• University of Derby Online Learning Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Glasgow Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
University of Reading Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
FindA University Ltd Featured Masters Courses
"crop" AND "science"×
0 miles

Masters Degrees (Crop Science)

  • "crop" AND "science" ×
  • clear all
Showing 1 to 15 of 65
Order by 
- check at. http://www.unipd.it/en/biotecnologie-alimentazione. http://www.unipd.it/en/how-apply. Instructions in English. http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento2011&keyIF0362. Read more

Admission Notice now available

- check at
http://www.unipd.it/en/biotecnologie-alimentazione
http://www.unipd.it/en/how-apply

Instructions in English:
http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2011&key=IF0362
.

Biotechnologies for Food Science

In the 2016-2017 academic year, the University of Padova inaugurated a new curriculum of the Master Degree “Biotechnology applied to Food Security and Nutrition” (Second Cycle Degree) entitled “Biotechnologies for Food Science " to be entirely taught in English.
The “Biotechnologies for Food Science " Master degree (MSc) is an interdisciplinary and research-oriented Master of Science Programme and explores how to produce healthier and safer food following a cross-cutting, farm/field-to-fork approach. It is focused on the application of advanced biotechnologies in food production and safety and it is the ideal trait-d’union between the requests of consumers, of producers in the agro-food sector and research applied to production and food-safety.
The course has a strong component on cutting-edge methods, such as genomics, bioinformatics, proteomics, metabolomics, nanotechnologies, all in the context of animal and crop production as well as food quality and safety. Theoretical lessons are mixed with practical training, offering hands-on experience in advanced DNA, RNA, and protein analysis together with substantial lab sessions in bioinformatics. Lectures will deal with food production, hygiene and quality, molecular methods of agro-food analyses, effects of agro-biotech products on human beings and environments. Moreover environmental stresses, disease mechanisms, pathogens and pests will be treated as essential to understand how to protect crop and farm animals and how food might impact on human health: the lectures move across animal infectious disease, immunology, microbiology, plant pests and pathogens as well as abiotic stresses to show how biotechnology might help preventing disease and improve food production. As consumers are increasingly worried about the presence of contaminants in food and on the real origin of what they eat; the Programme includes a course in food toxicology and regulation, and one on traceability for food authentication.
Our Programme is based at the Agripolis campus, where are located four departments of the School of Agriculture and Veterinary Medicine of the University of Padova, all of which contribute to the MSc course, offering the best opportunities for a rich, cross-disciplinary experience in a highly qualified scientific environment.

Who is the MSc candidate?

This programme is open to Italian and foreign students from the EU and abroad, interested in learning and implementing effective value-added practices for the production of high-quality food products both in the EU and in international markets. English knowledge must be minimum at B2 level (CEFR). Applying students might possibly have a three-year Bachelor’s degree in a field connected with the Master’s curriculum. Good background in molecular biology, biochemistry, and microbiology is requested.

How is the programme organised?

Biotechnologies for Food Science is a 2-year Master programme (120 ECTS, equivalent to a Master of Science). Requirements for graduation include courses and preparation and defense of the Master thesis. Students will be encouraged to spend a period of their studies abroad, through Erasmus+ or other local programmes and agreements. Financial support to meet part of the cost for thesis work is granted to best students.
Visit the MSc “Biotechnologies for Food Science” page on the Università di Padova web-site (http://www.unipd.it/en/biotecnologie-alimentazione) for more details.

Teaching methods

Teaching takes place in an international environment and includes lectures and laboratory activities, practical exercises and seminars by experts; opportunities for intensive tutoring and for master thesis-related stages of at least six months duration will be available with outstanding companies in the sector of the food industry or with other relevant organisations in the private or public sphere. The Programme assists students to find suitable internship opportunities with qualified laboratories in Italy and abroad.
Examinations are written or oral and assess students’ participation also through reports, presentations, and group work.

Course structure

During the two-years MSc course students attend the following 12 course units

Applied genomics for animal and crop improvement
Applied Bionformatics
Food Microbiology and Food Microbial Biotechnology
Molecular basis of disease, immunology, and transmissible diseases
Laboratory of advanced DNA, RNA, and protein analysis
Biotechnology for crop production
Epidemiology and risk analysis
Traceability tools for species authentication  
Advanced technologies for the agrifood sector (nanotechnologies, proteomics, metabolomics)
Biotechnology for plant protection
Food toxicology and food regulation
Foreign language (English)

First year
During the first year of the programme the student will acquire knowledge on animal and crop genomics, focusing on the most advanced methods for high throughput genomic analysis (transcriptomics, genome-wide SNP analysis, epigenomics) and on the most recent approaches for selective breeding (genomic selection, genomic prediction). In parallel, the student will learn how bioinformatics tools might be applied to manage large sets of data, how biological data bases are organized and how to link different types of data. Extensive practical training in bioinformatics will be offered with various sessions in a dedicated lab. Food-borne pathogens and the positive role of microorganisms in food processes will be examined in an integrated microbiology course, while the molecular basis of pathology, host-response to infection, epidemiology, and diagnostics of transmissible diseases will form the basis of two courses. A course on biotechnology for crop production will introduce the molecular and physiological basis of crop production. Biotechnological approaches to improve crop yield, with particular attention to fruit production, and to reduce impact of abiotic stresses will examined. Molecular tools for food traceability and an intensive practical lab in DNA/RNA/protein analysis applied to food control will conclude the first year.

