboratories, horticultural and agricultural facilities

Career options

Production managers - management of plant/crop production (protected and non-protected crops) and postharvest facilities.

Development specialists - selection, development and evaluation of existing and novel plants and crops.

Retailing produce - food and crop technologists, retailing food and non-food derived crops and products, including fresh produce and postharvest technologists.

Institutes, NGOs and governmental bodies - governance and policy linked to application of horticultural/agricultural technologies.

Applied research scientist - application of plant science into practice.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The Natural Resources Institute (NRI) is a specialised multidisciplinary research organisation within the University of Greenwich. Read more
The Natural Resources Institute (NRI) is a specialised multidisciplinary research organisation within the University of Greenwich. The Institute received the Queen's Anniversary Prize for its research activities on food security in the developing world. Much of NRI's research work is concerned with natural resources, agriculture and social development in developing countries, although it has an expanding portfolio of activities in Europe and other industrialised countries.

NRI provides a thriving environment for MPhil and PhD students working in agricultural and food sciences. Each of NRI's departments has a strong portfolio of research activities, of which students form an important and integral part.

The Agriculture, Health & Environment Department works on the worldwide development of appropriate cost-effective and sustainable approaches to controlling pests, diseases and weeds that affect crop production. Use of biocontrol and control methods involving no (or very low) conventional pesticides are increasing in importance in our work, especially for export crops.

The Department also has researchers who share a common interest in the many species of insects, ticks and rodents that cause injury to their hosts and transmit diseases to both humans and animals. Research is undertaken in the UK, using NRI's state-of-the-art laboratories, insectaries and glasshouses, and also overseas. Particularly strong areas of research include the epidemiology of insect-borne virus diseases, molecular diagnostics, pest and disease modelling, aerobiology and biometeorology, migrant pests, medical and veterinary entomology and integrated pest management.

The Food and Markets Department works on commodity management and food safety of cereals, grains, root crops, perishables and other crops. The Department works with all aspects of the operations of the food industry, including, for example, storage, post-harvest technology, quality analysis and management, compliance with food standards, food processing and value addition, value chains, private and public sector standards and market development. NRI's work provides many opportunities for postgraduates to be involved in multidisciplinary projects.

We offer full-time or part-time attendance, with students based on our campus or in their home countries, or some combination.

Visit the website http://www2.gre.ac.uk/study/courses/pg/res/afs

What you'll study

Recent research project topics include:

- The impact of host plants on the efficacy of nucleopolyhedrovirus as a biopesticide

- Reasons for multiple loans in microfinance and their effect on the repayment performance

- Evaluating the impact of climate change on postharvest quality of perishables

- Laboratory based investigation of the sensory cues used by vector mosquitoes to locate host animals

- Dormancy and sprout control in root and tuber crops

- Investigations into the oviposition behaviour of Anopheles gambiae

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through their thesis and oral examination.

Career options

Postgraduate research students from NRI have a good record of finding employment within their specific technical discipline or in the field of international development.

Find out how to apply here - http://www2.gre.ac.uk/research/study/apply/application_process

Read less
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Read more
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Focusing upon the understanding of plant to crop systems, and with an emphasis on research training, the course is ideally suited to those wishing to pursue careers in research institutes, plant breeding, agro-industry and advance to higher research degree (PhD) study.

The course consists of a number of taught modules and a major research project.

Specialist facilities for plant work include modern glasshouses and controlled environment growth rooms in which plants and tissue cultures can be raised. The laboratories contain a wide range of modern equipment including ultracentrifuges, apparatus for radioisotope studies, gas liquid chromatography and spectrophotometry. A number of experimental plots containing arable and horticultural crops are available for use by students, particularly in relation to their projects. Crop Science fieldwork is carried out as part of the normal arable rotation on the farm, which is within easy reach of the laboratories.

The School also has a Tropical Crops Research Unit - computer controlled glasshouses are available for research on a range of tropical species.

Links with industry further enhance the course by providing valuable industry knowledge and experience and relating the subject to commercial practice

Scholarships may be available -please see our web-site.
.

Read less
Part 1 (120 credits). runs from September to May and consists of four taught modules, a Field Visit, and a Research Methods module component. Read more
Part 1 (120 credits): runs from September to May and consists of four taught modules, a Field Visit, and a Research Methods module component. They must be completed successfully before proceeding to Part 2.

