• Durham University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
National Film & Television School Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Bath Spa University Featured Masters Courses
"corrosion"×
0 miles

Masters Degrees (Corrosion)

We have 31 Masters Degrees (Corrosion)

  • "corrosion" ×
  • clear all
Showing 1 to 15 of 31
Order by 
One of the fundamental challenges associated with hydrocarbon production is ensuring the integrity of the assets used to extract and transport process fluids, particularly from effects such as internal corrosion. Read more

One of the fundamental challenges associated with hydrocarbon production is ensuring the integrity of the assets used to extract and transport process fluids, particularly from effects such as internal corrosion. As a result, the demand for qualified corrosion engineers with specific expertise in oilfield operations continues to grow.

This course is appropriate for professional engineers in industry who are seeking to expand their expertise, as well as graduate engineers or physical scientists looking to gain specialist knowledge relevant to the oil and gas sector.

The course develops your skills in measuring, predicting and managing corrosion as well as assessing asset integrity. Optional modules allow you to focus on topics relevant to your interests and career plans.

Taught by academic staff at the forefront of their fields, the course enables you to develop a range of skills and a solid knowledge base from which to launch an exciting career within the oil and gas industry.

You’ll learn in a stimulating research environment supported by world-class specialist facilities which support the individual project element of the programme. These include access to equipment such as high temperature/high pressure autoclaves, quartz crystal microbalance, erosion-corrosion rigs/flow loops, rotating cylinder electrodes/bubble cells, visualisation cells and potentiostats with AC/DC capabilities.

The projects are also supported by access to our corrosion lab’s own advanced surface analysis suite, containing optical microscopes, mini-sims, IR/UV spectroscopy techniques, atomic force microscopes and a nano-indenter.

Accreditation

This course is accredited by the Institute of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council.

Course content

Core modules in each semester provide you with a thorough understanding of key aspects of oilfield corrosion engineering. You’ll study topics which cover aspects such as material selection, chemical inhibition, surface engineering technologies, the principles of physical metallurgy, electrochemistry and corrosion management strategies for new or mature assets.

You’ll also select from optional modules that allow you to focus on specific topic areas such as tribology and its impact on mechanism design or engineering computation. Modules are also available through Leeds University Business School covering aspects of operations management, to prepare you for a range of roles in industry.

Throughout the programme you’ll complete your Professional Project – an independent piece of research on a topic within mechanical engineering that allows you to demonstrate your knowledge and skills. In the two taught semesters you’ll review the literature around a specific topic (chosen from an extensive list provided) and plan the project, before completing the design, analysis, computation, experimentation and writing up in the summer months.

Want to find out more information about your modules?

Take a look at the Oilfield Corrosion Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Metals and Alloys 15 credits
  • Materials Selection and Failure Analysis 15 credits
  • Oilfield Chemistry and Corrosion 15 credits
  • Advanced Oilfield Corrosion 15 credits
  • Surface Engineering 15 credits
  • Professional Project 75 credits

Optional modules

  • Materials Structures and Characterisation 15 credits
  • Risk Perception and Communication 15 credits
  • Effective Decision Making 15 credits
  • Managing for Innovation 15 credits
  • Engineering Computational Methods 15 credits
  • Introduction to Tribology 15 credits
  • Computational Fluid Dynamics Analysis 15 credits

For more information on typical modules, read Oilfield Corrosion Engineering MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, poster sessions, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Most projects are experimentally based and linked with companies within the oil and gas industry to ensure the topic of research is relevant to the field whilst also addressing a real-world problem.

Recent projects for MSc Oilfield Corrosion Engineering students have included:

  • Corrosion of wellbore materials under high temperature and pressure
  • Nanotechnology applications in oil and gas for advanced corrosion protection
  • Evaluation of green inhibitors
  • Understanding galvanic corrosion of welds in high shear conditions
  • Application of acoustic emission as a tool for predicting erosion severity
  • Development and testing of a novel, custom cell to understand top of line corrosion

Career opportunities

With this qualification, excellent career options are open to you to practise as a professional corrosion engineer and play a major role in ensuring the safe and efficient recovery of natural resources.