Second year
In the second year, the first semester have three courses. One will focus on novel technologies (proteomics, metabolomics, nanotechnology) and their application to food production. A second one will extend knowledge on plant biotechnology exploring advanced technologies for crop disease and pest management. A third one will deal with contaminants in food and food legislation. The second semester is completely dedicated to lab internship. It is possible to join a research lab in the campus or to have a working stage in the private sector.
link to the Campus descriptions:
http://youtu.be/gR4qcWUXvGg

Read less
Significant increases in the global human population, increasing climatic instability and a concurrent reduction in fossil fuel availability, impacting upon agricultural production and policy. Read more
Significant increases in the global human population, increasing climatic instability and a concurrent reduction in fossil fuel availability, impacting upon agricultural production and policy. Food production must increase without a simultaneous increase in resource use.

Improvements in crop yield and production efficiency often come through the utilisation of individual elements of new research. Integrated Crop Management (ICM) however utilises multiple facets of research simultaneously to bring about larger, more sustainable results. This course focuses on incorporating the latest research to develop students’ critical and analytical thinking in subjects such as pest dynamics, genetic improvement, crop technology, sustainable practice and soil management.

This MSc, delivered at Myerscough and awarded by the University of Central Lancashire will integrate these topics alongside a broader critical evaluation of crop sciences enabling you to design bespoke ICM programmes for given situations.
It is aimed at graduates in biological sciences who are looking to find employment as agronomists, farm advisors, agro-technical specialists particularly in allied agricultural industries. Successful completion of this MSc degree will also facilitate progression to PhD level research in food production science.

COURSE CONTENT:

Year 1

Integrated approaches in high-input cropping systems

High-input crop production systems typically focus on achieving both high yields and profitability. This module explores the science and agronomic principles of a range of crops under such management regimes as well as their associated problems and limitations. Consideration will be given to integrated management approaches currently being adopted by industry as well as the major drivers of these changing practices. These include legislation, resistance to agrochemicals and public acceptance.

Invertebrate Dynamics in Crop Production

Approximately 10-15% of global crop production is lost to invertebrate pests. Conversely, invertebrates constitute a significant ecosystem service through pest predation and pollination. In any integrated production system, the management of invertebrates is therefore fundamental to effective crop production. This module will focus on critical evaluation of current research on invertebrate ecology and dynamics and applying this to their potential impacts on conventional cropping systems. Concepts of pest population dynamics, herbivory and species life histories will be considered in relation to their effects on the crop. Alongside this, their ‘value’ as pollinators, predators, vectors and the effects of lethal and sub-lethal pesticide doses will be evaluated.

Contemporary agronomic research and development

Research into agronomy, technology and management is of critical importance if the industry is to continue to adapt to modern pressures and challenges worldwide. This module will explore the research path including laboratory to field trials and, ultimately, application into practice. Case studies will be explored where research and development has made or could make a significant impact to management practice.

Year 2

Integrated approaches in low-input cropping systems

Low-input cropping systems seek to optimise crop yields whilst using fewer inputs when compared to conventional crop production systems. In parts of the world this is due to a lack of financial and physical resources whilst in others this is due to perceived environmental benefits. This module explores the science of the integrated management of crops under such systems, including enhanced soil management and factors influencing nutrition and disease control. Limitations will also be considered as will approaches that conventional crop production could learn from low-input management systems.

Global Drivers for Agricultural Change

This module examines the global drivers behind the need to refocus agricultural production to meet the needs of the increasing world population and mitigate the impacts of climate change. It will focus on concepts such as the effects of globalisation; the economic issues with pesticide development; the globalisation and privatisation of agricultural technology and the use of targeted pest control techniques. Furthermore, the module will assess the impacts of corporate responsibility and the necessity of having sustainable global supply chains.

Research Methodology and Design

This module provides students with the essential personal, organisational, management, theoretical and statistical skills needed to work at Postgraduate Level. It will explore research philosophies, research process and design and the process of questionnaire development and design. The module will develop skills in advanced data organisation, presentation, dissemination and problem solving.

Year 3

Masters Dissertation

The dissertation is a triple module and allows students to design and conduct a substantial piece of independent, supervised research related to the field of study. The dissertation is an independent piece of academic work which allows the student to identify and work in an area of interest to them and manage the research process to agreed deadlines.

Read less
The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. Read more

MSc Plant Sciences

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems.

Programme summary

Plant Sciences deals with crop production ranging from plant breeding to the development of sustainable systems for the production of food, pharmaceuticals and renewable resources. It is linked with a professional sector that is highly important to the world economy. The programme focuses on the principles of plant breeding, agro-ecology and plant pathology and the integration of these disciplines to provide healthy plants for food and non-food applications. Technological aspects of crop production are combined with environmental, quality, socio-economic and logistic aspects. Students learn to apply their knowledge to develop integrated approaches for sustainable plant production.

