• University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Bradford Featured Masters Courses
University of Strathclyde Featured Masters Courses
University of Leeds Featured Masters Courses
"conventional" AND "energ…×
0 miles

Masters Degrees (Conventional Energy)

  • "conventional" AND "energy" ×
  • clear all
Showing 1 to 15 of 36
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Power Engineering and Sustainable Energy at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Power Engineering and Sustainable Energy at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The Master's course in Power Engineering and Sustainable Energy places strong emphasis on state-of-the-art semiconductor devices and technologies, advanced power electronics and drives, and advanced power systems. The Power Engineering and Sustainable Energy course also covers conventional and renewable energy generation technologies. Exciting new developments such as wide band gap electronics, energy harvesting, solar cells and biofuels are discussed and recent developments in power electronics are highlighted.

Key Features of MSc in Power Engineering and Sustainable Energy

The College of Engineering has an international reputation for electrical and electronics research for energy and advanced semiconductor materials and devices.

Greenhouse gas emission and, consequently, global warming are threatening the global economy and world as we know it. A non-rational use of electrical energy largely contributes to these.

Sustainable energy generation and utilisation is a vital industry in today’s energy thirsty world. Energy generation and conversion, in the most efficient way possible, is the key to reducing carbon emissions. It is an essential element of novel energy power generation system and future transportation systems. The core of an energy conversion system is the power electronics converter which in one hand ensures the maximum power capture from any energy source and on another hand controls the power quality delivered to grid. Therefore the converter parameters such as efficiency, reliability and costs are directly affecting the performance of an energy system.

Transmission and distribution systems will encounter many challenges in the near future. Decentralisation of generation and storage systems has emerged as a promising solution. Consequently, in the near future, a power grid will no longer be a mono-directional energy flow system but a bi-directional one, requiring a much more complex management.

The MSc in Power Engineering and Sustainable Energy is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Power Engineering and Sustainable Energy students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Power Engineering and Sustainable Energy scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Power Engineering and Sustainable Energy course can vary each year but you could expect to study:

Advanced Power Electronics and Drives
Power Semiconductor Devices
Advanced Power Systems
Energy and Power Engineering Laboratory
Power Generation Systems
Modern Control Systems
Wide Band-Gap Electronics
Environmental Analysis and Legislation
Communication Skills for Research Engineers
Optimisation

Facilities

The new home of MSc in Power Engineering and Sustainable Energy is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Our new WOLFSON Foundation funded Power Electronics and Power System (PEPS) laboratory well-appointed with the state-of the-art equipment supports student research projects.

Careers

Employment in growing renewable energy sector, power electronic and semiconductor sector, electric/hybrid vehicle industry.

The MSc Power Engineering and Sustainable Energy is for graduates who may want to extend their technical knowledge and for professional applicants be provided with fast-track career development. This MSc addresses the skills shortage within the power electronics for renewable energy sector.

Links with industry

BT, Siemens, Plessey, GE Lighting, Schlumberger, Cogsys, Morganite, Newbridge Networks, Alstom, City Technology, BNR Europe, Philips, SWALEC, DERA, BTG, X-Fab, ZETEX Diodes, IQE, IBM, TSMC, IR, Toyota, Hitachi.

As a student on the MSc Power Engineering and Sustainable Energy course, you will learn about numerical simulation techniques and have the opportunity to visit electronics industries with links to Swansea.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.

Read less
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Read more
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Process engineering, for example, with such fields as environmental- and energy engineering, is now seen as one of the key disciplines. It deals with the engineering required for a wide range of processes and the transformation of materials, in which raw materials are converted in a series of unit operations into salable intermediate and final products.

One focus of training within the discipline relates to the development and application of various environmental and energy technologies. Both environmental- and energy engineering are classified as green technologies, which have developed at an above-average rate in the last few years. That is due to growing social awareness for sustainability and the finite nature of our resources on the one hand and legal constraints on the other. The latter in particular call for innovative processes and technologies in response to today’s challenges. The Master program in Environmental, Process & Energy Engineering is designed to communicate the knowledge, methodology and problem-solving competence needed to tackle a very wide range of engineering problems in the above mentioned fields. With its commitment to bridge-building between the academic and the business worlds, Management Center Innsbruck also provides essential teaching in the increasingly important horizontal disciplines of law and economics, and the skills needed for today’s labor market.