Part 2 (60 credits): is the dissertation phase and runs from end of May to September. This is a supervised project phase which gives students further opportunity for specialisation in their chosen field. Dissertation topics are related to the interests and needs of the individual and must show evidence of wide reading and understanding as well as critical analysis or appropriate use of advanced techniques. The quality of the dissertation is taken into account in the award of the Masters degree. Bangor University regulations prescribe a maximum word limit of 20,000 words for Masters Dissertations. A length of 12,000 to 15,000 words is suggested for Masters programmes in our School.

Summary of modules taken in Part 1:

All students undertake 6 modules of 20 credits each which are described below.

Conservation Science considers questions such as ‘in a post-wild world what should be the focus of conservation attention?’ ‘What are the relative roles of ecology, economics and social science in conservation?’ ‘What are the advantage and disadvantages of the introduction of market-like mechanisms into conservation policy?’ We look closely at the current and emerging drivers of biodiversity loss world-wide, while carefully analysing the range of responses.

Insect Pollinators and Plants is at the interface between agriculture and conservation, this module introduces students to plant ecology and insect pollinators. Students will gain unique understanding of the ecological interactions between plants and insect pollinators including honey-bees to implement more sensitive conservation management. The module explores the current conservation status of insect pollinators and their corresponding plant groups; how populations are monitored, and how interventions in the broader landscape can contribute to improving their conservation status. Module components relate specifically to ecosystem pollination services, apiculture and habitat restoration and/or maintenance. The module has a strong practical skills focus, which includes beekeeping and contemporary challenges to apiculture; plant and insect sampling and habitat surveying. Consequently, there is a strong emphasis on “learning by doing.

Agriculture and the Environment reviews the impact of agricultural systems and practices on the environment and the scientific principles involved. It includes examples from a range of geographical areas. It is now recognised that many of the farming practices adopted in the 1980’s and early 1990’s, aimed at maximising production and profit, have had adverse effects on the environment. These include water and air pollution, soil degradation, loss of certain habitats and decreased biodiversity. In the UK and Europe this has led to the introduction of regulatory instruments and codes of practice aimed at minimising these problems and the promotion of new approaches to managing farmland. However, as world population continues to rise, there are increased concerns about food security, particularly in stressful environments such as arid zones where farmers have to cope with natural problems of low rainfall and poor soils. Although new technologies including the use of GM crops have potential to resolve some of these issues, concerns have been expressed about the impact of the release of these new genetically-engineered crops into the environment.

Management Planning for Conservation provides students with an understanding of the Conservation Management System approach to management planning. This involves describing a major habitat feature at a high level of definition; the preparation of a conservation objective (with performance indicators) for the habitat; identification and consideration of the implications of all factors and thus the main management activities; preparation of a conceptual model of the planning process for a case study site and creating maps using spatial data within a desktop GIS.

Research Methods Module: this prepares students for the dissertation stage of their MSc course. The module provides students with an introduction to principles of hypothesis generation, sampling, study design, spatial methods, social research methods, quantitative & qualitative analysis and presentation of research findings. Practicals and field visits illustrate examples of these principles. Course assessment is aligned to the research process from the proposal stage, through study write up to presentation of results. The module is in two phases. The taught content phase is until the period following Christmas. This is followed by a project planning phase for dissertation title choice and plan preparation.

Field Visit Module: this is an annual programme of scientific visits related to Conservation and Land Management. The main purpose of the trip will be to appreciate the range of activities different conservation organisations are undertaking, to understand their different management objectives and constraints. Previous field trips have visited farms, forests and reserves run by Scottish Wildlife Trust, National Trust, RSPB, local authorities, community groups and private individuals.

Read less
The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology. Read more

MSc Plant Biotechnology

The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology.

Programme summary

Due to rapid technological developments in the genomics, molecular biology and biotechnology, the use of molecular marker technology has accelerated the selection of new plant varieties with many desirable traits. It also facilitates the design, development and management of transgenic plants. At present, plants are increasingly used to produce valuable proteins and secondary metabolites for food and pharmaceutical purposes. New insights into the molecular basis of plant-insect, plant- pathogen and crop-weed relationships enable the development of disease-resistant plants and strategies for integrated pest management. A fundamental approach is combined with the development of tools and technologies to apply in plant breeding, plant pathology, post-harvest quality control, and the production of renewable resources. Besides covering the technological aspects, Plant Biotechnology also deals with the ethical issues and regulatory aspects, including intellectual property rights.

Specialisations

Functional Plant Genomics
Functional genomics aims at understanding the relationship between an organism's genome and its phenotype. The availability of a wide variety of sequenced plant genomes has revolutionised insight into plant genetics. By combining array technology, proteomics, metabolomics and phenomics with bioinformatics, gene expression can be studied to understand the dynamic properties of plants and other organisms.

