• Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Vlerick Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Swansea University Featured Masters Courses
"cosmology"×
0 miles

Masters Degrees (Cosmology)

We have 59 Masters Degrees (Cosmology)

  • "cosmology" ×
  • clear all
Showing 1 to 15 of 59
Order by 
This MSc is for you if you’re a graduate from an applied mathematics- or physics-based degree and wish to learn how to apply your knowledge to cosmology. Read more
This MSc is for you if you’re a graduate from an applied mathematics- or physics-based degree and wish to learn how to apply your knowledge to cosmology.

It is one of only two MScs in this subject area in the UK. Our emphasis is on observational and theoretical cosmology in the pre- and post-recombination universe.

How will I study?

Teaching is through:
-Lectures
-Exercise classes
-Seminars
-Personal supervision

You’re assessed by coursework and unseen examination. Assessment for the project is an oral presentation and a dissertation of up to 20,000 words. You’ll contribute to our weekly informal seminars and are encouraged to attend research seminars.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options.

Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Faculty

Our research focuses on extragalactic astrophysics and cosmology.

Careers

Most of our graduates have gone on to study for a research degree in a closely related field.

Read less
This is a one year advanced taught course. The aim of this course is to bring students in 12 months to the frontier of elementary particle theory. Read more

This is a one year advanced taught course. The aim of this course is to bring students in 12 months to the frontier of elementary particle theory. This course is intended for students who have already obtained a good first degree in either physics or mathematics, including in the latter case courses in quantum mechanics and relativity.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses, which are assessed by examinations in January and March. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics. The dissertation must be submitted by September 15th, the end of the twelve month course period.

Course Structure

The main group of lectures are given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of four weeks, with a week's break in the middle of the term in which students will be able to revise the material. Most courses are either eight lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term.

Core Modules

  • Introductory Field Theory
  • Group Theory
  • Standard Model
  • General Relativity
  • Quantum Electrodynamics
  • Quantum Field Theory
  • Conformal Field Theory
  • Supersymmetry
  • Anomalies
  • Strong Interaction Physics
  • Cosmology
  • Superstrings and D-branes
  • Non-Perturbative Physics
  • Euclidean Field Theory
  • Flavour Physics and Effective Field Theory
  • Neutrinos and Astroparticle Physics
  • 2d Quantum Field Theory.

Optional Modules available in previous years included:

  • Differential Geometry for Physicists
  • Boundaries and Defects in Integrable Field Theory
  • Computing for Physicists.

Course Learning and Teaching

This is a full-year degree course, starting early October and finishing in the middle of the subsequent September. The aim of the course is to bring students to the frontier of research in elementary particle theory.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics.

The lectures begin with a general survey of particle physics and introductory courses on quantum field theory and group theory. These lead on to more specialised topics, amongst others in string theory, cosmology, supersymmetry and more detailed aspects of the standard model.

The main group of lectures is given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of 4 weeks, with a week's break in the middle of the term in which students will be able to revise the material. Most courses are either 8 lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term they are supported by weekly tutorials. In addition lecturers also set a number of homework assignments which give the student a chance to test his or her understanding of the material.

There are additional optional lectures in the third term. These introduce advanced topics and are intended as preparation for research in these areas.

The dissertation must be submitted by mid-September, the end of the twelve month course period.



Read less
his is a one year advanced taught course. The aim of this course is to bring students in twelve months to the frontier of elementary particle theory. Read more
his is a one year advanced taught course. The aim of this course is to bring students in twelve months to the frontier of elementary particle theory. This course is intended for students who have already obtained a good first degree in either physics or mathematics, including in the latter case courses in quantum mechanics and relativity.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses, which are assessed by examinations in January and March. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics. The dissertation must be submitted by September 15th, the end of the twelve month course period.

Course Structure
The main group of lectures are given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of 4 weeks, with a week's break in the middle of the term in which students will be able to revise the material. most courses are either 8 lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term.

Core Modules
- Introductory Field Theory
- Group Theory
- Standard Model
- General Relativity
- Quantum Electrodynamics
- Quantum Field Theory
- Conformal Field Theory
- Supersymmetry
- Anomalies
- Strong Interaction Physics
- Cosmology
- Superstrings and D-branes
- Non-Perturbative Physics
- Euclidean Field Theory
- Flavour Physics and Effective Field Theory
- Neutrinos and Astroparticle Physics
- 2d Quantum Field Theory
- Optional Modules
- Differential Geometry for Physicists
- Boundaries and Defects in Integrable Field Theory
- Computing for Physicists.

