• Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
King’s College London Featured Masters Courses
Cass Business School Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of London International Programmes Featured Masters Courses
"corrosion" AND "engineer…×
0 miles

Masters Degrees (Corrosion Engineer)

We have 3 Masters Degrees (Corrosion Engineer)

  • "corrosion" AND "engineer" ×
  • clear all
Showing 1 to 3 of 3
Order by 
The MSc in Corrosion Control Engineering provides you with a thorough training in corrosion and its control. Initially, you will study the fundamental chemistry, physics, and metallurgy underpinning corrosion processes. Read more

The MSc in Corrosion Control Engineering provides you with a thorough training in corrosion and its control. Initially, you will study the fundamental chemistry, physics, and metallurgy underpinning corrosion processes. Subsequently, you will learn about approaches to corrosion control, ranging from material selection, through cathodic protection, to corrosion inhibition and protective coatings. Finally, you will cover industrial scenarios where knowledge of corrosion and its control is paramount, e.g. oil production. This MSc is the ideal preparation for a career either in industry as a corrosion scientist or engineer, or for cutting-edge academic research.

Aims of the course:

  • To produce competent, professionally qualified graduates who are appropriately trained and will secure immediate, rewarding and useful employment in UK, European or overseas industries as corrosion scientists or engineers.
  • To provide conversion training, which is intellectually challenging, as well as being industrially relevant.
  • To satisfy the needs of practising engineers, scientists and technologists wishing to develop professional competence in the areas of corrosion and corrosion control methods.

Aims

Aims of the course:

  • To produce competent, professionally qualified graduates who are appropriately trained and will secure immediate, rewarding and useful employment in UK, European or overseas industries as corrosion scientists or engineers.
  • To provide conversion training, which is intellectually challenging, as well as being industrially relevant.
  • To satisfy the needs of practising engineers, scientists and technologists wishing to develop professional competence in the areas of corrosion and corrosion control methods.

Special features

Embarking upon the Corrosion Control Engineering MSc gives you direct access to the knowledge, skills and expertise of 10 leading academics in the field of corrosion. They will teach you the fundamentals of corrosion, and provide you with insight into cutting-edge corrosion engineering problems and solutions in their specialist fields. Latterly, you will work more closely with one of these academics, becoming an active member of their research group during your dissertation project. Further to the teaching by academics, eminent guest speakers from industry are a key feature of the course, delivering invaluable first-hand practical knowledge and case studies.

Coursework and assessment

Unit 1 is assessed by an in-sessional exam at the end of the Unit. Units 2-6 are examined by both exam (75%) and coursework (25%). The nature of the coursework differs from Unit to Unit, but is largely a mix of laboratory reports and case studies. As regards the research project, the mark for this section of the course is based upon the independent assessment of two academics.

Course unit details

The taught units include:

  • Introduction to Materials Science
  • Advanced Research Methods
  • Principles of Corrosion
  • Oxidation and Corrosion Processes
  • Corrosion and Control for Industrial Processes
  • Oilfield Corrosion and Control

Research project

You will spend 4 months carrying out research on a topic of interest, working in one of the corrosion focused research groups. Both fundamental and more applied projects are available. You will produce a dissertation detailing your results and their interpretation at the end of this period.

Scholarships and bursaries

Unfortunately, The University of Manchester does not have any funding at present. There may be external funding opportunities, please see the link for more information:http://www.manchester.ac.uk/study/masters/funding/

Facilities

Most of the MSc course is hosted within The Mill, where corrosion research activities are centred. There is a lecture theatre, and a dedicated laboratory for corrosion teaching. Also, there is a computer cluster, which students can access at any time to study and prepare coursework. There is also a coffee lounge, where students can socialise and meet with other members of the corrosion family.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Opportunities for our graduates are wide ranging, with the majority of graduates going on to fill key posts as corrosion scientists, engineers, managers, and consultants in industry, or proceeding towards a career in academia. Our graduates are highly sought after and employed across a diverse range of sectors such as oil and gas, nuclear, energy production, and manufacturing. Leading industrial players target our students, with many going on to develop their careers in world renowned companies, e.g. Shell, Rolls Royce, Tata Steel, and BP.

Accrediting organisations

The MSc in Corrosion Control Engineering is accredited by the Institute of Materials Minerals and Mining (IoM3). 



Read less
What is the Master of Welding Engineering all about?. The Advanced Master is the ideal stepping-stone to a high-level job in the field of welding and joining technology. Read more

What is the Master of Welding Engineering all about?

The Advanced Master is the ideal stepping-stone to a high-level job in the field of welding and joining technology. In many countries, there is a permanent and growing demand for scientists and engineers who are knowledgeable and trained at an academic level in the field of welding engineering.

The programme is indispensable (and obligatory) for engineers seeking to work as Responsible Welding Coordinators. Engineers interested in R&D, quality, design, production, maintenance and particularly welding metallurgy will also find the programme instructive.