Plants for Human and Animal Health
Plants are increasingly being used as a safe and inexpensive alternative for the production of valuable proteins and metabolites for food supplements and pharmaceuticals. This specialisation provides a fundamental understanding of how plants can be used for the production of foreign proteins and metabolites. In addition, biomedical aspects such as immunology and food allergy, as well as nutritional genomics and plant metabolomics, can also be studied.

Molecular Plant Breeding and Pathology
Molecular approaches to analyse and modify qualitative and quantitative traits in crops are highly effective in improving crop yield, food quality, disease resistance and abiotic stress tolerance. Molecular plant breeding focuses on the application of genomics and QTL-mapping to enable marker assisted selection of a trait of interest (e.g. productivity, quality). Molecular plant pathology aims to provide a greater understanding of plant-insect, plant-pathogen and crop-weed interactions in addition to developing new technologies for integrated plant health management.These technologies include improved molecular detection of pathogens and transgene methods to introduce resistance genes into crops.

Your future career

The main career focus of graduates in Plant Biotechnology is on research and development positions at universities, research institutes, and biotech- or plant breeding companies. Other job opportunities can be found in the fields of policy, consultancy and communication in agribusiness and both governmental and non-governmental organisations. Over 75% of Plant Biotechnology graduates start their (academic) career with a PhD.

Alumnus Behzad Rashidi.
“I obtained my bachelor degree in the field of agricultural engineering, agronomy and plant breeding, at Isfahan University of Technology, Iran. The curiosity and interest for studying plant biotechnology and great reputation of Wageningen University motivated me to follow the master programme Plant Biotechnology. I got a chance to do my internship at State University of New York at Buffalo, working on biofuel production from microalgae. Working with this small unicellular organism made me even more motivated to continue my research after my master. Now I am doing my PhD in the Plant Breeding department of Wageningen University, working on biorefinery of microalgae.”

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Sciences
MSc Nutrition and Health
MSc Bioinformatics
MSc Biology.

Read less
In this century, food security and the need to develop sustainable agriculture will become dominant issues affecting the whole world. Read more
In this century, food security and the need to develop sustainable agriculture will become dominant issues affecting the whole world. The global population is projected to increase dramatically from 7 to 9 billion in the next 30 years, causing an unprecedented demand for food and increased pressure on land. The aim of this Food Security Degree is to provide you with knowledge and skills relating to the broad topic of food security, incorporating socio-economic, animal and crop aspects.

Why this programme

-This exciting Food Security MSc is taught through collaboration between academics with world class expertise in diverse aspects of food security.
-It discusses the demographic, social and economic issues, the challenges of achieving sustainable agriculture and presents the factors affecting food production from crops and animal sources.
-The programme will include guest lectures on a range of topics and site visits.
-Students will acquire knowledge of technology transfer and commercialisation.
-Students will gain practical laboratory skills in molecular biology and in genetic modification.
-Students will undertake a project that will develop their investigative skills and their ability to critically appraise and integrate information from different sources.
-A key feature of this Food Security Degree is that it provides a very broad perspective on Food Security.

Programme structure

We welcome students from diverse educational backgrounds and we anticipate that many will be unfamiliar with all the topics in this programme. Therefore the courses will provide a general introduction to each topic and, in addition, we offer optional lectures to bring students with different backgrounds ‘up to speed’ in subjects they may not have encountered previously.

The programme starts with a discussion of fundamental issues in food security and subsequently expands on key topics, including animal food, crop improvement and the importance of insects in agriculture. You will acquire practical laboratory skills as well as the ability to critically evaluate publications and will learn about commercial issues relating to food production. Finally, you will undertake an investigative project.

The Programme comprises 11 courses:
-Introduction to Food Security
-Food Security Fundamentals: food of animal origin
-Food Security Fundamentals: crops
-Role of Insects in Food Security
-Molecular Lab Skills
-Global Animal Production
-Quantitative Methods
-Plant Genetic Engineering
-Crop Biotechnology Applications
-Technology Transfer and Commercialisation
-Food Security Project

Teaching Methods
Most courses are taught through lectures and tutorials, in which there will be discussion of key concepts and training in the critical appraisal of published information. In addition, some courses include guest lectures and site visits. The course on Technology Transfer and Commercialisation of Bioscience Research will include workshop sessions. Two courses provide training in laboratory skills: Molecular Lab Skills and Plant Genetic Engineering. The project will involve an independent investigation of a selected topic in food security under supervision from an expert in the field.

Career prospects

Food security is a major challenge of this century and hence there will be opportunities to develop careers in several areas. Career prospects includeworking in Agri-industry, research institutes, government advisory, international advisory, media and research positions.