Graduates have gone on for a range of companies such as BP, Petronas, Wood Group Kenny and EM&I.

You’ll also be well prepared to continue with research in this field, either within industry or at PhD level within academia.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UKs leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website



Read less
The MSc in Corrosion Control Engineering provides you with a thorough training in corrosion and its control. Initially, you will study the fundamental chemistry, physics, and metallurgy underpinning corrosion processes. Read more
The MSc in Corrosion Control Engineering provides you with a thorough training in corrosion and its control. Initially, you will study the fundamental chemistry, physics, and metallurgy underpinning corrosion processes. Subsequently, you will learn about approaches to corrosion control, ranging from material selection, through cathodic protection, to corrosion inhibition and protective coatings. Finally, you will cover industrial scenarios where knowledge of corrosion and its control is paramount, e.g. oil production. This MSc is the ideal preparation for a career either in industry as a corrosion scientist or engineer, or for cutting-edge academic research.

Aims of the course:
-To produce competent, professionally qualified graduates who are appropriately trained and will secure immediate, rewarding and useful employment in UK, European or overseas industries as corrosion scientists or engineers.
-To provide conversion training, which is intellectually challenging, as well as being industrially relevant.
-To satisfy the needs of practising engineers, scientists and technologists wishing to develop professional competence in the areas of corrosion and corrosion control methods.

Special features

Embarking upon the Corrosion Control Engineering MSc gives you direct access to the knowledge, skills and expertise of 10 leading academics in the field of corrosion. They will teach you the fundamentals of corrosion, and provide you with insight into cutting-edge corrosion engineering problems and solutions in their specialist fields. Latterly, you will work more closely with one of these academics, becoming an active member of their research group during your dissertation project. Further to the teaching by academics, eminent guest speakers from industry are a key feature of the course, delivering invaluable first-hand practical knowledge and case studies.

Coursework and assessment

Unit 1 is assessed by an in-sessional exam at the end of the Unit. Units 2-6 are examined by both exam (75%) and coursework (25%). The nature of the coursework differs from Unit to Unit, but is largely a mix of laboratory reports and case studies. As regards the research project, the mark for this section of the course is based upon the independent assessment of two academics.

Career opportunities

Opportunities for our graduates are wide ranging, with the majority of graduates going on to fill key posts as corrosion scientists, engineers, managers, and consultants in industry, or proceeding towards a career in academia. Our graduates are highly sought after and employed across a diverse range of sectors such as oil and gas, nuclear, energy production, and manufacturing. Leading industrial players target our students, with many going on to develop their careers in world renowned companies, e.g. Shell, Rolls Royce, Tata Steel, and BP.

Accrediting organisations

The MSc in Corrosion Control Engineering is accredited by the Institute of Materials Minerals and Mining (IoM3).

Read less
The research degrees in corrosion and protection benefit from one of the world's largest academic based activities dedicated to corrosion and its control. Read more
The research degrees in corrosion and protection benefit from one of the world's largest academic based activities dedicated to corrosion and its control. We work closely with the world's leading companies, consultancies and industrial research groups to create a forward-looking and strategic research activity.

Industry driven

Corrosion science and technology are key to the development of new materials and innovative production processes for use in industries driven by the need to improve their capital productivity, operational reliability, efficiency, performance and health and safety of the world's physical assets.

Our industry-driven, fundamental and strategic research is organised into four overlapping themes: corrosion mechanisms, prediction and control; environmental degradation and protection by coatings; high-temperature protection; performance of light alloys.

Facilities

To underpin the research and teaching activities, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Read less
This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry. Read more

This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry.

You’ll study modules covering core topics related to the downstream activities of the industry including drilling and production technology, oilfield chemistry and corrosion, and chemical reaction processes. You’ll also have the option to take modules in topics such as separation processes, process optimisation and control, and multi-scale modelling and simulation.