For further information on this course, please visit the Centre for Particle Theory website (http://www.cpt.dur.ac.uk/GraduateStudies)

Read less
This interdisciplinary Masters course draws on studies in mythology, psychology, anthropology, theology, esoteric philosophy, a range of wisdom traditions and the arts. Read more
This interdisciplinary Masters course draws on studies in mythology, psychology, anthropology, theology, esoteric philosophy, a range of wisdom traditions and the arts.

It offers a discerning investigation into seemingly non­rational modes of knowing, exploring the cosmological sense of the sacred, the widespread practices of symbol interpretation and the cultural role of the creative imagination.

Visit the website: https://www.canterbury.ac.uk/study-here/courses/postgraduate/myth-cosmology-and-the-sacred.aspx

Course detail

The overall aim of the course is to encourage critical, imaginative and creative ways of engaging reflexively with some of the most important questions of our time, such as the debate between science and religion, the nature of sacred reality, and the foundations of spiritual, religious and ritual experience. To do this we explore theories of knowledge and consciousness, oracular and divinatory practices (ancient and contemporary), and the cultural expression of myth in landscape, poetry, art and music.

The course has been highly praised as an outstanding example of transformative learning, as it brings personal reflection and creativity to bear on the study of spirituality in the broadest sense. It brings to the fore issues of connectivity, sustainability, ecological awareness, and the engagement of the imagination in the aid of individual, community and global understanding, wellbeing and harmony.

Canterbury is a perfect venue to study this course, with its ecclesiastical heritage, rich literary history, beauty of landscape and architecture, and easy access to both London and the continent.

Suitability

The course will appeal to all those seeking to develop and enrich their lives through the study of the history, philosophy and practices of Western sacred and esoteric traditions, and will be of particular interest to teachers, practitioners and therapists in the fields of contemporary spirituality and wellbeing who would like to engage more deeply with both the foundations of their work and their own self-knowledge.

There are many areas for potential further study, and we now have a thriving graduate environment with MPhil/PhD researchers pursing topics as diverse as the music of the spheres, Freemasonry, conflict resolution, alchemical symbolism, transformative learning and intuitive reading methods.

Content

The four taught modules, comprising seminars, learning journal groups and workshops take place at alternate weekends, in term time, from October to March, with optional workshops in the summer term.

The Creative Project assignment and dissertation module take place from April to September (for full-time students) and April to the following September (for part-time students). Each teaching weekend includes an open lecture by a visiting speaker. There are also optional sessions on Friday afternoons (compulsory for Tier 4 students).

The four taught modules will address the following topics:

• Theories and Methods
• Symbol and Imagination
• Oracular and Divinatory Traditions
• Spirit and Psyche
• Creative Project
• Learning Journal
• Dissertation

Format

Teaching methods include seminars, lectures and workshops. Students can expect eight hours of teaching each study weekend, plus two hours of learning journal groups. They also receive individual supervision for each taught and research assignment, and eight hours of research preparation seminars.

They will attend two days a year for creative project presentations and a variety of optional workshops will be offered. There will also be an open public lecture at each study weekend, on the Saturday evening, which they are encouraged to attend, and optional Friday afternoon seminars on a variety of themes.

Assessment

Four essays of 4,000 words (20 credits each), one creative project review of 4,000 words, one learning journal write-up of 4,000 words (20 credits each) and one dissertation of 12-15,000 words (60 credits).

What can I do next?

Most of the students on this course are mature adults with established careers. However, possible career opportunities might include teaching, counselling and mentoring, spiritual and wellbeing guidance, alternative healing and therapies, writing and media, the arts, and further research.

How to apply

For information on how to apply, please follow this link: https://www.canterbury.ac.uk/study-here/how-to-apply/how-to-apply.aspx

Funding

-Masters Loans-

From 2016/17 government loans of up to £10,000 are available for postgraduate Masters study. The loans will be paid directly to students by the Student Loans Company and will be subject to both personal and course eligibility criteria.