The breadth of knowledge, understanding and skills you will acquire in this Masters Programme will help you obtain employment or undertake research in the food security sector.

Read less
The Organic food and farming sector within Europe is continuing to develp in response to governmental Action Plans and CAP policy development. Read more
The Organic food and farming sector within Europe is continuing to develp in response to governmental Action Plans and CAP policy development. The organic sector requires highly trained individuals to work as certification officers, advisers, agronomists, farmers, farm managers and livestock specialists. SRUC offers this programme to enable students with a variety of academic and working experiences to gain a fast-track understanding of the key technical production, marketing and management aspects of organic farming and food.

This enables students to build on their existing expertise and aspirations, and to give them enhanced career opportunities as practitioners, promoters and facilitators within the sector.

The organic farming courses are offered on a part-time distance learning basis to allow those in continuing employment or with family commitments to be able to participate. Course participants come from a wide range of backgrounds, including farmers, growers, vets and other agricultural and food sector workers who wish to develop their career and businesses in the organic food and farming sector, as well as those from unrelated backgrounds wishing to increase their knowledge and understanding of organic systems.

Specific course objectives are to provide graduates with:
- An ability to critically appraise organic farming as an agricultural system
- A good understanding of the organic sector
- A sound knowledge of the science underpinning organic farming
- An understanding of the marketing, business & quality assurance requirements for organic produce
- Work placement experience
- Research skills (MSc only)

The course is accessible through its delivery by part-time on-line distance learning.

Course Content

The course modules comprise of a mix of technical production, marketing and management, and skill development modules.

Organic Forage and Livestock Production

This module will provide an understanding of the role of forage legumes in organic systems and describe grassland management systems that maximise the contribution of legumes. Students will also be given an understanding of the organic approach to livestock production, particularly in terms of animal welfare, preventative health management and nutrition.

Soils and Nutrient Cycling

This module will aim to provide the students with the tools for optimal management of their soils. Ultimately, they should be able to describe soil properties, evaluate soil fertility and assess management requirements in the context of organic farming. The module provides an understanding of the chemical, physical and biological features of soil fertility and nutrient cycling and develops practical skills in soil assessment and whole farm nutrient budgeting.

Organic Crop Production

This module will provide an understanding of methods of crop production for arable and vegetable field crops, with particular reference to organic farming in the UK. The module will develop an understanding of breeding, establishment, nutrition, protection, harvesting and storage in the context of organic crop production of field crops.

Organic Farming Case Study

This module will improve the student's ability to undertake whole farm analysis and in particular organic conversion planning. Whole farm analysis involves a range of skills and examination of a wide range of issues: technical, financial, marketing and environmental. The module will require the student to integrate the knowledge gained in other modules, to provide an evaluation and plan for the conversion to organic production of an actual farm example.

Organic Farming Profession

This module will provide an overview of the philosophy, principles, history and development of the organic farming industry. The organic standards will be introduced and the ways in which they are used to regulate the organic food and farming industry at UK, European and world levels will be covered. The roles of the main UK organisations that influence the development of the organic sector will also be explored.

Organic Farming Work Placement

This module will allow students to become familiar with an organisation or business in the organic food and farming sector during a 6-week (or equivalent) work placement. The student will gather relevant and unique material to enable them to carry out a technical and business analysis and make recommendations for future development of the organisation or business in question. The material will also be used in class discussion and to contribute to group learning.

Issues in Organic Farming

This module explores the public goods delivered by organic farming. It develops an understanding of food quality and the role and application of Quality Assurance (QA) Schemes in the organic food sector to meet the needs of relevant legislation and consumer concerns. The module also provides an overview of the principles of environmental management in the context of organic agriculture, helping students gain an appreciation of the potential impacts of agricultural enterprises on the environment, measures for minimising such impacts, and opportunities for incorporating positive environmental management measures into farm business plans.

Marketing and Business Management in the Organic Farming Sector

This module will provide an understanding of the concepts, principles and techniques involved in marketing management and how they are applied in the context of the organic farming sector. Financial accounts are one source of information regarding an organic business, and aid the process of planning and control. This module will provide an understanding of accounts to assist in the process of setting goals within a business and assessing the financial consequences of alternatives.

Course Format

This course is studied part time through on-line distance learning. This allows those in continuing employment or with family commitments to participate. With the exception of several weekend schools and a short study tour, the learning is carried out in the student's home or work place.

The MSc Project (taken following successful completion of taught modules)
Provides an opportunity for in-depth individual research on a topic related to organic farming.