Major Energy Engineering

In the light of dwindling energy resources and volatile energy prices, energy engineering has become an integral economic factor with enormous potential for growth, especially in such fields as energy generation from non-fossil primary energy sources, energy distribution and energy savings. MCI graduates with a specialization in Energy Engineering typically deal with a wide variety of processes, from conventional power plant engineering to the conversion of energy carriers and their various precursors, and decentral energy supply systems. The major in Energy Engineering caters for these market requirements by communicating the relevant knowledge and skills with a combination of in-depth teaching and practical applicability.

Given their interdisciplinary training and the program’s strong practical orientation, graduates are particularly well qualified to work as engineers at the interface with business and management with special reference to the following areas:

Energy trading, energy management & natural resources
Renewable energies
Glass industry
Oil industry
Consulting engineers, consulting & engineering
Paper and paper products
Chemicals
Gas and heating supply industries

Read less
Electrical energy networks and the methods by which electrical energy is generated are changing. Generating resources are being connected to the distribution network rather than the transmission network. Read more

Overview

Electrical energy networks and the methods by which electrical energy is generated are changing. Generating resources are being connected to the distribution network rather than the transmission network. These distributed resources include renewables and conventional thermal plant. The techniques used to generate electrical power are also changing. This includes increased renewable generation, primarily from wind resources, and embedded generation which includes co-generating (thermal and electrical) plant. The integration of distributed generation within existing networks causes particular problems in the control of power flow, power quality and protection. Also exploiting renewable resources requires novel and innovative engineering.

Graduates of this course will develop critical understanding of the significant changes electrical energy networks and the methods of electrical generation are currently, and for the foreseeable future, engaged in and the implications of these changes. This course will develop graduates of a calibre capable of developing and implementing creative solutions to the problems encountered in renewable energy and distributed generation and the supply of electrical energy in general.

See website http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-and-distributed-generation/

- Scholarship Opportunity
Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. These will be spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Core courses
- Foundations of Energy
- Electrical Power Systems
- Renewable Energy Technologies
- Research Methods Critical Analysis and Project Planning
- Distributed Generation
- Project Phase 1
- Renewable Generation and Conversion
- Demand Management and Energy Storage
- MSc Project

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-and-distributed-generation/

Find out how to apply here http://www.hw.ac.uk/student-life/how-to-apply/postgraduate.htm

Read less
This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy ystems, giving you a good understanding of the latest developments and techniques within the electrical power industry. Read more
This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy ystems, giving you a good understanding of the latest developments and techniques within the electrical power industry.

Course details

The programme is centred around three major themes:
-Electrical power networks with emphasis on conventional networks, smart grids, high voltage direct current transmission and asset management of network infrastructure
-Renewable energies with emphasis on wind and solar power
-Power electronics with emphasis on power electronic convertors in converting and controlling power flows in electrical networks and renewable energy systems#

What you study

For the postgraduate diploma (PgDip) award you must successfully complete 120 credits of taught modules.

For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Core modules
-Asset Management
-Emerging Transmission Systems
-Power Electronics
-Practical Health and Safety Skills
-Project Management and Enterprise
-Renewable Energy Conversion Systems
-Research and Study Skills
-Smart Power Distribution

MSc only
-Major Project

Modules offered may vary.

Teaching

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

As an electrical power and energy systems engineer you can be involved in designing, constructing, commissioning and lifecycle maintenance of complex energy production, conversion and distribution systems.

Your work could include energy storage systems, management and efficient use of energy in building, manufacturing and processing systems. You could also be involved in work relating to the environmental and economic impact of energy usage.