Specialisations

Crop Science
Sound knowledge of crop science is essential to develop appropriate cultivation methods for a reliable supply of safe, healthy food; while considering nature conservation and biodiversity. An integrated approach is crucial to studying plant production at various levels (plant, crop, farm, region). This requires a sound understanding of basic physical, chemical, and physiological aspects of crop growth. Modelling and simulation are used to analyse yield constraints and to improve production efficiency.

Greenhouse Horticulture
Greenhouse horticulture is a unique agro-system and a key economic sector in the Netherlands. It is the only system that allows significant control of (a-) biotic factors through protected cultivation. The advances in this field are based on technological innovations. This specialisation combines product quality with quality of production and focuses on production, quality- and chain management of vegetables, cut flowers and potted plants.

Natural Resource Management
The development of sustainable agro-ecosystems requires understanding of the complex relationships between soil health, cultivation practices and nutrient kinetics. Other important aspects include the interactions between agriculture and nature, and competing claims on productive land worldwide. Natural Resource Management provides knowledge and tools to understand the interactions between the biotic and abiotic factors in agro-systems to facilitate diverse agricultural demands: bulk vs. pharmaceutical products, food vs. biofuel, conservation of biodiversity, climate change, and eco-tourism.

Plant Breeding and Genetic Resources
Plant Breeding and Genetic Resources ranges from the molecular to the population level and requires knowledge of the physiology and genetics of cultivated plants. Plant breeding is crucial in the development of varieties that meet current demands regarding yield, disease resistance, quality and sustainable production. The use of molecular techniques adds to the rapid identification of genes for natural resistance and is essential for accelerating selection by marker assisted breeding.

Complete Online Master
In September 2015, Wageningen University started the specialisation "Plant Breeding" as the first complete online Master of Science. For more information go to http://www.wageningenuniversity.eu/onlinemaster.


Plant Pathology and Entomology
The investments made in crop production need to be protected from losses caused by biotic stress. Integrated pest management provides protection by integrating genetic resistance, cultivation practices and biological control. This specialisation focuses on the ecology of insects, nematodes and weeds, and the epidemiology of fungi and viruses, including transmission mechanisms. Knowledge of plantinsect, plant-pathogen, and crop-weed relations establishes the basis for studies in integrated pest management and resistance breeding.

Your future career

Graduates in Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Alumnus Maarten Rouwet.
“I was born in Germany and raised in the East of the Netherlands. After high school I applied for the Bèta-gamma bachelor at the University of Amsterdam where I majored in biology. After visiting the master open day at Wageningen University I knew that the master Plant Sciences had something unique to offer. In my master, I specialised in plant breeding, an ever so interesting field of research. I just started my first job as junior biotech breeder of leavy vegetables at Enza Zaden, a breeding company in Enkhuizen. One of my responsibilities is to identify resistances in wild species of lettuce and to implement these in breeding programmes of cultivated lettuce.”

Related programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology.

Read less
MPhil supervision covers a number of research topics supported by research active academic staff. Our range of research areas relate to crop science, soil science, ecological (organic) agriculture, and agricultural water management. Read more
MPhil supervision covers a number of research topics supported by research active academic staff. Our range of research areas relate to crop science, soil science, ecological (organic) agriculture, and agricultural water management.

Crop science

Genes and physiological traits, such as:
-Resistance to crop pests and diseases
-Molecular-assisted selection and breeding methods
-Plant environment interactions and their relationships to stress biology
-Physiological basis of crop yield and quality
-Biotransformation of synthetic compounds and natural products in plants
-Herbicide selectivity in cereals and competing weeds

Soil science

-Soil ecology and the contribution of soil biodiversity to soil quality
-Soil carbon and nitrogen dynamics
-Interpretation of soil and landscape processes to improve understanding of recent and historical environmental change
-Land degradation processes and their control

Ecological (organic) agriculture

-Functional biodiversity for control of pest, disease and weed pressure
-Long term factorial systems comparison experiments for in depth study of different aspects of conventional and organic farming systems

Agricultural water management

-Irrigated agriculture
-Interactions between land-use and hydrological response in a semi-arid environment
-Soil hydrological processes affecting management of salinity in irrigated land

Delivery

We offer a number of different routes to a research degree qualification, including full-time and part-time supervised research projects. We attract postgraduates via non-traditional routes, including mature students and part-time postgraduates undertaking study as part of their continuing professional development. Off-campus (split) research is also offered, which enables you to conduct trials in conditions appropriate to your research programme.

Read less
This programme aims to equip students with the advanced skills, knowledge and expertise to undertake technical and production management roles in the globally important agri-food sector. Read more

Introduction

This programme aims to equip students with the advanced skills, knowledge and expertise to undertake technical and production management roles in the globally important agri-food sector.

The agri-food sector is intrinsically linked to challenges around land and water use, climate change and health and well-being.

Students will have the opportunity to study areas such as advanced crop science, advanced food manufacturing, new product and process development, food safety & technical management, as well as commercial, operational, supply chain and agile management.

Students will also have access to industry-relevant specialist technologies and new equipment at both the University of Lincoln’s food and agricultural campuses, the National Centre for Food Manufacturing at Holbeach, and at Riseholme Park. The costs of this travel will be covered by the University.