Postgraduate Diploma

The PgDip is a high level learning course taught at university post-graduate level for students who opt not to progress to the Masters. Students are required to complete all taught modules detailed above. Typically a student will study 4 modules per year and complete the PgDip in two years. This would normally take an average of 12 to 15 hours study time a week.

Study Tour

The study tour is used to visit a range of organic and conventional farms as well as businesses operating in the organic food supply and distribution chain. In the taught modules an element of student choice is often built in through the use of essay and other course work topics that cover areas of potential interest. There is also a Work Placement module. Students following the distance learning course may gain exemption from the practical element of the placement but will require to complete a report of their work experience.

The study weekends and short study tour are an integral part of teaching delivery and students are strongly recommended to attend these if they are to succeed in this course.

Read less
This programme provides graduates with an insight into measures that are required to provide a supply of safe and wholesome food to consumers globally. Read more
This programme provides graduates with an insight into measures that are required to provide a supply of safe and wholesome food to consumers globally. A wide spectrum of food safety and quality management issues are addressed following the farm to fork approach.

Students aquire a knowledge of the technical and economic principles involved in the handling and storage of both durable and perishable crops. The programme provides an essential background for any graduate who will have responsibilities in managing postharvest strategies to maintain high quality food crops.

Students aquire a knowledge of the design and management of safety and quality management systems based upon risk analysis, e.g. Hazard Analysis and Critical Control Point (HACCP), ISO 9001:2008 and private standards, all designed to meet the requirements of national and international legislative requirements. Students sit the Royal Society for Public Health Level 3 Award in HACCP for Food Manufacturing and are also given membership of the Institute of Food Science and Technology.

Individual courses are offered on a stand-alone basis. These are attended by professionals working in the food industry. Lectures are also delivered by experts currently working in the food sector. This gives our postgraduate students the opportunity to interact with and learn from a range of practitioners.

Students have the opportunity to apply for short placements in the food sector, which provides them with the all important experience that they can demonstrate when applying for jobs.

The aims of the programme are:

To prepare graduates for careers in the national and international food chain, e.g. food businesses, consultancy, research and development
To equip graduates with the knowledge and skills that will enhance their employability
To enrich graduates understanding of the dynamics of food safety and quality management systems and the context under which they operate at national and international levels.

Read less
The course will provide students with the opportunity to. * Study to an advanced level the techniques used for the production and postharvest handling of horticultural crops and the underlying mechanisms which determine and limit these techniques. Read more

Overview

The course will provide students with the opportunity to:

* Study to an advanced level the techniques used for the production and postharvest handling of horticultural crops and the underlying mechanisms which determine and limit these techniques
* Develop a thorough knowledge of the horticultural business environment and marketing processes concerned with the trade of horticultural produce
* Apply research methodology and information technology to horticultural practice
* Identify and critically evaluate important trends and developments within the horticultural industry
* Identify the needs of national and international communities, and reconcile these with the aims and objectives of specific horticultural organisations

This is a broad based course for students with a basic grounding in plant biology, who want to develop their knowledge of commercial crop production and the postharvest handling of horticultural crops.

If you would like to find out more about our postgraduate courses please see here: http://www.writtle.ac.uk/Postgraduate-Courses

Teaching methods

Teaching methods include lectures, workshops, seminars, tutorials, visits, case studies and student managed learning. Self guided study takes place under the supervision of horticultural staff who ensure that students maximise their use of all study facilities at the College, including the estate. Students will be assessed by a variety of methods including written papers, case studies and project reports. This flexible approach allows students to monitor their knowledge and skills development throughout the course.

Research

The research project/dissertation provides an opportunity to undertake specialist research in specific fields. It must also include an investigative component to demonstrate that the student can apply learning to a problem-solving situation. The project is supervised by a member of the academic staff, and takes place over a 20-week period during the summer. The research project can be based at Writtle or at an external organisation; international placements may also be arranged. However students who embark upon an industry-based project must have access to the same level of facilities and support as students carrying out their research at the College.

Key Features

* A combination of theory, practical experience and industrial visits alongside the development of interpersonal and communication skills
* An international dimension to the course content
* Opportunity to undertake original research in the UK or abroad

Career Prospects

Upon completion of the course, graduates have moved into crop production with international growers and management positions with major import/export organisations.


Details of this course are accessible, on request, from the course leader.

Read less
Sustainable food production is increasingly important as the human population grows. we need to produce more food, more sustainably. Read more
Sustainable food production is increasingly important as the human population grows: we need to produce more food, more sustainably. This MSc, taught by world-class researchers, provides a unique opportunity for you to gain a rigorous scientific background if you are aiming for a career in habitat management, crop production, plant physiology, ecological research, scientific communication or agricultural policy.