Structure

4 Clusters in the programme:

  • Welding processes and equipment
  • Materials and their behaviour during welding
  • Construction and design
  • Fabrication, applications engineering

Degrees and certifications

Upon successful completion of the entire programme (60 ECTS), you will be awarded the degree of MSc in Welding Engineering

Upon successful completion of the course (40 ECTS), you gain access to the International Institute of Welding oral examination. A passing score results in IIW accreditation as a certified International Welding Engineer (IWE) and European Welding Engineer (EWE).

Technology Campus De Nayer, Authorised Training Body

The green KU Leuven Technology Campus De Nayer, near Mechelen, is certified as an Authorised Training Body for International Welding Engineering by the Belgian Welding Association (BVL), which represents the International Institute of Welding (IIW).

Objectives

This advanced master's programme strives to offer students a complete training in the professional niche of Welding Engineering. The programme has the following goals:

  • Guaranteeing a complete accordance with the minimal requirements of the International Institute of Welding as described in its IIW Guideline in document IAB 252r2-14 "Minimum Requirements for the Education, Examination and Qualification for Personnel with Responsibility for Welding Coordination";
  • Provide broad and in-depth knowledge and skills of all kinds of courses related to welding necessary for a welding engineer to function in the current social and economic context. These courses include welding processes, materials science, metallurgy of high and low alloy steels, non-ferrous materials, metallurgy of compounds of heterogenous materials, the prevention of corrosion and abrasion, construction codes, welding standards, design exercises, quality control, production and manufacturing techniques.

To this end, students must acquire sufficient knowledge, skills and abilities in order to:

  • Work as a qualified welding engineer with a sufficient scientific background in welding (i.e. materials science, corrosion and protection, welding processes, standards and codes, quality, workshop lay-outing) to tackle welding-related problems individually or as part of a team.
  • Be well acquainted with legal aspects, business economics, professional ethics and safety.
  • Obtain a professional attitude that demonstrates a clear volition towards technological innovation, creativity and lifelong learning.
  • Use available information sources in a fast and efficient manner (scientific databases, patent databases, norms and codes).

Career Options

This programme opens up a wide spectrum of professional possibilities and exposes you to an extremely varied field of action: petrochemistry, the aviation and aero-space industry, civil construction, assembly plants, the nuclear sector, shipping and logistics, general construction, and more. As a welding engineer, you will carry out a wide range of duties, including research, design, production, maintenance, sales and quality inspection. 

Our graduates find employment in local SMEs, large multinational industrial companies as well as private and public organisations at home and abroad. There is a real need for experts with the capability to conduct research, carry out quality control analyses, and perform inspections, monitoring and certification in the broad field of welding. Some graduates start a career as independent consultants. 



Read less
This programme has been developed to meet the increasing demand for advanced engineering skills within manufacturing and engineering sectors as well as the demand for professional development for practising and graduate engineers. Read more
This programme has been developed to meet the increasing demand for advanced engineering skills within manufacturing and engineering sectors as well as the demand for professional development for practising and graduate engineers. The course is designed to provide students with the opportunity to study advanced topics in engineering, developing their knowledge at an advanced level while gaining a understanding of issues affecting mechanical engineering considerations.

Course Overview

This programme has been developed around the growing need for highly skilled mechanical engineers while recognising the need for graduate engineers to enhance their skills and gain professional recognition. The programme as split into two parts and will examine key areas in mechanical engineering such as; structural integrity and materials evaluation, simulation and modelling, mechanisms of material failure and the importance of strategic implications.

Part 1
Develops knowledge acquired from previous studies in more detail while providing an in depth understanding of areas that a mechanical engineer would wish to investigate. The MSc Mechanical Engineering programme enables students to gain an in depth knowledge and understanding of engineering design, mechanisms of material failure, structural integrity and simulation and modelling

Part 2
This gives the students the opportunity to put ideas into practice by researching an area of interest or a project within the working environment. This could be evaluating materials and their applications to prevent failures in service, modelling fluid flow in processes, or studying the influences or effects of corrosion on materials and how it can be prevented.

Modules

Part I (120 Credits) comprises the following taught modules:
-Research Methods
-Advanced Computer Aided Design and Manufacture
-Engineering Design and Analysis
-Structural Integrity and Material Evaluation
-Simulation and Modelling
-Mechanisms of Material Failure
-Leadership, Product Development and Innovation
-Design for Manufacture

Part II (60 credits)
-Major Project

Assessment

Assessment used within this programme is mostly coursework based with examinations utilised in two modules. Assessments are designed to develop the students ability to analyse complex problems in advanced engineering environments while at the same time understanding what the problem is and developing relevant solutions through practical work, research, case studies and critical evaluation. In some modules students are required to present their research/findings to their lecturers and peers followed by a question and answer session. Such assessment strategies are utilised by the programme team to generate student lead work.

Career Opportunities

This programme provides graduates with a wide range of professional skills and competencies that are transferable within businesses and from sector to sector. Our graduates will have gained expertise designed to enhance their employability within the automotive, aerospace, manufacturing, energy and oil and gas sectors.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X