There will be the chance to undertake a research project either in industry or academia, which provides an opportunity to apply new knowledge in a real-life setting. This will also allow students the opportunity to make invaluable contacts with potential employers prior to completing the course.

Lincoln’s research in agriculture, veterinary and food science is internationally acclaimed. It is rated among the best in the UK for quality

How You Study

This MSc is intentionally wide ranging, in order to best prepare students for opportunities across this broad and fast moving environment. This programme acknowledges that in order to optimise performance and best assure/control the food products in the agri-food supply chain, it is being increasingly recognised that a holistic, all encompassing, farm-to-fork supply chain focus is required.

Programme Modules:

- Introduction to Agri-Food Systems
- Advanced Crop Science
- Commercial and Operational Management
- Supply Chain and Agile Management
- Agri-Food Robotics
- Food Safety & Technical Management
- Advanced Food Manufacturing
- New Product and Process Development
- Research Project

Weekly contact hours on this programme may vary depending on the individual modules and the stage of study. Postgraduate level study involves a significant proportion of independent study, exploring the material covered in lectures and seminars. As a general guide, for every hour in class students are expected to spend at least two - three hours in independent study. For more detailed information please contact the programme leader.

How You Are Assessed

A variety of assessment methods are utilised during this course, including essays, examinations, oral presentations and practicals. These assessments are designed to develop skills that will be useful for your career.

The University of Lincoln's policy on assessment feedback aims to ensure that academics will return in-course assessments to you promptly – usually within 15 working days after the submission date.

Interviews & Applicant Days

All applicants meeting the initial academic requirements for this course are required to undertake an interview with academic staff before a decision concerning the offer of a place can be made. It is expected that applicants will be able to demonstrate a keen interest in agriculture and all aspects of the farm-to-fork process.

In order to make this process available to all applicants, we utilise Skype as the prefered medium for those applicants who are not able to travel to Lincoln prior to the start of the programme.

Entry Requirements

A minimum 2:2 honours degree (or equivalent overseas qualification) in a related discipline.

We will consider applicants from non-related degrees, with relevant experience.

International Students will require English Language at IELTS 6.0 with no less than 5.5 in each element, or equivalent. http://www.lincoln.ac.uk/englishrequirements

Key Contacts

Academic:
Dr Ramana Sundara

+44 (0) 1522837958

Enquiries:

+44 (0)1522 886644

Read less
The MRes in Animal and Plant Science is a full-time programme running over 12 months from the date of first registration for the programme. Read more
The MRes in Animal and Plant Science is a full-time programme running over 12 months from the date of first registration for the programme. Applications will be accepted for a start date in October or January. The programme consists of (a) a major research thesis and (b) taught modules on generic and transferable skills, with an emphasis on scientific writing, oral presentations, and general research skills. Part-time study for this programme is not available.

Prospective students must talk to their proposed supervisor about possible project areas (see below) and have a project approved by interview with the supervisor and Head of Discipline prior to application via http://www.pac.ie (PAC code: CKS81).

Visit the website: https://www.ucc.ie/en/bees/courses/postgrad/

Course detail

Students undertake a total workload equivalent to 90 credits over the 12 month programme, the principal element of which is the completion of a major research thesis of approximately 25,000 words. In parallel, students must take and pass taught modules to the value of 20 credits.

Modules

Students take 20 credits from the following available modules:

BL6010 Characteristics of the Marine Environment (5 credits)
BL6012 Marine Megafauna (10 credits)
BL6016 Marine Ecology and Conservation (10 credits)
BL6019 Ecological Applications of Geographical Information Systems (5 credits)
BL6020 Genetics and the Marine Environment (5 credits)
BL4004 Frontiers in Biology (5 credits)
BL4005 Research Skills in Biology (5 credits)
BL4006 Food Production (5 credits)
PS6001 Plant Genetic Engineering (5 credits)
PS4024 Crop Physiology and Climate Change (5 credits)
PS4021 Environmentally Protective Management of Plant Pests and Pathogens (5 credits)
ZY4021 Evolutionary Ecology (5 credits)

Students may elect to take other, relevant modules (subject to availability) that are offered by the University that are not listed above to fulfil the elective requirement with approval from the MRes coordinator, research supervisor and Head of School of Biological, Earth and Environmental Science.

Students will also undertake independent research towards completion of a research thesis to a student workload equivalent of 70 credits on a selected topic in Animal or Plant Science.