Cutting-edge programme topics include sustainable agricultural intensification and food production; agri-environment schemes; organic farming; land sparing; genetically modified crops; emerging crops; effects of climate change and mitigation measures; interactions between managed species and the environment; ecosystem services including pollination; pest/disease control; and maximising production while minimising environmental impacts.

The programme covers a broad but highly applied subject area; the focus ranges from the molecular to the global level. You will also develop transferable skills including statistics, data handling, scientific writing, and research methods. This programme may provide a springboard to PhD research or lead to a career in industry, including management and technical career paths, policy, conservation, charities or NGOs, or ecological consultancy.

Read less
Significant increases in the global human population, increasing climatic instability and a concurrent reduction in fossil fuel availability, impacting upon agricultural production and policy. Read more
Significant increases in the global human population, increasing climatic instability and a concurrent reduction in fossil fuel availability, impacting upon agricultural production and policy. Food production must increase without a simultaneous increase in resource use.

Improvements in crop yield and production efficiency often come through the utilisation of individual elements of new research. Integrated Crop Management (ICM) however utilises multiple facets of research simultaneously to bring about larger, more sustainable results. This course focuses on incorporating the latest research to develop students’ critical and analytical thinking in subjects such as pest dynamics, genetic improvement, crop technology, sustainable practice and soil management.

This MSc, delivered at Myerscough and awarded by the University of Central Lancashire will integrate these topics alongside a broader critical evaluation of crop sciences enabling you to design bespoke ICM programmes for given situations.
It is aimed at graduates in biological sciences who are looking to find employment as agronomists, farm advisors, agro-technical specialists particularly in allied agricultural industries. Successful completion of this MSc degree will also facilitate progression to PhD level research in food production science.

COURSE CONTENT:

Year 1

Integrated approaches in high-input cropping systems

High-input crop production systems typically focus on achieving both high yields and profitability. This module explores the science and agronomic principles of a range of crops under such management regimes as well as their associated problems and limitations. Consideration will be given to integrated management approaches currently being adopted by industry as well as the major drivers of these changing practices. These include legislation, resistance to agrochemicals and public acceptance.

Invertebrate Dynamics in Crop Production

Approximately 10-15% of global crop production is lost to invertebrate pests. Conversely, invertebrates constitute a significant ecosystem service through pest predation and pollination. In any integrated production system, the management of invertebrates is therefore fundamental to effective crop production. This module will focus on critical evaluation of current research on invertebrate ecology and dynamics and applying this to their potential impacts on conventional cropping systems. Concepts of pest population dynamics, herbivory and species life histories will be considered in relation to their effects on the crop. Alongside this, their ‘value’ as pollinators, predators, vectors and the effects of lethal and sub-lethal pesticide doses will be evaluated.

Contemporary agronomic research and development

Research into agronomy, technology and management is of critical importance if the industry is to continue to adapt to modern pressures and challenges worldwide. This module will explore the research path including laboratory to field trials and, ultimately, application into practice. Case studies will be explored where research and development has made or could make a significant impact to management practice.

Year 2

Integrated approaches in low-input cropping systems

Low-input cropping systems seek to optimise crop yields whilst using fewer inputs when compared to conventional crop production systems. In parts of the world this is due to a lack of financial and physical resources whilst in others this is due to perceived environmental benefits. This module explores the science of the integrated management of crops under such systems, including enhanced soil management and factors influencing nutrition and disease control. Limitations will also be considered as will approaches that conventional crop production could learn from low-input management systems.

Global Drivers for Agricultural Change

This module examines the global drivers behind the need to refocus agricultural production to meet the needs of the increasing world population and mitigate the impacts of climate change. It will focus on concepts such as the effects of globalisation; the economic issues with pesticide development; the globalisation and privatisation of agricultural technology and the use of targeted pest control techniques. Furthermore, the module will assess the impacts of corporate responsibility and the necessity of having sustainable global supply chains.

Research Methodology and Design

This module provides students with the essential personal, organisational, management, theoretical and statistical skills needed to work at Postgraduate Level. It will explore research philosophies, research process and design and the process of questionnaire development and design. The module will develop skills in advanced data organisation, presentation, dissemination and problem solving.

Year 3

Masters Dissertation

The dissertation is a triple module and allows students to design and conduct a substantial piece of independent, supervised research related to the field of study. The dissertation is an independent piece of academic work which allows the student to identify and work in an area of interest to them and manage the research process to agreed deadlines.