Examples of the types of jobs you could be doing include:
-Designing new electrical transmission and distribution systems
-Managing maintenance and repair
-Managing operations of existing systems
-Managing operations of a wind turbine farm
-Analysing the efficiency of hydroelectric power systems
-Evaluating the economic viability of new solar power installations
-Assessing the environmental impact of energy systems

Read less
Renewable Energy is major area of economic growth and policy relevance in the UK and internationally. Developed in co-operation with industry, this programme is designed to provide students with the specific skills and knowledge to work in the renewables sector. Read more
Renewable Energy is major area of economic growth and policy relevance in the UK and internationally. Developed in co-operation with industry, this programme is designed to provide students with the specific skills and knowledge to work in the renewables sector. There is a strong industrial component, including site visits and guest speakers from industry allowing students to focus closely on skills and knowledge specifically relevant to the renewable energy industry.

Industry placements and bursaries are available competitively to support successful students’ dissertation research.

Core Modules

Principles of Renewable Energy
Applied Renewable Energy
Principles of GIS
Research Design
Professional Development Project
Dissertation

Option Modules

Environmental Management & Policy
Sustainable Waste Management
Energy Generation from Conventional and Renewable Fuels
Renewable Energy Technologies for Buildings


Designed for employment in the renewable energy sector:
Resource analysis
Project Management
Also suitable for research and/or consultancy Government agencies
Or as preparation for a PhD

OPEN DAYS
We are having open days on

Saturday the 21st of November

Read less
Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems. Read more
Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems.

You’ll study core power engineering topics such as power electronic converters, machines and control alongside modules specific to renewable energy sources, on topics like power system modelling, analysis and power converters.

At the same time, you’ll study a unique set of modules on the efficient generation of electricity from solar and wind power, as well as integrating renewable generators into micro-grids, with stability analysis and active power management. Power electronics design is covered in depth, including conventional and emerging converter topologies and advances in semiconductor power devices.

You’ll be prepared to meet the renewable energy challenges of the 21st century in a wide range of careers.

Read less
The Renewable Energy (Resource Management) programme is focused on the rapidly expanding bio-renewable energy sector. Using subject specialist modules will provide students with the key knowledge and skills for employment in these specific sectors. Read more
The Renewable Energy (Resource Management) programme is focused on the rapidly expanding bio-renewable energy sector. Using subject specialist modules will provide students with the key knowledge and skills for employment in these specific sectors. Keys skills in the design and implementation of a research project will be developed in the Research Design module in the second semester. This module leads up to the development of a research proposal for the final part of the course: the Research Project. A key feature of these programmes is the wide range of projects offered by practitioners and stakeholders, leading the student into the professional world.

Industry placements and bursaries are available competitively to support successful students’ dissertation research.

Core Modules

Principles of Renewable Energy
Principles of GIS
Research Design
Dissertation
Environmental Management & Policy
Sustainable Waste Management
Energy Generation from Conventional and Renewable Fuels



Designed for employment in the bio-renewable energy sector:
Resource analysis
Project Management
Also suitable for research and/or consultancy Government agencies
Or as preparation for a PhD

OPEN DAYS
We are having an open day on

Saturday the 21st of November

Read less
The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. Read more

Mission and Goals

The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. This special programme aims to prepare technicians capable of following and actively directing technological advances, operating effectively in a competitive and multi-disciplinary industrial context.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Career Opportunities

Graduates find employment in numerous industrial sectors, including industries producing and distributing energy, thermal, thermal-electric, air-conditioning and refrigeration plant design and management companies, energy management in companies or bodies with production objectives which may be far-removed energy. A Master of Science Engineer has openings in research and development as well as in activities related to the feasibility study and design of large-scale plant, innovative processes and development of technologically advanced machines and components.

For the academic year 2014-2015 prospective students with a university qualification obtained abroad can apply only for the 1st semester. This study course does not accept applications for the 2nd semester.
Applicants are required to take the GRE test (Graduate Record Examination) through ETS DI code 6939 in due time to have test scores sent to Welcome Desk Piacenza (welcome.piacenza(at)polimi.it) within the last day of the application period.

Recommended minimum GRE scores to be achieved for admission:
Verbal Reasoning: 155
Quantitative Reasoning: 155
Analytical Writing: 4.0

Only students with a Degree earned at an Italian University can apply without taking GRE test and they can also apply for admission at the 2nd semester.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_01.pdf
The programme provides a mix of design, operational and management skills, with particular emphasis on system and process engineering related to the production of basic energy carriers (electricity, heat and fuels) under tight environmental constraints. Students will learn how to evaluate and solve engineering issues (thermal, environmental, mechanical, chemical, electrical) raised by energy conversion systems, as well as analyze and assess operational and maintenance issues. Particular attention will be devoted to renewable energy sources, non-conventional energy technologies, emission control, electric systems with distributed power generation, etc. Teaching is organized around 3 core aspects: modeling and simulation tools; interdisciplinary vision; problem-solving approach. The programme is taught in English.