For more information available here: https://www.canterbury.ac.uk/study-here/funding-your-degree/funding-your-postgraduate-degree.aspx

-2017/18 Entry Financial Support-

Information on alternative funding sources is available here: https://www.canterbury.ac.uk/study-here/funding-your-degree/2017-18-entry-financial-support.aspx

Read less
The Physics master’s programme offers you a research intensive tailor-made study path on current topics in experimental and theoretical physics at an institute of international renown. Read more

The Physics master’s programme offers you a research intensive tailor-made study path on current topics in experimental and theoretical physics at an institute of international renown.

What does this master’s programme entail?

The Physics master’s programme is intimately related to the scientific research carried out at the Leiden Institute of Physics. You will spend approximately 50% of your programme on research, as a member of one of our top-level international research groups. We offer five research specialisations, with emphasis on either experimental or theoretical physics, which train you as an independent researcher. We also offer three specialisations that put Physics in broader societal contexts and train you for careers where a Physics background is an asset. Each of these specialisations aims at providing a combination of research independence and content proficiency that fully prepares you for a successful professional development for your professional development.

Learn more about the Physics programme.

Why study Physics at Leiden University?

  • The programme offers a wide choice of individual study paths that take into account individual needs and interests. You can either build a purely academic profile, or you may combine physics research with education, business studies or science communication.
  • You will carry out at least one research project with one of the research groups of the Leiden Institute of Physics. Research at the department is at the forefront of fundamental modern Physics at an internationally competitive level.
  • At the Leiden Institute of Physics you experience an open, inclusive, and collegial atmosphere. Your weekly routine includes attending colloquia of international speakers, partaking in symposia and participating in lively scientific discussions.

Find more reasons to choose Physics at Leiden University.

Physics: the right master’s programme for you?

Are you looking into furthering your education in fundamental questions in physics? Then our Physics master’s programme is the right choice. Whether you are interested in experimental or theoretical research, or cosmology, we offer it all. You will be trained for a career in research within or outside academia. You can also choose for a more practical-oriented specialisation where you combine one year of Physics research with one year of training in business, communication or education.

Read more about the entry requirements for Physics.

Specialisations



Read less
Philosophy, science and religion are three endeavours that shape in far-reaching and fundamental ways how we think, what we value, and how we live. Read more

Philosophy, science and religion are three endeavours that shape in far-reaching and fundamental ways how we think, what we value, and how we live. Public discourse, professional life, politics and culture revolve around the philosophical, scientific and religious ideas of our age; yet they and their relationship to each other are not well understood.

This programme brings together in an authentically interdisciplinary way leaders in the fields of philosophy, science and theology, based both in Edinburgh and across the world.

Students will be brought up to date with the relevant scientific developments – including quantum mechanics, relativity, cosmology, evolutionary biology, neuroscience, and human origins – the relevant theological issues – including the problem of evil, miracles, theological conceptions of creation, theological conceptions of providence, and eschatology – and the philosophical tools in philosophy of science, metaphysics, epistemology, and philosophy of language required to understand the relationship between them.

Students will develop logical acumen and analytical skills, and the ability to express themselves clearly in writing and in conversation with diverse groups of students from around the world. As well as being a leading research institution in philosophy, theology and the sciences, Edinburgh has lead the way in providing high quality, bespoke and intensive online learning at postgraduate level.

The innovative online format of the programme and the flexibility of study it offers make it accessible to those with family or professional commitments, or who live far from Edinburgh.

This MSc/PGDipl/PGCert in Philosophy, Science and Religion is designed to give you a rigorous grounding in contemporary work in the intersection of philosophy, science and religion.

The programme follows an integrated approach with leading researchers in philosophy, the sciences and theology proving teaching on, respectively, the philosophical, scientific and theological dimensions of the programme.

Students will be brought up to date with the relevant scientific developments – including quantum mechanics, relativity, cosmology, evolutionary biology, neuroscience, and human origins – the relevant theological issues – including the problem of evil, miracles, theological conceptions of creation, theological conceptions of providence, and eschatology – and the philosophical tools in philosophy of science, metaphysics, epistemology, and philosophy of language required to understand the relationship between them.

Online learning

This is an online only programme that will be taught through a combination of short video lectures, web discussion boards, video conferencing and online exercises.

You will have regular access both to faculty and dedicated teaching assistants, including one-to-one interactions. You will also interact with other students on the programme as part of a dedicated virtual learning environment.

Programme structure

You will take options from a wide range of courses offered by the Department of Philosophy and the School of Divinity both jointly and individually, and will be required to write a dissertation.