Practical work supports your lectures and seminars, as you split your time between the lab and the classroom. You’ll also undertake a major research project investigating a specific topic in petroleum production engineering, which could relate to your own interests or career intentions. Taught by experts in our world-class facilities, you’ll gain the knowledge and skills to thrive in a challenging and exciting industry.You’ll benefit from the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of chemical and process engineering. We have facilities for characterising particulate systems for a wide range of technological materials, as well as facilities for fuel characterisation, environmental monitoring and pollution control. In our Energy Building, you’ll find an engine testing fuel evaluation and transport emissions suite and other characterisation equipment.

Accreditation

We are seeking accreditation from the Energy Institute.

Course content

Most of the course revolves around core modules, giving you a range of knowledge relating to different aspects of downstream petroleum production processes. These will include chemical reaction processes, drilling and production technologies and oilfield chemistry and corrosion.

You’ll look at the principles of process performance analysis, refining theory, enhanced oil recovery, chemicals used in corrosion control and strategies for new or mature assets. On top of this, you’ll take an optional module that allows you to develop your knowledge in an area that suits your own interests.

In the summer months you’ll undertake a research project, which will demonstrate the skills you’ve gained and may even be linked to your future career plans.

Want to find out more about your modules?

Take a look at the Petroleum Production Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits
  • Chemical Reaction Processes 15 credits
  • Fuel Processing 15 credits
  • Advanced Drilling and Production Technology 15 credits
  • Drilling and Production Technology 30 credits
  • Unconventional Oil and Gas Reservoirs 15 credits

Optional modules

  • Separation Processes 30 credits
  • Multi-Scale Modelling and Simulation 30 credits
  • Rock Mechanics 15 credits
  • Petroleum Reservoir Engineering 15 credits

For more information on typical modules, read Petroleum Production Engineering MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Examples of project topics would include:

  • Enhancement of mechanical strength and corrosion inhibition in oil pipelines
  • Reducing oil pipeline scaling using nano-particle seeding agents
  • Monitoring pipeline flows using electrical resistance tomography (ERT)
  • The application of nano-technology in enhancing oil recovery
  • Application of polymer-based nano-particles in absorbing and controlling oil spillages
  • Tribo-electrostatic beneficiation of oil shale using a powder dispersal system

A proportion of research projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

The programme’s main focus is on downstream petroleum industry activities such as drilling, production, refining and distribution.

With an MSc degree in Petroleum Production Engineering you could expect to pursue a successful career in the oil and gas industries in a wide range of areas as diverse as field engineering, production drilling engineering, pipeline and transportation logistics, refinery operations and management, refinery control and optimisation, and sales and marketing.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Offered as part of the. Continuing Professional Development. (CPD) programme. Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials. Read more

Offered as part of the Continuing Professional Development (CPD) programme.

Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials.

The modules cover metals, polymers, ceramics, composites, nanomaterials, bonding, surfaces, corrosion, fracture, fatigue, analytical techniques and general research methods. Each module is followed by an open book assessment of approximately 120 hours.

There is also a materials-based research project, which is made up of the Research Project Planning and the Project modules.

The MSc in Advanced Materials is accredited by the Institute of Materials, Minerals and Mining (IOM3) and by the Institution of Mechanical Engineers (IMechE) when a Project is undertaken.

Programme structure

This programme is studied full-time over one academic year and part-time over five academic years. It consists of eight taught modules and a compulsory Project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

  • To provide students with a broad knowledge of the manufacture, characterisation and properties of advanced materials
  • To address issues of sustainability such as degradation and recycling
  • To equip graduate scientists and engineers with specific expertise in the selection and use of materials for industry
  • To enable students to prepare, plan, execute and report an original piece of research
  • To develop a deeper understanding of a materials topic which is of particular interest (full-time students) or relevance to their work in industry (part-time students) by a project based or independent study based thesis

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The different major classes of advanced materials
  • Routes for manufacturing and processing of advanced materials
  • Characterisation techniques for analysing bonding and microstructure
  • Mechanical, chemical and physical properties of advanced materials
  • Processing -microstructure - property relationships of advanced materials
  • Material selection and use
  • Appropriate mathematical methods