Subjects*

1st year – 1st semester
- Advanced Mathematical methods for energy engineering
- Advanced Thermodynamics and Heat Transfer
- Fundamentals of chemical processes for energy and the environment
1st year – 2nd semester
- Turbomachinery and internal combustion engines
- Energy and environmental technologies for building systems
- Electric conversion of renewable energy sources
- Materials and manufacturing process for energy

2nd year – 1st semester
- Energy systems and low-carbon technologies
- Air pollution and control engineering
- Operation and control of machines for power generation
2nd year – 2nd semester
- Bio-energy and waste-to-energy technologies
- Smart grids and regulation for renewable energy sources
- Major independent project work

* The list and titles of the courses to be followed is undergoing a revision aimed at enhancing the focus of the programme on the connection between Energy and the Environment. This will entail a reduction of the credits devoted to manufacturing, operation and control of machines and an increase of the credits devoted to optimization methods, renewable energy, industrial ecology. The final list of courses to be taken for the Academic Year 2016-17 will be available in January 2016.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This programme aims to provide you with a sound understanding of Advanced Mechanical Engineering principles and the ability to undertake teamwork and communicate ideas. Read more
This programme aims to provide you with a sound understanding of Advanced Mechanical Engineering principles and the ability to undertake teamwork and communicate ideas.

The core modules studied on the programme will develop your understanding and knowledge of the principles of Advanced Mechanical Engineering to an advanced level. They include specialist knowledge in thermo and fluid dynamics, combustion in IC engines, alternative and conventional energy generation methods and nuclear engineering. You will be taught techniques for managing projects and research, giving you highly desirable skills for working in industry.

This programme aligns with the current accredited Undergraduate integrated Masters MEng 4th year in Mechanical Engineering with co-taught M level modules from the existing programme organised in two 12-week semesters with examinations at the end of each semester worth 120 credits from a total of 180. This is then combined with an MSc advanced research project over the summer term worth the remaining 60 credits.

Projects

Project work which contributes 60 credits, will be based on a topic of industrial or scientific relevance, and will be carried out in laboratories in the University or at an approved placement in industry. The project is examined by dissertation, and award of the MSc (Eng) degree will require evidence of in-depth understanding, mastery of research techniques, ability to analyse assembled data, and assessment of outcomes.

Why School of Engineering?

In the Research Excellence Framework 2014, our research was ranked 5th in UK for 4* and 3* research (world leading and internationally excellent research)

Our teaching programmes are also highly rated and this is underpinned by an extensive programme of research.

Outstanding facilities

The School of Engineering has a welldeserved and highly respected reputation for its excellent experimental and computational facilities. Our £32 million redevelopment includes the state-of-theart ‘Active Learning Labs’, a cutting-edge teaching facility, one of the largest and best equipped in Europe. We have two research-standard full motion flight simulators (one of which is unique in the academic world), mechanical robotics, wind turbines, water flumes, additive layer manufacturing and many more facilities.

Career prospects

We equip our students for rewarding careers and our graduates have found jobs in a wide range of industries and organisations, both in the UK and abroad.

Programmes include a strong practical element and incorporate the latest academic and industry research, enabling you to work effectively at the forefront of engineering.

When you graduate you can count on the University's Careers and Employability Service to help you plan your future.

Employers

We've consistently achieved the highest grades in research assessments and many of our research programmes are supported by industrial companies such:-

- Agusta Westland
- Airbus
- BAE Systems
- QinetiQ
- Unilever
- Jaguar
- Ford
- National and international bodies such as EPSRC and the European Commission.

Read less
This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Read more

Course Description

This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Our strategic links with industry ensures that all the materials taught on the course are relevant, timely and meets the needs of organisations competing within the sector. This industry-led education makes our graduates some of the most desirable the world for energy companies to recruit.