All students will be required to take two core courses: Philosophy, Science and Religion 1: The Physical World; and Philosophy, Science and Religion 2: Life and Mind.

Courses will include online lectures, tutorials, quizzes, discussion sessions and personal tutor contact.

At the dissertation stage, you will be assigned a supervisor with whom you will meet, through video conferencing, to plan and discuss your research and writing.

Learning outcomes

The MSc in Philosophy, Science and Religion aims to develop students to:

  • Demonstrate a good understanding of the key areas in the current science-religion interface—including cosmology, evolution, and the psychology—and will be able to engage with them philosophically.
  • Demonstrate strong analytical skills and philosophical acumen in approaching debates between science and theology.
  • Engage critically with key textual sources in the field.
  • Engage constructively in cross-disciplinary conversations.
  • Demonstrate an openness to personal growth through a commitment to dialogue across intellectual and spiritual boundaries.

Career opportunities

This course is designed to prepare you for doctoral work in relevant areas of philosophy and/or theology.

However, the skills of analytical but creative thinking, clear writing, and the abilities to manage projects that require significant research and to engage in constructive conversations across disciplinary and cultural boundaries, are all highly sought after by employers in a diverse range of fields.



Read less
We invite MPhil proposals in any of our research areas. In Pure Mathematics our two main fields are functional analysis and geometric algebra. Read more
We invite MPhil proposals in any of our research areas. In Pure Mathematics our two main fields are functional analysis and geometric algebra. In Applied Mathematics our research is predominantly in fluid mechanics, astrophysics and cosmology.

As a research postgraduate in the School of Mathematics and Statistics you will be working under the supervision of an expert in your chosen field. To help you identify a topic and potential supervisor, we encourage you to find out more about our staff specialisms.

Research areas

Within each field of Pure Mathematics there are multiple subgroups. In analysis, one subgroup concentrates on operator theory and function theory, the other on Banach algebras, cohomology and modules. In algebra there are subgroups devoted to the study of infinite groups, and finite classical groups and their geometries

Our Applied Mathematics staff have research interests in:
-Fluid dynamics, including numerical modelling of quantum fluids (superfluid liquid Helium and Bose-Einstein condensates)
-Classical and astrophysical fluids (the Earth's core, planetary dynamos, accretion discs and galaxies)
-Cosmology, including the very early universe and quantum gravity

Research seminars and events

We run weekly research seminars in algebra and geometries, analysis, and applied mathematics, as well as postgraduate seminars led by students.

Specialist courses are offered through the MAGIC distance learning consortium, sponsored in part by the Engineering and Physical Sciences Research Council (EPSRC).

Partnerships and networks

We are part of:
-The North British Functional Analysis Seminar
-The North British Geometric Group Theory Seminar
-Algebra and Representation Theory in the North, funded by the London Mathematical Society and the Edinburgh Mathematical Society

With Durham University, we are part of the Joint Quantum Centre broadly dedicated to various aspects of quantum science.

Facilities

You will have access to online research facilities via your own desktop PC in a shared postgraduate work space. There is also a teaching cluster (of about 150 PCs) within the School.

As well as the library resources provided by the main Robinson Library, you will have access to the School's mathematics and statistics library and reading room.

Read less
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Read more

The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Though it may be taken as a free-standing qualification, most students take this programme as a pathway to the MSc. This pathway forms the first year of a two-year programme with successful students (gaining a merit or distinction) progressing onto the MSc Physics in second year.

Key benefits

  • King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.
  • Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".
  • The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".
  • Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials.

Description

Students will undertake a total of 120 credits

Course purpose

For students with an undergraduate degree or equivalent who wish to have the experience of one year in a leading UK Physics Department, or who may not be immediately eligible for entry to a higher degree in the UK and who wish to upgrade their degree. If you successfully complete this programme with a Merit or Distinction we may consider you for the MSc programme.

Course format and assessment

The compulsory modules are assessed via coursework. The majority of the other optional modules avaiable are assessed by written examinations.

Career destinations

Many students go on to do a higher Physics degree, work in scientific research, teaching or work in the financial sector.



Read less
The course provides an introduction to the physical principles and mathematical techniques of current research in general relativity, quantum gravity, particle physics, quantum field theory, quantum information theory, cosmology and the early universe. Read more

Overview

The course provides an introduction to the physical principles and mathematical techniques of current research in general relativity, quantum gravity, particle physics, quantum field theory, quantum information theory, cosmology and the early universe.