Intellectual / cognitive skills

  • Reason systematically about the behaviour of materials
  • Select materials for an application
  • Predict material properties
  • Understand mathematical relationships relating to material properties
  • Plan experiments, interpret experimental data and discuss experimental results in the context of present understanding in the field

Professional practical skills

  • Research information to develop ideas and understanding
  • Develop an understanding of, and competence, in using laboratory equipment and instrumentation
  • Apply mathematical methods, as appropriate

Key / transferable skills

  • Use the scientific process to reason through to a sound conclusion
  • Write clear reports
  • Communicate ideas clearly and in an appropriate format
  • Design and carry out experimental work

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The Masters in Subsea Engineering is aimed at engineers who already have some relevant offshore oil and gas experience and high calibre graduates who wish to enhance their employability in the subsea industry. Read more
The Masters in Subsea Engineering is aimed at engineers who already have some relevant offshore oil and gas experience and high calibre graduates who wish to enhance their employability in the subsea industry.

A broad range of topics are covered including well engineering and topside processing facilities as well as the core areas of subsea engineering including: subsea systems, subsea control, pipelines & risers, corrosion and subsea reliability. Current and emerging technologies and their design limitations as applied to deepwater, long tie-back and HP/HT wells are also covered.

This subsea engineering course has been developed and is supported by experienced oil and gas industry professionals using current standards and fundamental engineering practices.

Visit the website https://www.rgu.ac.uk/engineering/engineering-study-options/postgraduate/subsea-engineering

Modules

Each module comprises up to 52 hours of lectures and tutorials. Significant additional private study is expected during each module.

•The Oceans, Operability and Humans in the Ocean
•Wells
•Facilities
•Subsea Systems

Exit Award: PG Cert Subsea Engineering

•Subsea Reliability and Intervention
•Subsea Pipeline and Riser Design
•Materials and Corrosion Science
•Control and Telemetry Systems

Exit Award: PG Dip Subsea Engineering

•Individual Project Report

Award: MSc Subsea Engineering

Placements and accreditation

Course accredited by the Energy Institute

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
The MPhil and PhD programmes in Chemical Engineering attract students from diverse disciplinary backgrounds such as statistics, maths, electrical engineering, chemistry and physics. Read more
The MPhil and PhD programmes in Chemical Engineering attract students from diverse disciplinary backgrounds such as statistics, maths, electrical engineering, chemistry and physics. You may work on multidisciplinary research projects in collaboration with colleagues across the University or from external organisations.

Research in the School of Chemical Engineering and Advanced Materials is cross-disciplinary and our strategy is to ensure that our research groups grow and provide a balanced portfolio of activities for the future. This is achieved in part through MPhil and PhD supervision.

Advanced materials

Every article, instrument, machine or device we use depends for its success upon materials, design and effective production. We work on a wide range of materials topics including:
-New material development
-Optimising of materials processing
-Testing and evaluation at component scale and at high spatial resolution
-Modelling
-Failure analysis

Much of our work relates to materials and processes for renewable energy generation, energy efficiency, carbon capture and storage. We also use biological and bio-inspired processes to develop new functional materials.

The Group Head is Professor Steve Bull, Cookson Group Chair of Materials Engineering – high spatial resolution mechanics. His research focuses on development and testing of compliant and porous materials, and the use of sustainable materials. Professor Bull is the 2013 recipient of the Tribology Silver Medal presented by the Tribology Trust, the top national award in this area.

Electrochemical engineering science

Electrochemical Engineering Science (EES) arose out of the pioneering fuel cell research at Newcastle in the 1960s. We are continuing this research on new catalyst and membrane materials, optimising electrode structures and developing meaningful fuel cell test procedures.

We are investigating electrochemical methods for surface structuring, probing and testing at the micron and nanoscale. More recently, we have been using electrochemical analysis to understand cellular and microbial catalysis and processes.