Read less
Plants provide food, raw materials, and a healthy environment and are the cornerstone for life on earth. Plant Science is key to understanding and enhancing plant life. Read more
Plants provide food, raw materials, and a healthy environment and are the cornerstone for life on earth. Plant Science is key to understanding and enhancing plant life. Research in the Department of Plant Agriculture is divided into four areas: Plant Biochemistry and Physiology, Plant Breeding and Genetics, Plant Production Systems, and Bioproducts.

Plant Biochemistry and Physiology is a broad discipline. Faculty and students in this area study the response of plants to environmental change and plant development at the ecosystem, whole plant, and molecular levels. Students investigate ecologically friendly management strategies, study underlying molecular and biochemical mechanisms for regulating plant development, investigate how plant performance can be optimized in the field or closed environments, and contribute to cultivar development.

Plant Breeding and Genetics has long been a key focus of our faculty and students. Through breeding and biotechnology, Guelph researchers help society by developing new field-crop, fruit, ornamental and vegetable cultivars that are grown in Canada and worldwide. Also, Plant Agriculture faculty and students seek both to understand the fundamental mechanisms that enable plant improvements and to discover novel methodologies and technologies that will be the foundation for future advances..

Crop Production Systems research seeks to develop or test agricultural management strategies for yield improvement and economically and environmentally sound production practices in field and horticultural crops such as ornamentals and turf. Students in this area assist producers and industry in the control of weeds, insects, or plant diseases, and investigate the efficacy of new management protocols for production of high quality crops.

Bioproducts is a multi-disciplinary field and will deal with background sciences ranging from chemical engineering to plant science. Students deal with products and materials made from cellulose, oil, protein, starch and other compounds derived from various plant parts such as seeds, stalks/stovers, hulls and cobs of crop plants. Students will develop their expertise in analytical methods, factors affecting quality of plant-derived raw materials,

Read less
The course is intended to provide students with a detailed understanding of the sustainability issues associated with Northern European agriculture, and is underpinned by an extensive programme of agri-environment research at Harper Adams. Read more
The course is intended to provide students with a detailed understanding of the sustainability issues associated with Northern European agriculture, and is underpinned by an extensive programme of agri-environment research at Harper Adams.

Having completed the MSc you will be able to identify farming systems and determine their key characteristics, and critically evaluate the environmental impacts of conventional, integrated and organic farming systems. You will also learn to assess and exploit the latest developments in technology, and produce integrated farm management solutions that pay due regard to agronomic, social and environmental requirements.

The course

The continuing production of safe, wholesome food in an environmentally sensitive manner is a major political issue for national governments and internationally within global commodity markets. A report produced by the UK Cabinet Office in 2008 (Food Matters: Towards a Strategy for the 21st Century) predicts that the global population will rise to 9 billion by 2050 rising from a current estimate of nearly 6.8Bn. This increase in population size will substantially increase the demand for food. The global estimates vary in magnitude, but it is thought approximately 25% of crops are lost to pests and diseases, such as insects, fungi and other plant pathogens (FAO Crop Prospects and Food Situation 2009)

In a 2009 response to the emerging issues centred on global food security, the UK BBRSC launched a consultation exercise entitled Future Directions in Research Relating to Food Security. In seeking responses as to the direction of future research BBSRC identified a number of key themes. These included the:
■ Translation of research into commercial practice and the creation of effective partnerships to enable exchange of knowledge and development of skills in the uptake of new scientific findings
■ Establishment of require long-term programmes in research and training, underpinned by investment in the agricultural research infrastructure
■ Focus on applying the latest science to increasing crop and animal productivity globally while minimising negative environmental impact (including reducing greenhouse gas emissions, improving the efficient use of water, energy and other inputs, conserving biodiversity and landscapes), reducing losses from pests and diseases, enhancing food safety and quality for improved nutrition, and reducing waste throughout the food supply chain.

This course is intended to provide students with a key understanding of the issues involved in the sustainable production of food in accordance with the themes outlined above and is underpinned by an extensive programme of associated research at Harper Adams.

How will it benefit me?

The course provides an overview of the key issues involved in sustainable agricultural production within a global context. Since there is a focus on the underlying scientific principles, the course is suited to students of all nationalities in addition to those from the UK. Initially, you will learn to identify global farming systems and determine their key characteristics, before undertaking more complex evaluations of conventional and integrated or organic farming systems. You will undertake training in the use of the latest resources and use these to produce global integrated farm management solutions that pay due regard to agronomic, social, economic and environmental requirements. You will also have the option of undertaking a case study module where you will be able to focus exclusively on farming system of relevance to your background or intended career destination. The research project will provide training in the design, execution, analysis and interpretation of appropriate experiments or surveys to address research questions or problems relevant to sustainable agriculture.