In the foreseeable future, hydrocarbon (oil and gas) will still be the major energy source irrespective of the developments in renewable and nuclear energy. The term ‘flow assurance’ was coined by Petrobras in the early 1990s meaning literally “guarantee of flow.” It covers all methods to ensure the safe and efficient delivery of hydrocarbons from the well to the collection facilities. It is a multi-disciplinary activity involving a number of engineering disciplines including mechanical, chemical, process, control, instrumentation and software engineering.

Previously uneconomical fields are now being exploited - oil and gas are produced in hostile environments from deep water to the Arctic. As conventional oil reserves decline, companies are developing unconventional oil fields with complex fluid properties. All of these factors mean that flow assurance plays an increasingly important role in the oil and gas industry.

Course overview

The MSc in Flow Assurance for Oil and Gas Production is made up of nine compulsory taught modules (eight compulsory and one optional from a selection of three), a group project and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Develop a professional ability to undertake a critical appraisal of technical and/or commercial literature.
- Demonstrate an ability to manage research studies, and plan and execute projects in the area of oil and gas production technology and flow assurance.
- Use of the techniques appropriate for the management of a oil and gas production and transport systems.
- Gain an in-depth understanding of the technical, economic and environmental issues involved in the design and operation of oil and gas production and transport systems.

Group project

The group project runs between February and April and is designed to give students invaluable experience of delivering a project within an industry structured team. The project is sponsored by industrial partners who provide particular problems linked to their plant operations. Projects generally require the group to provide a solution to the operational problem. This group project is shared across the Process Systems Engineering MSc, Flow Assurance MSc and Carbon Capture and Transport MSc, giving the added benefit of gaining new insights, ways of thinking, experience and skills from students with other backgrounds.

During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. All groups submit a written report and deliver a presentation to the industry partner. Part-time students will take an additional elective module instead of the group project.

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Recent Group Projects include:

- Waste water treatment process design
- A new operation mode design for a gas processing plant.

Individual Project

The individual research project allows students to delve deeper into a specific area of interest. Our industrial partners often put forward practical problems or areas of development as potential research topics. For part-time students, their research project is usually undertaken in collaboration with their place of work. The individual project takes place from April/May to August.

Recent Individual Research Projects include:

- Separation – from Subsea to Topside
- Evaluation of Multiphase Flow Metering
- Multiphase Jet Pumps
- Sand Transport in Undulating Terrains.

Modules

The taught programme for the Flow Assurance masters is generally delivered from October to March and is comprised of eight compulsory modules, and one optional module to select from a choice of four. The modules are delivered over one to two weeks of intensive delivery with the later part of the module being free from structured teaching to allow time for more independent learning and reflection. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Core -

Management for Technology
Risk Management and Reliability Engineering
Pumps and Pumping Systems
Process Plant Operations
Advanced Control Systems
Introduction to Flow Assurance
Multiphase Flows
Multiphase Flows
Production Technology and Chemistry

Optional -

Process Measurement Systems
Process Design and Simulation
Computational Fluid Dynamics
Structural Integrity

Assessment

Taught modules: 40%; Group project: 20% (dissertation for part-time students); Individual Research Project: 40%.
The taught modules are assessed by an examination and/or assignment. The Group Project is assessed by a written technical report and oral presentations. The Individual Research Project is assessed by a written thesis and oral presentation.

Funding

Bursaries are available; please contact the Course Director for more information.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

There is considerable global demand in the oil and gas industry for flow assurance specialists with in-depth technical knowledge and practical skills. The industry led education makes our graduates some of the most desirable for recruitment in this sector. The depth and breadth of the course equips graduates with knowledge and skills to tackle one of the most demanding challenges to secure our energy resource. Graduates of the course can also be recruited in other upstream and downstream positions. Their knowledge can additionally be applied to the petrochemical, process and power industries.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/flow-assurance-for-oil-and-gas-production.html

Read less
The course covers a combination of the technical skills and management knowledge essential in the development of innovative solutions to complex technical business problems. Read more
The course covers a combination of the technical skills and management knowledge essential in the development of innovative solutions to complex technical business problems.