Applications of our research are in:
-Energy production and storage
-Micro and nanoscale device fabrication
-Medical and health care applications
-Corrosion protection

The Group Head is Professor Sudipta Roy. Professor Roy's research focuses on materials processing, micro/nano structuring and corrosion.

Process intensification

Process intensification is the philosophy that processes can often be made smaller, more efficient and safer using new process technologies and techniques, resulting in order of magnitude reductions in the size of process equipment. This leads to substantial capital cost savings and often a reduction in running costs.

The Group Head is Professor Adam Harvey. Professor Harvey's research focuses on Oscillatory Baffled Reactors (OBRs), biofuel processing and heterogeneous catalysis.

Process modelling and optimisation

Our goal is to attain better insight into process behaviour to achieve improved process and product design and operational performance. The complexity of the challenge arises from the presence of physiochemical interactions, multiple unit operations and multi-scale effects.

Underpinning our activity is the need for improved process and product characterisation through the development and application of process analytical techniques, hybrid statistical and empirical modeling and high throughput technologies for chemical synthesis.

The Group Head is Professor Elaine Martin. Professor Martin's research focuses on Process Analytical Technologies, Statistical and Empirical Process Data Modelling, and Process Performance Monitoring.

Read less
The Department of Materials Engineering offers opportunities for study in the following fields. Read more

Program Overview

The Department of Materials Engineering offers opportunities for study in the following fields: casting and solidification of metals; ceramic processing and properties; refractories; corrosion; composites; high temperature coatings; biomaterials; extractive metallurgy including hydrometallurgy, bio-hydrometallurgy, electrometallurgy, and pyrometallurgy; physical metallurgy; thermo-mechanical processing related to materials production; environmental issues related to materials productions; electronic materials; nanofibers; textile structural composites.

Materials Engineers are experts on the entire life cycle of materials, including recovery of materials from minerals, making engineered materials, manufacturing materials into products, understanding and evaluating materials performance, proper disposal and recycling of materials, and evaluating societal and economic benefits.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Materials Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Registration options: Full-time
- Faculty: Faculty of Applied Science

Research focus

Composites, Microstructure Engineering, Extractive Metallurgy, Solidification, Biomaterials & Ceramics

Research highlights

In our research, we work closely with industry partners internationally. We have faculty with world-renowned expertise in hydrometallurgy, sustainability, nanomaterials, biomaterials and ceramics. Recent research developments in the department are helping to reduce environmental impact in the mining industry and enabling new possibilities in medical treatments. We also have a leading role in MagNet, an initiative that aims to achieve significant reductions in carbon dioxide emissions in the transportation sector. We have a long history of providing excellence in education and offer one of the top-rated materials programs in North America. Graduates of our program are enjoying rewarding careers locally and internationally in a wide range of industries from mining to advanced electronics, health care and aerospace.

Related Study Areas

Biomaterials, Ceramics, Composites, Hydrometallurgy, Microstructure Engineering, Corrosion

Facilities

Research is carried out in both the Frank Forward Building and the Brimacombe Building (AMPEL) on UBC campus.

Read less
What is the Master of Welding Engineering all about?. The Advanced Master is the ideal stepping-stone to a high-level job in the field of welding and joining technology. Read more

What is the Master of Welding Engineering all about?

The Advanced Master is the ideal stepping-stone to a high-level job in the field of welding and joining technology. In many countries, there is a permanent and growing demand for scientists and engineers who are knowledgeable and trained at an academic level in the field of welding engineering.

The programme is indispensable (and obligatory) for engineers seeking to work as Responsible Welding Coordinators. Engineers interested in R&D, quality, design, production, maintenance and particularly welding metallurgy will also find the programme instructive.

Structure

4 Clusters in the programme:

  • Welding processes and equipment
  • Materials and their behaviour during welding
  • Construction and design
  • Fabrication, applications engineering

Degrees and certifications

Upon successful completion of the entire programme (60 ECTS), you will be awarded the degree of MSc in Welding Engineering

Upon successful completion of the course (40 ECTS), you gain access to the International Institute of Welding oral examination. A passing score results in IIW accreditation as a certified International Welding Engineer (IWE) and European Welding Engineer (EWE).