Current projects:

- The effect of lactation housing on the behaviour and welfare of pigs
- Understanding viral pathways in marine environments
- Distribution and diet of otters in a rural/urban streamscape
- Novel approaches in the use of freshwater macroinvertebrates for biomonitoring
- The ecology of Sika/Red/Fallow deer in Ireland
- Catching prey; the role of Ultraviolet radiation in attracting insects by carnivorous plants
- Birds as dispersers of plant propagules
- Does the phytotoxicity of nanoparticles depend on environmental parameters?
- The role of biochar as a sustainable soil amendment
- Effects of Eutrophication in shallow subtidal marine systems
- Use of Brachypodium sylvaticum as a model for growth regulation in perennial forage grasses
- Effect of temperature on spring growth of perennial ryegrass cultivars

Programme Learning Outcomes

On successful completion of this programme, students should be able to:

- Carry out an independent and original research project to address an emerging question in Animal or Plant Science.
- Prepare and write a dissertation of their research project in a critical, logical and systematic manner, in keeping with the standards of postgraduate research.
- Display advanced theoretical knowledge and practical understanding within a research area of Animal or Plant Science.
- Understand the basis and application of field and laboratory methods used in Animal and Plant Science and a knowledge of their limitations
- Avail of relevant workshops or modules to increase scientific technical skills (e. g. biostatistics).
- Source, review, critically assess and evaluate relevant primary literature and summarize material for presentation to peers and for inclusion within the research dissertation.
- Design, write and defend a scientific research proposal based on their current research topic or a proposed topic.
- Evaluate their skill set and identify skills that should be acquired.
- Develop professional practice skills including team-work, negotiation, time-management, scientific writing and oral communication

How to apply

Students should consult the MRes Animal and Plant Science Brochure: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinAnimalandPlantScience.pdf

Prospective students should also consult the following guide to procedures realting to applying for the MRes Animal and Plant Science: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinANimalandplantscience-Studentguidetoproceduresbeforeandafterentrytotheprogramme24March2016.pdf

Read less
Harper Adams is the UK’s only provider of a postgraduate course in weed science. Weeds cause significant losses in crop production despite the continued development of cultural, mechanical, biological and chemical controls. Read more
Harper Adams is the UK’s only provider of a postgraduate course in weed science. Weeds cause significant losses in crop production despite the continued development of cultural, mechanical, biological and chemical controls. In addition they reduce crop quality, cause cultivation and harvest problems and act as hosts for crop pests and pathogens. Only by understanding weed life cycles and their interactions with crops and the environment can truly integrated controls be developed. By successfully completing this course you will develop a range of abilities that will prepare you for an interesting and fulfilling career that addresses the development and implementation of weed management in the 21st century.

Although food production has tripled in the last 40 years, approximately 1 billion people still go hungry, with an average of 30 per cent of all available food being wasted during production, processing and distribution. Crop losses through weed interactions are estimated to be on average 13% worldwide, although in certain cases this figure is significantly higher. The cost of weed management is estimated to be nearly half of the total amount spent on crop protection in many situations.

The aim of the course is to provide students with specialized training in weed science.

The course will:
◾ prepare students for a career involving weed science, including agronomy
◾ offer vocational training in the area of applied weed science
◾ prepare students for PhD studies

The course is intended to provide a detailed understanding of basic and applied weed science and the issues associated with current production systems and control strategies. The course is underpinned by an extensive programme of agri-environment research at Harper Adams and longstanding collaborations with research institutes and other organisations in the UK and overseas.

Read less
Would you like to be involved in finding solutions to future challenges of food and energy production, such as climate change, population growth and limited energy resources? Are you interested in animal welfare, clean soil, environmental issues or the newest methods in biological and genetic engineering? Would you like to learn about automation and robotics in agriculture?. Read more
Would you like to be involved in finding solutions to future challenges of food and energy production, such as climate change, population growth and limited energy resources? Are you interested in animal welfare, clean soil, environmental issues or the newest methods in biological and genetic engineering? Would you like to learn about automation and robotics in agriculture?

Join the Master’s Programme in Agricultural Sciences on the Viikki Campus to find solutions for the challenges of today and tomorrow. The University of Helsinki is the only university in Finland to offer academic education in this field.

In the Master’s Programme in Agricultural Sciences, you can pursue studies in plant production sciences, animal science, agrotechnology, or environmental soil science, depending on your interests and previous studies. For further information about the study tracks, see Programme contents.

Upon completing a Master’s degree, you will:
-Be an expert in plant production science, animal science, agrotechnology, or environmental soil science.
-Be able to assess the sustainability and environmental impact of food and energy production.
-Be able to apply biosciences, ecology, chemistry, physics or statistics, depending on your study track, to the future needs of agriculture.
-Have mastered the key issues and future development trends of your field.
-Have mastered state-of-the-art research and analysis methods and techniques.
-Be able to engage in international activities, project work and communication.
-Be able to acquire and interpret scientific research information in your field and present it orally and in writing.
-Have the qualifications to pursue postgraduate studies in a doctoral programme or a career as an expert or entrepreneur.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Master’s Programme in Agricultural Sciences comprises four study tracks:
Plant production sciences – plants as sources of food, feed, energy, beauty and wellbeing
During your studies, you will have the opportunity to apply biology to the breeding, cultivation, protection and production ecology of crop or horticultural plants. Producing sufficient food is one of the great challenges facing humanity. Plant production sciences have an important mission in finding solutions to this challenge. Plants are cultivated not only for food and feed, but also for bioenergy, green landscapes and ornamental purposes; plant production sciences seek new, improved solutions for all these purposes.