This course will provide you with a thorough understanding of:
- leading technological and engineering projects;
- managing teams, engineering functions and organisations;
- developing new products and services;
- designing and managing the supply chain; and
- the economic aspects and decision-making processes of engineering projects; and electromechanical systems.

The course will offer you the opportunity to acquire and develop the skills and tools necessary to progress to management positions within an organisation. It will also build on your existing technical knowledge, relating it to the management aspects of the course by means of case studies and projects. The course balances academic theory with practical opportunities to demonstrate engineering management capabilities, and deliver solutions to real problems through assignments and projects.

See the website http://www.lsbu.ac.uk/courses/course-finder/masters-engineering-management

Modules

- Technology evaluation and commercialisation
In this module you'll deploy an algorithmic model to evaluate the business opportunity that can be created from a technology's unique advantages. You'll be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you'll conduct detailed research and analysis in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Through the module you'll develop the appropriate commercialisation strategy and write the business plan for your high-tech start-up company.

- Technical, research and professional skills
This module is taught to all our engineering Masters students; it provides training for the skills that are necessary for successful completion of Masters studies, as well as your professional development in the long-term future. More specifically, the module teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment.

- Economic aspects of engineering projects
This module focuses on economic management and viability appraisal. It develops the specific expertise that an engineering manager may need in order to construct and critically examine effective economic arguments. The module will arm you with sound economic assessment techniques and processes, as well as providing you with skills to produce effective economic appraisal documents. You'll critically evaluate the financial risks involved in engineering projects and economic decision-making processes. It will include a special focus on R&D and new technologies projects.

- Electromechanical systems and manufacturing technology
This module covers a broad range of conventional and advanced manufacturing technologies in the context of engineering management. You'll develop your understanding of the strategic significance of high value manufacturing, in terms of new and emerging technologies and the management of associated assets as contributory factors in achieving a sustainable competitive advantage. You'll appreciate the synergistic integration of mechanical engineering, electronic control and systems and understand how they are realised as mechatronics solutions to improve manufacturing processes, effectively manage time, waste and energy thus enhancing the competitive advantage of the business. The themes of globalization, concurrent engineering and related manufacturing strategies are explored through lectures, case studies and a combination of interactive workshop and laboratory sessions.

- Supply chain engineering and operations management
This module explores the concepts and strategies related to supply chain and operations management within an engineering context. It develops your understanding of the issues practising engineers can expect to encounter, so enabling you to make informed strategic decisions with respect to the management of activities associated with the creation of products and services. Whilst exploring these key themes the module will closely examine current, established and emerging procedures and processes related to the effective allocation of resources within a variety of engineering environments. A combination of lectures, workshops and case studies will be used to develop your ability to effectively apply a range of tools and methodologies associated with strategic planning, effective implementation and problem resolution.

- Energy, the environment and product life-cycle
This module is composed of three elements. The first concentrates on energy utilisation and management; the second on environmental issues; and the third on the Product Life Cycle. The module addresses the ethical, economic and socio/cultural changes in the society that will be influenced by (and have an influence on) engineering practice. This module will enhance your ability to think critically about future challenges and will also challenge you to explore alternative strategies and tools to develop new sustainable engineering solutions. This module will cover legislative issues, enabling you to work with current legislation, evaluate and possibly develop appropriate environmental legislation.

- MSc engineering project / dissertation
This module requires you to undertake a major project in an area that is relevant to your Masters course. You'll choose your project and carry it out under the guidance of your supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral examination (viva-voce). The Individual Project carries 60 credits and is a major part of a Masters program.

Methods of assessment

Assessment is through examinations and also practical work and assignments using case studies, group work, research projects and presentations.

Development of practical skills

You'll develop your practical engineering skills through work carried out in laboratories and workshops; in industry through supervised work experience; in individual and group project work; in design work; and in the development and use of computer software in design, analysis and control. Evidence of group working and of participation in a major project is expected.

Overview course structure

The course is based on two semesters per academic year with three modules being delivered and assessed in each semester on the full-time mode. The part-time curriculum consists of the same modules, set out over two years.