The programme of study includes a taught component of closely-related modules in this popular area of mathematical physics. The course also includes a substantial project that will allow students to develop their interest and expertise in a specific topic at the frontier of current research, and develop their skills in writing a full scientific report.

The course will provide training in advanced methods in mathematics and physics which have applications in a wide variety of scientific careers and provide students with enhanced employability compared with undergraduate Bachelors degrees. In particular, it will provide training appropriate for students preparing to study for a PhD in the research areas listed above. For those currently in employment, the course will provide a route back to academic study.

Key facts:

- The course is taught jointly by the School of Mathematical Sciences and the School of Physics and Astronomy.

- Dissertation topics are chosen from among active research themes of the Particle Theory group, the Quantum Gravity group and the Quantum Information group.

- In addition to the lectures there are several related series of research-level seminars to which masters students are welcomed.

- The University of Nottingham is ranked in the top 1% of all universities worldwide.

Module details

Advanced Gravity

Black Holes

Differential Geometry

Gravity

Gravity, Particles and Fields Dissertation

Introduction to Quantum Information Science

Modern Cosmology

Quantum Field Theory

English language requirements for international students

IELTS: 6.0 (with no less than 5.5 in any element)

Further information



Read less
The master's programme Astronomy covers observations using the world’s most powerful ground- and space-based telescopes, theoretical astrophysical and astrochemical modeling, large scale simulations, and laboratory experiments that mimic conditions in space. Read more

The master's programme Astronomy covers observations using the world’s most powerful ground- and space-based telescopes, theoretical astrophysical and astrochemical modeling, large scale simulations, and laboratory experiments that mimic conditions in space.

What does this master’s programme entail?

In this two-year master’s programme in Astronomy you get access to cutting edge research in modern astronomy. Main focus areas include galaxies and the structures in which they are embedded, exoplanets, and star and planet formation. With seven challenging specialisations to choose from, you will be prepared for a wide variety of careers within academia, industry and the public sector.

Read more about the Astronomy master's programme.

Why study Astronomy at Leiden University?

  • We offer you a tailor-made master’s programme with many opportunities to match your study path with your interests and ambitions.
  • You have access to a cutting edge research infrastructure with strong international partners and top facilities.
  • Leiden University offers a welcoming environment and an open international community with highly approachable renowned staff, a buddy system and individual student support.

Find out more reasons to choose Leiden University.

Astronomy: the right master’s programme for you?

Are you are interested in astronomy research within or outside academia? Do you want to add value to society through scientific and technological progress? Are you keen on solving complex matters and are you up for a challenge? Then our Leiden University Astronomy master’s programme is designed for you.

Read more about the entry requirements for Astronomy.

Specialisations



Read less
Goal of the pro­gramme. Read more

Goal of the pro­gramme

What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena.

With the expertise in basic research that you will gain in the programme, you can pursue a career in research. You will also acquire proficiency in the use of mathematical methods, IT tools and/or experimental equipment, as well as strong problem-solving and logical deduction skills. These will qualify you for a wide range of positions in the private sector.

After completing the programme, you will:

  • Have wide-ranging knowledge of particle physics and/or astrophysical phenomena.
  • Have good analytical, deductive and computational skills.
  • Be able to apply theoretical, computational and/or experimental methods to the analysis and understanding of various phenomena.
  • Be able to generalize your knowledge of particle physics and astrophysical phenomena as well as identify their interconnections.
  • Be able to formulate hypotheses and test them based your knowledge.

The teaching in particle physics and astrophysical sciences is largely based on the basic research. Basic research conducted at the University of Helsinki has received top ratings in international university rankings. The in-depth learning offered by international research groups will form a solid foundation for your lifelong learning.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The understanding of the microscopic structure of matter, astronomical phenomena and the dynamics of the universe is at the forefront of basic research today. The advancement of such research in the future will require increasingly sophisticated theoretical, computational and experimental methods.

The study track in elementary particle physics and cosmology focuses on experimental or theoretical particle physics or cosmology. The theories that form our current understanding of these issues must be continuously re-evaluated in the light of new experimental results. In addition to analytical computation skills, this requires thorough mastery of numerical analysis methods. In experimental particle physics, the main challenges pertain to the management and processing of continuously increasing amount of data.