Animal science – animal health and wellbeing
During your studies, you will become familiar with issues pertaining to the wellbeing, nutrition and breeding of production and hobby animals as well as with the relevant biotechnology. In this study track you will apply biochemistry, animal physiology, genetics and molecular biology for the benefit of sustainable animal production. The Viikki Research Farm, in urban Helsinki, provides plenty of opportunities for hands-on learning!

Agrotechnology – technology with consideration for the environment
This study track provides you with the opportunity to study technologies that are key to agricultural production and the environment, from the basics to the latest innovations. Advances in technology and automation offer new horizons to fearless inventors interested in developing machinery and engineering for the reorganisation, implementation and adjustment of production in accordance with the needs of plants and animals.

Environmental soil science – dig below the surface
These studies allow you to literally dig beneath the surface. The soil is a central factor for the production of renewable natural resources, the diversity of nature, and the quality of water systems. As an expert in environmental soil science you will know how the soil serves as a substrate for plants and affects the quality of food, and how it can be improved.

Selection of the Major

The Master’s Programme in Agricultural Sciences comprises four study tracks, allowing you to focus on a specialisation according to your interests and previous studies: plant production sciences (quota of 40 students), animal science (quota of 25 students), agrotechnology (quota of 15 students), and environmental soil science (quota of 5 students).

You can be admitted to the Master’s Programme in Agricultural Sciences either directly from the relevant Bachelor’s programme or through a separate admissions process. A total of 80 students will be admitted through these two admissions channels.

Programme Structure

With a scope of 120 credits (ECTS), the Master’s programme can be completed in two academic years. The degree comprises:
-60 credits of advanced studies in the selected study track, including your Master’s thesis (30 credits)
-60 credits of other studies from the curriculum of your own or other degree programmes

The study tracks of the Master’s Programme in Agricultural Sciences collaborate across disciplinary boundaries to construct thematic modules around importance topical issues: the bioeconomy, the recycling of nutrients, food systems, and the production and exploitation of genomic information.

You must also complete a personal study plan (PSP). Your studies can also include career orientation and career planning.

Various teaching methods are used in the programme, including lectures, practical exercises, practical laboratory and field courses, practical training, seminars, project work and independent study.

Career Prospects

As a graduate of the Master’s Programme in Agricultural Sciences, you will have the competence to pursue a career or to continue your studies at the doctoral level.

According to the statistics of the Finnish Association of Academic Agronomists, the current employment situation for new graduates is positive. Graduates have found employment in Finland and abroad as experts in the following fields:
-Research and product development (universities, research institutes, companies, industry).
-Administration and expert positions (ministries, supervisory agencies, EU, FAO).
-Business and management (companies).
-Teaching, training and consultation (universities, universities of applied sciences, organisations, development cooperation projects).
-Communication (universities, media, companies, ministries, organisations).
-Entrepreneurship (self-employment).

As a graduate you can apply for doctoral education in Finland or abroad. A doctoral degree can be completed in four years. With a doctoral degree you can pursue a career in the academic world or enter the job market. The qualifications required for some positions may be a doctoral rather than a Master’s degree.

Other admission details

Applications are also accepted from graduates of other University of Helsinki Bachelor’s programmes as well as from graduates of other Finnish or international universities. In these cases, admission will be based on your previous academic performance and the applicability of your previous degree. For the latest admission requirements see the website: https://www.helsinki.fi/en/masters-admission-masters-programme-in-agricultural-sciences-master-of-science-agriculture-and-forestry-2-years/1.2.246.562.20.29558674254

Read less
This is a modular course for students with a background in plant biology or horticulture, who wish to develop their knowledge of the commercial production and storage of horticulture crops. Read more

Overview

This is a modular course for students with a background in plant biology or horticulture, who wish to develop their knowledge of the commercial production and storage of horticulture crops.

Core Modules

* International Crop Production
* Postharvest Physiology and Pathology
* Logistics & Supply Chain Management
* Research Methods
* Personal Development Planning
* Crop Production Technology
* Controlled Environment Agriculture
* Packaging & Product Innovation
* Global Trade and Dissertation.

The course can be completed in one year on a full-time basis. Part-time students can take two-three years to complete the course.

Key Features

* A combination of theory, practical experience and industrial visits
* Development of interpersonal and communication skills
* An international dimension to the course content
* Opportunity to undertake original research in the UK or abroad.

If you would like to find out more about our postgraduate courses please see here: http://www.writtle.ac.uk/Postgraduate-Courses

Career Prospects

Upon completion of the course, graduates have moved into crop production with international growers and management positions with major import/export organisations.

Entry Requirements

Applicants will normally hold a BSc or equivalent in a horticulture or plant science related topic, but applications are equally welcome from individuals with extensive industrial experience.

Read less
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Read more
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Focusing upon the understanding of plant to crop systems, and with an emphasis on research training, the course is ideally suited to those wishing to pursue careers in research institutes, plant breeding, agro-industry and advance to higher research degree (PhD) study.

The course consists of a number of taught modules and a major research project.

Specialist facilities for plant work include modern glasshouses and controlled environment growth rooms in which plants and tissue cultures can be raised. The laboratories contain a wide range of modern equipment including ultracentrifuges, apparatus for radioisotope studies, gas liquid chromatography and spectrophotometry. A number of experimental plots containing arable and horticultural crops are available for use by students, particularly in relation to their projects. Crop Science fieldwork is carried out as part of the normal arable rotation on the farm, which is within easy reach of the laboratories.