Employability

The Master in Engineering Management develops those areas of management that you'll require to progress in a management career, but firmly anchored in an engineering context.

Graduates will possess a unique set of technical and management skills which should make them very attractive to prospective employers, especially in technology or engineering led companies.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Read less
The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. Read more
The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. This wide range of industries includes transport, conventional and renewable power generation.

Degree information

Students study analysis and design of conventional and renewable machinery systems and the use of computers in their advanced engineering analysis. Students gain knowledge of electrical and mechanical engineering principles, quantitative methods, and mathematical and computer modelling alongside an awareness of the codes of practice, standards and quality issues within the modern industrial world. They also take modules in project management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), one optional module (15 credits) and a research project (75 credits).

Core modules
-Power Transmission and Auxiliary Machinery Systems
-Electrical Machines and Power Electronic Drives
-Electrical Power Systems and Electrical Propulsion
-New and Renewable Energy Systems
-Project Management
-Group Project

Optional modules
-Applied Thermodynamics and Turbomachinery
-Vibrations, Acoustics and Control
-Advanced Computer Applications in Engineering

Dissertation/report
All students undertake an independent research project which culminates in a project report and oral presentation. In many cases the work has some input from industry.

Teaching and learning
This dynamic programme is delivered through lectures, tutorials, individual and group projects, practical laboratory work and coursework assignments, (including computational analysis). Assessment is through written, oral and viva voce examinations and coursework (including the evaluation of laboratory reports, technical and project reports, problem-solving exercises, computational and modelling skills and oral presentations).

Careers

The Power Systems Engineering MSc has been accredited by the Engineering Council as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2012 student cohort intake onwards.

Top career destinations for this degree:
-Junior Project Manager, Pinnacle Developments Ltd
-Electrical Engineer, BP
-Traction Power Specialist, Mott MacDonald
-PhD High Power Engineering, University of Leicester
-Power Engineer, General Electric (GE)

Employability
Delivered by leading research and academic staff from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas through cross-fertilisation with collaborating companies and governmental bodies such as BAE Systems, Rolls Royce, Lloyds Register and TfL who provide specialised lectures and are key to our research success. We will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Why study this degree at UCL?

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: EPSRC, EU, Wellcome Trust, the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAe Systems, Cosworth Technology, Ebara, Jaguar Cars, Shell, and BP.

The Power Systems Engineering MSc is accredited under UK-SPEC by the Institution of Mechanical Engineers (IMechE), Institute of Engineering and Technology (IET), and the Institute of Marine Engineering Science and Technology (IMarEST). This programme also constitutes in part the requirement to obtain Chartered Engineering status.

UCL Mechanical Engineering has seen, in recent years, unprecedented activity in refurbishing and re-equipping our laboratories. Highlights of this include an extensive workshop, four engine test cells of the highest specification, a fuel cell laboratory, an electrical power laboratory and a new fluid mechanics laboratory.

Read less
The challenge of responding and adapting to climate change will drive trillions of dollars of new investment over the coming decades, with major changes required across the economy, in energy production and consumption, industry, buildings, transport, infrastructure, forests and agriculture. Read more

Programme description

The challenge of responding and adapting to climate change will drive trillions of dollars of new investment over the coming decades, with major changes required across the economy, in energy production and consumption, industry, buildings, transport, infrastructure, forests and agriculture. Delivering this investment will require greatly enhanced capacity in all aspects of carbon finance.

This programme is the world's first MSc in Carbon Finance, dedicated to professionals in the carbon market and climate change investment field and focussed on the business opportunities and financial flows driven by society's response to climate change.

The syllabus uniquely focuses on the business opportunities and financial flows driven by society’s response to climate change (carbon finance).

The MSc in Carbon Finance will appeal to graduates with significant work experience in business, government or the NGO sector.

Typically students will not have had an opportunity to specialise in climate change but will want to move into a career in the carbon markets or in climate change investment, consulting or carbon accounting.

Likely future roles include carbon credit development, carbon trading, carbon consulting, carbon accounting and related policy or regulatory roles (e.g. with government or NGOs).

This MSc offers an intensive exploration of a subject crucial to the future of business and, of course, the planet itself. Very few business schools in the world have a similar depth of expertise in carbon finance.