The study track in astrophysical sciences focuses on observational or theoretical astronomy or space physics. Our understanding of space, ranging from near Earth space all the way to structure of the universe, is being continuously redefined because of improved experimental equipment located both in space and on the Earth’s surface. Several probes are also carrying out direct measurements of planets, moons and interplanetary plasma in our solar system. Another key discipline is theoretical astrophysics which, with the help of increasingly efficient supercomputers, enables us to create in-depth models of various phenomena in the universe in general and the field of space physics in particular. Finally, plasma physics is an important tool in both space physics and astronomy research.

 



Read less
This programme will offer home astronomers, who may have graduated in subjects other than physics, the opportunity to gain a formal postgraduate qualification in Astronomy and Astrophysics, and is designed to give students a robust and up-to-date background in these areas. Read more
This programme will offer home astronomers, who may have graduated in subjects other than physics, the opportunity to gain a formal postgraduate qualification in Astronomy and Astrophysics, and is designed to give students a robust and up-to-date background in these areas. Over the course of two years, we will explore the solar system, stellar physics, infra-red, radio and high energy astronomy, as well as discussing the foundations of cosmology.

By its very nature, astronomy is a mathematical subject - students will therefore need a background in this area, although fully-supported maths master classes will be a permanent feature on the programme for those who need to refresh their skills in this area.

The programme starts in late September/early October each academic year, as well as a second start date in January each year – places are limited to ensure a constructive atmosphere for discussions.

This is a part-time, postgraduate-level programme delivered wholly online in a fully-supported learning environment. Students can exit with a Postgraduate Certificate after successful completion of the first year if their circumstances change.

Overview

Through this programme, students will:
-Gain a comprehensive knowledge of the development of astronomy, astronomy in the visible region of the electromagnetic spectrum, the solar system and stellar physics.
-Learn that physics is a quantitative subject and appreciate the use and power of mathematics for modelling the physical world and solving problems.
-Develop skills in research and planning and their ability to assess critically the link between theoretical results and experimental observation.
-Develop the ability to solve advanced problems in physics using appropriate mathematical tools.
-Be able to identify the relevant physical principles, to translate problems into mathematical statements and apply their knowledge to obtain order-of-magnitude or more precise solutions as appropriate.
-Develop the ability to plan and execute under supervision an experiment or investigation, analyse critically the results and draw valid conclusions.
-Be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare these results with expected outcomes, theoretical predictions or with published data.
-Possess a more complete working knowledge of a variety of experimental, mathematical and computational techniques applicable to current research within physics.

Structure

This part-time two-year programme will comprise six 20-credit modules:
Year One
-Introduction to Astronomy
-Stellar Physics
-The Solar System

Year Two
-Infrared and Radio Astronomy
-High Energy Astronomy
-The Foundations of Cosmology

Students will be required to complete all these modules in the first instance, though additional modules may be added in the future to accommodate future programme growth and offer a broader learning experience.

It is anticpated that assessments will comprise a balance of short and long critical essays, conference style posters and maths-based open book problems.

Online Study

Our approach to e-learning is distinctive and may be different from your general perceptions about online study:
-Flexible, fully supported, modular delivery
-Taught exclusively online
-Two stages: Certificate and Diploma. Each stage typically takes 12 months
-Comprises six distinct modules
-Part-time study (approximately 15 hours per week) allows participants to structure their learning around the other life circumstances

Read less
UNB’s Mathematics and Statistics department offers top percentile research programs, plus the chance to study advanced topics with internationally-recognized faculty. Read more
UNB’s Mathematics and Statistics department offers top percentile research programs, plus the chance to study advanced topics with internationally-recognized faculty. It all adds up to a positive university experience, equating to happier students and better job prospects. We generally have around 20 graduate students in a variety of research areas and we host several post-doctoral researchers.

Our graduate programs prepare students for successful careers in government, academia, research and consulting firms, financial and healthcare institutions, engineering and technology firms, as well as respected positions in data security, computer design and cosmology.

Our department is home to the Applied Statistics Centre, which provides statistical consultation for UNB researchers and the community at large, as well as the Centre for Noncommutative Geometry and Topology, which is an international research consortium that includes many renowned mathematicians.