The School also has a Tropical Crops Research Unit - computer controlled glasshouses are available for research on a range of tropical species.

Links with industry further enhance the course by providing valuable industry knowledge and experience and relating the subject to commercial practice

Scholarships may be available -please see our web-site.
.

Read less
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. Read more
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. You’ll gain a combination of practical skills and academic understanding to develop a critical and creative mindset.

Through lectures, small-group interactive workshops, practicals, tutorials, field and site visits, you’ll learn the principles of crop production and explore the latest advances in integrated pest, disease and weed management. You’ll gain an understanding of the importance of the soil for nutrition and water uptake, modern techniques of plant breeding, and how crop trials are designed and analysed. You’ll undertake eight core modules:
-Crop Physiology & Production
-Advances in Crop Protection
-Soil, Water & Plant Mineral Nutrition
-Climate Change
-Organic & Low Input Systems
-Cereal, Oilseed & Root Crop Agronomy
-Introduction to BASIS – Crop Protection
-Plant Breeding & Trial Design for Registration, and up to two further options.

You’ll also complete a dissertation based on a placement at a host organisation or on a topic related to sustainable crop production that interests you.

Our graduates have taken jobs in technical agronomy, crop trialing and agricultural consultancy for industry specialists such as Bayer Crop Science, Agrovista and Agrinig (Nigeria). They’ve also progressed to leading roles in marketing, sales, policy development and professional consultancy.

Read less
Agriculture faces many challenges, not least coping with the rising demand for food, biofuel and other products by an increasing population combined with the demands for a more sustainable industry. Read more
Agriculture faces many challenges, not least coping with the rising demand for food, biofuel and other products by an increasing population combined with the demands for a more sustainable industry. Food security is key and requires the reconciliation of efficient production of food with reducing agriculture’s environmental footprint.

About the course

The MSc Environmental Management for Agriculture course examines agriculture activities and their potential to impact both positively and negatively on the environment. It explains how environmental management systems, environmental auditing, life cycle assessment and environmental impact assessment can be used in the farm situation.

This course aims to use environmental management to deliver sustainable agricultural management. Students will gain a holistic understanding and the interdisciplinary training to identify on-farm environmental risks and the knowledge and skills needed to develop answers.

The two specialist core modules have been designed to ensure understanding of the issues, where the science is balanced with the practical demands of the farm/producer/grower. You will develop the expertise required for a career in research, development, policy, or within the advisory sector relating to sustainability in farming systems, the food supply chain, environmental management and rural development, or to apply there skills in agriculture.

Crop plants are prone to suffer the effects of pests, pathogens and weeds and these reduce crop productivity. The next generation of crop protection scientists need to be educated to undertake this task and the MSc Environmental Management for Agriculture course also has two option modules in crop protection to enable this route to be followed if you want to pursue a career in applied biology, particularly in the area of crop protection science, peri-urban agriculture/horticulture and related areas.

The structure of the MSc Environmental Management for Agriculture course is based on four core modules and a choice of five specialist modules, as well as a supervised research project related to the field of agriculture. Students will begin their studies, for both full-time and part time students, with a core module in Sustainability and Environmental Systems.

This course is available both full and part-time with intakes in September (Semester A) and January (Semester B). Full time study in Semester A takes 1 year. Full time study beginning in Semester B will take 15 months. Part time study options typically take two years but students are given a maximum of five years to complete.

Why choose this course?

-Learn environmental skills to enable the delivery of sustainable agricultural production
-Crop protection modules are available
-BASIS points are available for specialist agriculture modules
-Flexible modular structure enables students to study whilst working. This allows part-time student to not have to take more than 12 days off a year (if studying over 2/3 years)
-Accredited by the Institute of Environmental Management and Assessement (IEMA) and the Chartered Institution of Water and Environmental Management (CIWEM)
-Networking opportunities per module with lunch and refreshments provided within your fees
-Learning resources such as textbooks will be provided within your fees

Professional Accreditations

Three modules are accredited by the Institute of Environmental Management and Assessment (IEMA) for Associate membership (giving exemption from the Associate Entry Examination). Accreditation by the Chartered Institution of Water and Environmental Management (CIWEM) is being applied for. BASIS points are available for the specialised agriculture modules.

Teaching methods

The MSc Environmental Management for Agriculture course approach integrates blended learning, combining:
-Face-to-face teaching and tutorials with online learning materials
-Field and laboratory work
-Easy contact with tutors
-Online submission of assignments

All modules are delivered as intensive two or three day short courses that run primarily on Thursdays, Fridays and Saturdays.
Full-time students attend tutorials in the weeks following a short course, receiving face-to-face support.

Part-time students attend courses at the University for only about eight working days a year. These students complete their assignments through making use of our outstanding virtual learning environment Studynet and keeping in remote contact with tutors. Students normally complete the part time course within two years but we give maximum of five years.

Our outstanding virtual learning environment Studynet will enable you to keep in remote contact with tutors and submit assignments online.