Technology Campus De Nayer, Authorised Training Body

The green KU Leuven Technology Campus De Nayer, near Mechelen, is certified as an Authorised Training Body for International Welding Engineering by the Belgian Welding Association (BVL), which represents the International Institute of Welding (IIW).

Objectives

This advanced master's programme strives to offer students a complete training in the professional niche of Welding Engineering. The programme has the following goals:

  • Guaranteeing a complete accordance with the minimal requirements of the International Institute of Welding as described in its IIW Guideline in document IAB 252r2-14 "Minimum Requirements for the Education, Examination and Qualification for Personnel with Responsibility for Welding Coordination";
  • Provide broad and in-depth knowledge and skills of all kinds of courses related to welding necessary for a welding engineer to function in the current social and economic context. These courses include welding processes, materials science, metallurgy of high and low alloy steels, non-ferrous materials, metallurgy of compounds of heterogenous materials, the prevention of corrosion and abrasion, construction codes, welding standards, design exercises, quality control, production and manufacturing techniques.

To this end, students must acquire sufficient knowledge, skills and abilities in order to:

  • Work as a qualified welding engineer with a sufficient scientific background in welding (i.e. materials science, corrosion and protection, welding processes, standards and codes, quality, workshop lay-outing) to tackle welding-related problems individually or as part of a team.
  • Be well acquainted with legal aspects, business economics, professional ethics and safety.
  • Obtain a professional attitude that demonstrates a clear volition towards technological innovation, creativity and lifelong learning.
  • Use available information sources in a fast and efficient manner (scientific databases, patent databases, norms and codes).

Career Options

This programme opens up a wide spectrum of professional possibilities and exposes you to an extremely varied field of action: petrochemistry, the aviation and aero-space industry, civil construction, assembly plants, the nuclear sector, shipping and logistics, general construction, and more. As a welding engineer, you will carry out a wide range of duties, including research, design, production, maintenance, sales and quality inspection. 

Our graduates find employment in local SMEs, large multinational industrial companies as well as private and public organisations at home and abroad. There is a real need for experts with the capability to conduct research, carry out quality control analyses, and perform inspections, monitoring and certification in the broad field of welding. Some graduates start a career as independent consultants. 



Read less
The future exploration and development of Oil and Gas will increasingly move towards offshore drilling and production. This will involve drilling and production rigs, vessels and infrastructure. Read more
The future exploration and development of Oil and Gas will increasingly move towards offshore drilling and production. This will involve drilling and production rigs, vessels and infrastructure.

Offshore Oil and Gas Engineering activity is increasing all around the world and graduates from this course will have a particular focus on operations in the ocean, processing, pipelines, subsea systems, materials and corrosion. This course is particularly designed for those wishing to move into the Oil and Gas Industry who may not have previous detailed oil and gas knowledge or industry experience.

Another related complementary course is our MSc Oil and Gas Engineering which has more focus in stage 2 on well completions, project management, risk and the environment. An advantage of these two courses is that they are designed to have the same first four stage 1 modules introducing the Oil and Gas industry so that students, having gained more understanding of the industry, can compare the courses and swap between courses during stage 1, as they decide which course they would prefer to follow in stage 2. This flexible approach offers students the advantage of more choice during their study.

Each module comprises up to 52 hours of lectures and tutorials. Significant additional private study is expected during each module.

Visit the website https://www.rgu.ac.uk/engineering/study-options/postgraduate/offshore-oil-and-gas-engineering-masters

Stage 1

• Subsurface
• Wells
• Facilities
• Business Essentials

Exit award: PgCert Oil and Gas Engineering

Stage 2

• Materials and Corrosion
• Processing and Pipelines
• Oceans, Operability & Humans in the Ocean
• Subsea Systems

Exit award: PgDip Offshore Oil and Gas Engineering

Stage 3

• Individual Project Report

Award: MSc Offshore Oil and Gas Engineering

Placements and accreditations

This course is not yet accredited with any Institute. However, we will be seeking accreditation from the Energy Institute once a full cohort of students has completed the course.