Research Areas

-Algebra & Algebraic Geometry
-Combinatorics
-General Relativity
-Cosmology
-Quantum Gravity & Modified Gravity
-String Theory
-Scientific Computation
-Mathematical Ecology & Epidemiology
-Biological Invasions
-Nonlinear Differential & Delay Differential Equations
-Random Effects & Mixture Models
-Longitudinal Analysis
-Validation of Complex Models for Random Pattern

Read less
Explore astronomy and astrophysics at an advanced level, with an emphasis on theoretical astronomy. This course is for you if you have graduated from an applied mathematics- or physics-based degree and wish to learn how to apply your knowledge to astronomy. Read more
Explore astronomy and astrophysics at an advanced level, with an emphasis on theoretical astronomy. This course is for you if you have graduated from an applied mathematics- or physics-based degree and wish to learn how to apply your knowledge to astronomy. It’s one of only three full-time, broad-based astronomy MSc courses in the UK.

How will I study?
Teaching is by:
-Lectures
-Exercise classes
-Seminars
-Personal supervision

You’ll contribute to our weekly informal seminars, and are encouraged to attend research seminars.

Assessment for the taught modules is by coursework and unseen examination. Assessment for the project is by oral presentation and a dissertation of up to 20,000 words. A distinction is awarded on the basis of excellence in both the lecture modules and the project.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options. Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships
Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Faculty
Our research focuses on extragalactic astrophysics and cosmology.

Careers
The course has an excellent reputation, both nationally and internationally, and graduates from this MSc work and study all over the world.

Many of our graduates go on to take a research degree and often find a permanent job in astronomy. Others have become science journalists and writers.

Read less
This is our most flexible course. It’s designed to let you explore, then specialise in the specific pathway that interests you. An English Literature masters from Sheffield is the mark of an independent thinker, a skilled researcher, someone who can bring complex projects to fruition. Read more

About the course

This is our most flexible course. It’s designed to let you explore, then specialise in the specific pathway that interests you.

Your career

An English Literature masters from Sheffield is the mark of an independent thinker, a skilled researcher, someone who can bring complex projects to fruition. Our graduates go into teaching, management and consultancy, advertising, journalism, publishing, and all branches of the arts – especially theatre, film, and creative writing. Our courses are also excellent preparation for a PhD.

Cultural life

There is always something going on, and there are plenty of chances to get involved. We have extensive links with arts and heritage organisations including Arts Council England and Sheffield Theatres. Recent poetry readings featured Carol Ann Duffy and Ciaran Carson. Our Arts/Science Encounters events bring together musicians, writers, architects and academics to explore ideas. The English Society, run by our students, organises theatre trips, guest lectures, and seminars. Students also get the chance to take part in drama and readings.

First-rate facilities

We’re based in a brand new building at the heart of the campus. There are computer workstations especially for postgraduates and a DVD library with viewing facilities. Our theatre workshop is a fully equipped teaching/performance area with excellent film-viewing facilities and audio suites.

Specialist resources

The University Library subscribes to the major periodicals and full-text electronic archives, including Early English Books Online and Eighteenth-Century Collections Online. Special collections include an outstanding collection of Restoration drama, the Hope Collection of eighteenth-century periodicals, the Jack Rosenthal scripts collection, and papers of contemporary writers such as Anita Brookner, Marina Warner, Fay Weldon and Peter Redgrove.

Funding

There are a number of studentships and fee bursaries available, funded by the University. Deadlines for funding applications are usually in winter/early spring. For details, see our website.

Research training for PhD

If you intend to progress to a PhD, your course can be tailored to include essential research training. The same applies to students on the online course.

Part-time study

Part-time students usually take one taught module in each semester. In the second year, you’ll also take a dissertation module. For most courses, you’ll need to come in for one half-day per week. The MA Creative Writing is taught in the evening. Some modules, such as Theatre and Performance, may require greater time commitment. We try to be as flexible as possible to accommodate the different needs of our students.

Examples of optional modules

Modules may include, but are not limited to: Memory and Narrative in Contemporary Literature; Exchanging Letters: Art and Correspondence in Twentieth-Century American Culture; Tales of the City; Analysis of Film; Animal Writes: Beasts and Humans in 20th and 21st Century Fiction; White Like Me; Rocket-State Cosmology; The Rise of the Gothic.

Teaching and assessment

Essays, 15,000-word dissertation.

Read less

Show 10 15 30 per page



Cookie Policy    X