Careers

Students have typically entered a wide variety of professions. Some have worked for government departments and agencies such as Natural England or the Environment Agency. Others have joined agrochemical companies or found positions within agricultural or environmental consultancies.

Read less
The Crop Pest and Disease Management course will offer students training in techniques to facilitate crop food production. Read more
The Crop Pest and Disease Management course will offer students training in techniques to facilitate crop food production. The course covers a broad range of topics in applied entomology, plant pathology and nematology and all students receive training in fundamental skills which will enable them to enter either a pest/disease management work environment or a research career in applied entomology, plant pathology or pest management. There is, however, considerable flexibility within the course thus enabling each student to focus on specialist subjects consistent with their interests and future career intentions.

The course

The continuing production of safe, wholesome food in an environmentally sensitive manner is a major political issue for national governments and internationally within global commodity markets. A report produced by the UK Cabinet Office in 2008 (Food Matters: Towards a Strategy for the 21st Century) predicts that the global population will rise to 9Bn by 2050 rising from a current estimate of nearly 6.8Bn. This increase in population size will substantially increase the demand for food. The global estimates vary in magnitude, but it is thought approximately 25% of crops are lost to pests and diseases, such as insects, fungi and other plant pathogens (FAO Crop Prospects and Food Situation 2009).

The Crop Pest and Disease Management course will offer students training in techniques to facilitate crop food production. The course covers a broad range of topics in applied entomology, plant pathology and nematology and all students receive training in fundamental skills which will enable them to enter either a pest/disease management work environment or a research career in applied entomology, plant pathology or pest management. There is, however, considerable flexibility within the course thus enabling each student to focus on specialist subjects consistent with their interests and future career intentions.

Research projects are available in a wide range of subjects covered by the research groups within the Crop and Environment Sciences Department and choices are made in consultation with expert staff. Projects at linked research institutes in the UK and overseas are also available. The course is underpinned by an extensive programme of research at Harper Adams and long-standing collaborations with research institutes and other organisations in the UK and overseas.

How will it benefit me?

Having completed the MSc you will be able to identify the underlying causes of major pest and disease problems and recognize economically important insects, plant diseases and weeds.

You will also be able to apply integrated pest control methods and oversee their application. The course will focus on the ecological and management principles of pest control and you will learn to evaluate the consequences of pesticide use and application on the biological target. You will also receive training in the evaluation of the economic and environmental costs of integrated approaches to pest control in relation to biological effectiveness. Ultimately, the course will enable students to produce integrated pest and disease management solutions that pay due regard to agricultural, horticultural, social and environmental requirements.

In addition, there is considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions

The research project for the MSc will allow you to test hypotheses relevant to pest and disease management research by designing, carrying out, analysing and interpreting experiments or surveys. You will learn to evaluate and interpret data and draw relevant conclusions from existing pest and disease management case studies.

The MSc covers a broad range of topics relevant to pest and disease management and all students receive training in fundamental skills which will enable them to enter a vocational work environment or pursue a research career. There is, however, considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions.

Careers

Previous graduates from the course have mainly gone on to work for ADAS or commercial biological control companies, the agro-chemical industry or horticulture sector. Others have joined Research Institutes such as Forest Research, FERA, or Rothamsted Research. Typically 30% of MSc Integrated Pest & Disease Management graduates will go into research careers or onto PhD courses.

Read less
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. Read more
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. You’ll gain a combination of practical skills and academic understanding to develop a critical and creative mindset.

Through lectures, small-group interactive workshops, practicals, tutorials, field and site visits, you’ll learn the principles of crop production and explore the latest advances in integrated pest, disease and weed management. You’ll gain an understanding of the importance of the soil for nutrition and water uptake, modern techniques of plant breeding, and how crop trials are designed and analysed. You’ll undertake eight core modules:
-Crop Physiology & Production
-Advances in Crop Protection
-Soil, Water & Plant Mineral Nutrition
-Climate Change
-Organic & Low Input Systems
-Cereal, Oilseed & Root Crop Agronomy
-Introduction to BASIS – Crop Protection
-Plant Breeding & Trial Design for Registration, and up to two further options.

You’ll also complete a dissertation based on a placement at a host organisation or on a topic related to sustainable crop production that interests you.

Our graduates have taken jobs in technical agronomy, crop trialing and agricultural consultancy for industry specialists such as Bayer Crop Science, Agrovista and Agrinig (Nigeria). They’ve also progressed to leading roles in marketing, sales, policy development and professional consultancy.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X