Careers

This course provides the knowledge required for a range of professional careers within the offshore oil and gas industry.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures. Read more
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures.

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules and dissertation
-Advanced structural analysis and stability (20 credits)
-Finite element methods (15 credits)
-Dynamics of structures (15 credits)
-Structural reliability and risk (10 credits)
-Design of concrete structures (15 credits)
-Design of steel and composite structures (15 credits)
-Dissertation for MSc degree (Research Skills and Individual Project) (60 credits)

Elective modules - you will be able to study two of the following elective modules:
-Earthquake analysis of structures (15 credits)
-Analysis of steel and concrete structures for blast and fire exposure (15 credits)
-Bridge engineering (15 credits)

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2014 have moved on to jobs and further study working within the following organisations:
-WSP Consultant Engineers
-Tully De'Ath Consultant Civil and Structural Engineers
-SSA Consulting Engineers
-Bradbrook Consulting
-Clarke Nicholls Marcel

Read less
This is a unique course relevant for those who aspire to competently manage and co-ordinate physical assets to optimum effect. Combining theory with best practice, this Engineering Asset Management course is aimed at engineers and management personnel working in an engineering/operations environment. Read more
This is a unique course relevant for those who aspire to competently manage and co-ordinate physical assets to optimum effect.

Combining theory with best practice, this Engineering Asset Management course is aimed at engineers and management personnel working in an engineering/operations environment. It marks a significant advance in the delivery of specialised professional development, designed to meet the 'real world' needs of industry.

The implementation of asset management practices within an organisation enables it to see tangible benefits such as lower operating costs, longer asset life, improved asset performance, greater reliability, higher safety standards, enhanced environmental support and better informed investment strategies.

See the website https://www.rgu.ac.uk/engineering/study-options/distance-and-flexible-learning/asset-integrity-management

Course detail

Teaching is delivered through the online university virtual learning environment, CampusMoodle. Each module comprises up to 52 hours of lectures and tutorials. Significant additional private study is expected during each module.

Stage 1

•Problem Solving
•Maintenance and Inspection for Asset Integrity
•Introduction to Integrity and Reliability
•Safety, Health, Environment and Risk Assessment

Exit Award: PgCert Asset Integrity Management

Stage 2

•Asset Life Cycle Analysis
•Corrosion Management
•Engineering Project Management
•Integrity and Reliability Management

Exit Award: PgDip Asset Integrity Management

Stage 3

•Individual Project Report

Award: MSc Asset Integrity Management

Accreditation

This course is accredited by the Energy Institute.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
This course provides the knowledge required for a range of professional careers within the oil and gas industry. You will gain an understanding of engineering relevant to upstream oil and gas engineering. Read more
This course provides the knowledge required for a range of professional careers within the oil and gas industry. You will gain an understanding of engineering relevant to upstream oil and gas engineering.

It develops professional levels of skill in key subject areas by building on a foundation of first degree level scientific and mathematical skills. Typical students include new graduates and people working in oil and gas companies, energy companies, national oil companies, engineering firms, and project service companies.

Another related complementary course is our MSc Offshore Oil and Gas Engineering which is aimed at students who wish to work in the Oil and Gas Industry with particular focus on offshore operations such as exploration, drilling and production. An advantage of these two courses is that they are designed to have the same first four stage 1 modules introducing the Oil and Gas industry so that students, having gained more understanding of the industry, can compare the courses and swap between courses during stage 1, as they decide which course they would prefer to follow in stage 2. This flexible approach offers students the advantage of more choice during their study.

Each module comprises up to 52 hours of lectures and tutorials. Significant additional private study is expected during each module.