Assessment is primarily by assignments, often directly related to environmental management in the workplace or field. These can include reports, essays, seminars and online tests.

You have access to excellent University facilities including a field station, laboratories and state of the art Learning Resource Centres.
Each module can be studied individually as a stand-alone course, please enquire for further details.

Structure

Core Modules
-Agricultural Pollution and Mitigation
-Foundation in Environmental Auditing
-Integrated Farm Management
-Management Skills for Environmental Management
-Sustainability and Environmental Systems

Optional
-Crop Pathogens, Pests and Weeds
-Crop Protection; Principles & Practice
-Ecology and Conservation
-Environmental Management for Agriculture Individual Research Project
-Integrated Waste and Pollution Management
-Research Methods
-Sustainability and Environmental Systems
-Water Pollution Control

Read less
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Read more
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Taught content will equip the graduate with the expertise needed to work independently in a range of areas of current commercial plant science, at supervisory or management level, or in applied research. As well as ensuring a thorough grounding in basic science and horticultural technology, the modern molecular biology content is particularly relevant, since new technologies are rapidly entering the commercial arena. The independent research project will be set in a research institution or appropriate local industry, and will be designed around the student's interests and expertise.

The MSc focuses on methods used in the evaluation and improvement of conventional crops that feed the growing world population, but also alternative protected crops and ornamentals along with postharvest management, business and environmental concerns, and plant stress and disease in a changing climate.

Experts in this increasingly important area are needed in businesses nationally and internationally, in research and innovation, and at government and agency level where the ability to understand and follow current developments is required to guide and direct global sustainable solutions to population change.

The aims of the programme are:
• To provide knowledge of the science of plant biology and its application in the commercial and research arena
• To introduce the practicalities of horticulture and agriculture technologies including consideration of sustainability
• To examine the commercial aspects of this business area, including the planning, execution and evaluation of trials to exploit and develop novel approaches, practices, and crops
• To allow the student to synthesise, evaluate and critically judge which technologies and research findings are of value and appropriate to their current or future employment environment in a UK or international setting.

Visit the website http://www.gre.ac.uk/pg/engsci/aps

Food and Agricultural Sciences

The Natural Resources Institute (NRI) has an internationally-recognised academic reputation and provides taught postgraduate courses in a wonderful environment for students.

NRI provide research, consultancy, training and advisory services to underpin sustainable development, economic growth and poverty reduction. The majority of our activities focus on the harnessing of natural and human capital for the benefit of developing countries, though much of our expertise has proved to be of growing relevance to industrialised nations.

What you'll study

• Molecular and plant biology principles for plant improvement
• Research methods in plant science
• Independent research project
• Plant growth and cropping technology

Options:
• Agroforestry
• Agronomy and crop physiology
• Applications and aspects of commercial crop science
• Food and markets
• Planning for personal and professional development
• Plant disease management

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Examinations, coursework, research project dissertation.

Specialist equipment/facilities

Molecular biology laboratories, horticultural and agricultural facilities

Career options

Production managers - management of plant/crop production (protected and non-protected crops) and postharvest facilities.

Development specialists - selection, development and evaluation of existing and novel plants and crops.

Retailing produce - food and crop technologists, retailing food and non-food derived crops and products, including fresh produce and postharvest technologists.

Institutes, NGOs and governmental bodies - governance and policy linked to application of horticultural/agricultural technologies.

Applied research scientist - application of plant science into practice.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. Read more
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. The degree provides an ideal grounding for PhD research or a career in plant breeding and crop improvement with modules including Genetics, Plant Genomics, Plant Molecular Genetics and Statistics for Plant Science.

Your taught modules will be complemented by a six-month laboratory-based research project, giving you the opportunity to work closely with world-leading scientists from the John Innes Centre and our School of Biological Sciences.

The John Innes Centre – based on Norwich Research Park alongside UEA – is one of the world’s leading research institutes in plant genetics and crop improvement, so there are few places in the world where you’ll find a better opportunity to work with such leading authorities and world-class facilities.

Read less
This course will provide you with the skills to pursue a career in agricultural research and development. Graduates may also find work as consultants and advisers to the livestock and cropping industries in Mediterranean environments around the world. Read more
This course will provide you with the skills to pursue a career in agricultural research and development. Graduates may also find work as consultants and advisers to the livestock and cropping industries in Mediterranean environments around the world.

You will cover science and technology for crop, pasture and livestock production (including the roles of genetics and management in achieving optimum production against environmental constraints), and their integration into viable farming systems.

You will place special emphasis on emerging technologies for precise management of crops and livestock, and their role in ensuring safe, sustainable production systems. In your second year, you will undertake supervised research into a current and emerging industry problem. Intensive study periods may also be available over the summer or vacation periods.

Career opportunities

This qualification will provide you with the skills to pursue a career in agricultural research and development, and as consultants/advisors to the livestock and cropping industries in Mediterranean environments around the world. Employers are likely to include Government and private research organisations, agricultural consultancy groups, and individual growers and grower groups.

Credit for previous study

Applications for recognition of prior learning (RPL) are assessed on an individual basis.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less

Show 10 15 30 per page



Cookie Policy    X