• Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Warwick Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Portsmouth Featured Masters Courses
"crashworthiness"×
0 miles

Masters Degrees (Crashworthiness)

We have 1 Masters Degrees (Crashworthiness)

  • "crashworthiness" ×
  • clear all
Showing 1 to 1 of 1
Order by 
There are no other courses that provide dedicated specialist training in design and analysis of advanced lightweight structures in aerospace, automotive, marine and renewable energy industries. Read more

There are no other courses that provide dedicated specialist training in design and analysis of advanced lightweight structures in aerospace, automotive, marine and renewable energy industries. This is with respect to structural integrity and health monitoring over service life, which can be tailored to your career aspirations.

Delivered with a unique focus on industry challenges and concerns, this course will equip you with strong experimental, numerical and analytical skills in structural mechanics for both composite and metallic components. This will help you to practically apply this knowledge to solve real engineering problems.

Who is it for?

Students who enrol come from a variety of different backgrounds. Many have specific careers in mind, such as working in automotive or aerospace disciplines (structural design or crash protection), materials development for defence applications, or to work in the field of numerical code developments/consultancy.

Why this course?

Designing advanced structures through novel, lightweight materials is one of the key enabling technologies for both aerospace and automotive sectors to align with national targets for reduction of carbon. In reducing inherent structural weight, it is essential not to compromise safety, as structural integrity and designing for crashworthiness become key design drivers.

Understanding how aluminium or composite structures and materials perform over their life cycles under static and dynamic loading, including crash and bird strike, requires expertise in a range of areas. As new simulation and material technologies emerge, there is a continuing need for talented employees with a strong, applied understanding in structural analysis, together with competent technical skills in numerical simulation.

Informed by Industry

Established in 2003, this course is supported by close ties with industry, through student projects, specialist lectures and more importantly, by employing our graduates.

The MSc in Advanced Lightweight Structures and Impact is directed by an Industrial Advisory Panel comprising senior engineers from aerospace sectors. This maintains course relevancy and ensures that graduates are equipped with the skills and knowledge required by leading employers.

The Industry Advisory Panel includes representatives from:

  • Airbus
  • Rolls-Royce
  • Jaguar

Accreditation

The MSc in Advanced Lightweight Structures and Impact is accredited by Mechanical Engineers (IMechE) & Royal Aeronautical Society (RAes) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

You will complete eight compulsory modules.

The course employs a wide range of teaching methods designed to create a demanding and varied learning environment including structured lecture programmes, tutorials, case studies, hands-on computing, individual projects, and guest lectures.

Group project

The group project aims to address one of the greatest challenges graduates face, which is the lack of experience in dealing with the complexities of working within a design team. This part of the course takes place from March to May. It is student-led and consolidates the taught material which develops both technical and project management skills on an industrially relevant project.

On successful completion of this module a student should be able to:

  • Set objectives, plan and manage projects
  • Evaluate a project brief set by a client
  • Develop a set of project objectives appropriate to the client’s brief
  • Plan and execute a work programme with reference to key project management processes (e.g. time management; risk management; contingency planning; resource allocation).

The projects are designed to integrate knowledge, understanding and skills from the taught modules in a real-life situation. This module is typically delivered through collaboration with an industrial sponsor.

Individual project

Individual research project topics can vary greatly, allowing you to develop your own areas of interest. It is common for our industrial partners to put forward real-life practical problems or areas of development as potential research topics. This section of the course takes place from April to August.

The research projects are devised to provide a research challenge allowing you to; define the problem, perform appropriate analysis and research, draw conclusions from your work, communicate your findings and conclusions and enhance your skills and expertise. This will enable you to plan a research project, demonstrate a thorough understanding of your chosen topic area, including a critical evaluation of existing work, design appropriate analysis, plan an independent learning ability and manage a well-argued thesis report demonstrating original thought.

Cranfield University is a member of the European SOCRATES Mobility Programme and students may apply to undertake their Individual Research Project at other member institutions within Europe.

Assessment

Taught modules 40%, Group project 20%, Individual research project 40%

Your career

Industry driven research makes our graduates some of the most desirable in the world for recruitment by companies competing in the structural engineering sector, which forms a large worldwide industry.

Students who enrol come from a variety of different backgrounds. Many have specific careers in mind, such as working in automotive or aerospace disciplines (structural design, or crash protection), materials development for defence applications, or to work in the field of numerical code developments/consultancy. Others decide to continue their education through PhD studies available within the University.

This course provides graduates with the necessary skills to pursue a successful career in automotive, aerospace, maritime and defence sectors. This approach offers you a wide range of career choices as a structural engineer at graduation and in the future.

Companies that have recruited graduates of this course include:

  • Airbus
  • Rolls-Royce
  • Jaguar Land Rover
  • Aston Martin.


Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X