Visit the website: http://www.rgu.ac.uk/engineering/study-options/postgraduate-taught-full-time/oil-and-gas-engineering

Stage 1

•Subsurface
•Wells
•Facilities
•Business Essentials

Exit award: PgCert Oil and Gas Engineering

Stage 2

•Engineering Project Management
•Environmental Impact and Risk Management
•Materials & Corrosion
•Completions & Subsea Systems

Exit award: PgDip Oil and Gas Engineering

Stage 3

•Individual Project Report

Award: MSc Oil and Gas Engineering

Accreditation

This course is accredited by the Energy Institute for Further Learning at Masters Level.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
Student research degrees in Metallic Materials are based within a vibrant research group, which is one of the largest in the UK. The research encompasses all aspects of metals alloys and composites, including their design, processing, forming, joining and performance. Read more
Student research degrees in Metallic Materials are based within a vibrant research group, which is one of the largest in the UK. The research encompasses all aspects of metals alloys and composites, including their design, processing, forming, joining and performance.

Research Focus

The research extends from fundamental science, and the `blue skies' development of novel technologies and techniques, to the very applied, with the aim of improving our understanding of the basic governing principles, process simulation and physical modelling. While our research is broad ranging, we focus on light alloys for aerospace and transport applications, high-temperature materials for aeroengines and power generation, and metal composites, as well as the failure of metallic materials, their environmental degradation and surface treatment. The research is supported by state of the art equipment for materials characterisation, testing, simulation and processing.

Examples of recent student PhD projects include; Microstructure Modelling for Friction Stir Welding, Laser Surface treatment of Aerospace Alloys, Advanced Strain Mapping for Structural Integrity application, Dynamic Grain Growth in Super Plastic Forming, Dynamics and Morphology of Stress Corrosion Cracking Using 3D X-ray Tomography, and Laser Depositioning of Nickel Base Superalloys.

Industry links

We have strong links with industry and the funding councils and sponsorship from global companies, including; Airbus, Alcan, Alcoa, British Energy, Rolls Royce, BNF and Jaguar. Major initiatives include the £6M EPSRC-Manchester Portfolio Partnership in Light Alloys for Environmentally Sustainable Transport and the Materials Performance Centre, a research alliance established with Nexia Solutions (supported by the NDA) in 2002, and partnered with British Energy, Serco Assurance, EDF and Westinghouse.

Facilities

To underpin the research and teaching activities, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Read less
Student research degrees in Metallic Materials are based within a vibrant research group, which is one of the largest in the UK. The research encompasses all aspects of metals alloys and composites, including their design, processing, forming, joining and performance. Read more
Student research degrees in Metallic Materials are based within a vibrant research group, which is one of the largest in the UK. The research encompasses all aspects of metals alloys and composites, including their design, processing, forming, joining and performance.

Research Focus

The research extends from fundamental science, and the `blue skies' development of novel technologies and techniques, to the very applied, with the aim of improving our understanding of the basic governing principles, process simulation and physical modelling. While our research is broad ranging, we focus on light alloys for aerospace and transport applications, high-temperature materials for aeroengines and power generation, and metal composites, as well as the failure of metallic materials, their environmental degradation and surface treatment. The research is supported by state of the art equipment for materials characterisation, testing, simulation and processing.

Examples of recent student PhD projects include; Microstructure Modelling for Friction Stir Welding, Laser Surface treatment of Aerospace Alloys, Advanced Strain Mapping for Structural Integrity application, Dynamic Grain Growth in Super Plastic Forming, Dynamics and Morphology of Stress Corrosion Cracking Using 3D X-ray Tomography, and Laser Depositioning of Nickel Base Superalloys.

Industry links

We have strong links with industry and the funding councils and sponsorship from global companies, including; Airbus, Alcan, Alcoa, British Energy, Rolls Royce, BNF and Jaguar. Major initiatives include the £6M EPSRC-Manchester Portfolio Partnership in Light Alloys for Environmentally Sustainable Transport and the Materials Performance Centre, a research alliance established with Nexia Solutions (supported by the NDA) in 2002, and partnered with British Energy, Serco Assurance, EDF and Westinghouse.

Facilities

To underpin the research and teaching activities, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Read less

Show 10 15 30 per page



Cookie Policy    X