Programme structure

Learning will primarily be through lectures, set reading, class discussions, exercises, group-work assignments, problem solving in tutorials and case studies. Assessment methods include examinations, assignments, presentations or continuous assessment.

Learning outcomes

Students who follow this programme will gain an understanding of:

-the current state of climate change science, greenhouse gas stabilization pathways and the principal mitigation and adaptation options
-climate change policy responses at international, regional, national and local levels and the various types of regulatory response available to governments
-the relationship between climate change science, policy, carbon markets and other climate finance and investment
-what carbon finance means and the relationship between carbon finance and conventional finance
-essentials of conventional finance and financing issues in the energy sector in particular
-the structure and dynamics of the major global, regional and national-level carbon markets, including voluntary carbon markets and the flexibility mechanisms of the Kyoto Protocol and its successor agreement(s)
-accounting for carbon at firm, project and product/supply chain level, carbon auditing, financial reporting and non-financial disclosure, benchmarking, taxation implications, and the ethics of carbon accounting
-the use of statistics for financial research
-an appreciation of the role that carbon finance plays in organisations’ strategy, finance and accounting decisions

Read less
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance. Read more
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance.

Course details

The programme of lectures and project work, encompasses a wide range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems. The course is applied in nature and has been designed so that on completion, you are technically well prepared for a career in industry.

Professional accreditation

Our MSc Petroleum Engineering is accredited by the Energy Institute, under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC.

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification, and the earning potential of chartered petroleum engineers can exceed £100,000 a year.

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase the industrial networking opportunities for students.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

You select your master’s research projects from titles suggested by either industry or our academic staff, but you may also, with your supervisor’s agreement, suggest your own titles.

Core modules
-Drill Engineering and Well Completion
-Hydrocarbon Production Engineering
-Material Balance and Recovery Mechanisms
-Petroleum Chemistry
-Petroleum Economics and Simulation
-Petroleum Reservoir Engineering
-Practical Health and Safety Skills
-Research and Study Skills

MSc candidates
-Research Project

Modules offered may vary.

Teaching

The course is delivered using a series of lectures, tutorials and laboratory sessions.

Our MSc Petroleum Engineering is supported by excellent laboratory and engineering machine workshop facilities including fluid flow measurement, computer modelling laboratories, other laboratories and workshops, an excellent library and computing facilities. We have invested around £150,000 in laboratory equipment particularly in within core analysis and enhanced oil recovery.

We have several computer laboratories equipped with specialised and general-purpose software. This generous computing provision gives you extended access to industry-standard software – it allows you to develop skills and techniques using important applications. For upstream processes, Teesside University has access to educational software packages like Petrel, Eclipse, CMG, PIPESIM and Ecrin to simulate the behaviour of oil reservoirs, calculating oil in situ, and oil and gas production optimisation. As for downstream processes, you can use HYSYS to test different scenarios to optimise plant designs.

Facilities include:
Enhanced oil recovery and core analysis laboratory
The flow through porous media, enhanced oil recovery techniques and core analysis is done in the core flooding lab. The lab is equipped with core plugging and trimming, core preparation and conventional core properties measurement equipment. At a higher level, the lab is also equipped to perform some special core analysis measurements such as fluid relative permeabilities as well as rock surface wetting quantification.

Petrophysics laboratory
The petrophysics lab allows you to study the properties of rocks, particularly the measurement of porosity and evaluation of permeability. The lab is equipped with sieve analysis equipment to investigate grain sorting and its effect on permeability and the porosity of rocks. You are able to gauge saturation and fluid flow through porous media.

Surface characterisation laboratory
The rock surface characterisation lab is equipped with a zeta analyser to measure the rock surface electric charge. You study the rock surface wetting state, adsorption and desorption potential using digitised contact angle apparatus and thermos-gravimetric apparatus respectively.

Drilling laboratory
The drilling lab is equipped with mud measurement equipment including mud density, mud rheology and mud filtration systems to enable you to measure mud cake and formation damage. The lab highlights the importance of oilfield drilling fluids.

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

These courses provide specialist education tailored to the requirements of both the upstream and downstream petroleum industry. The relevance of this education combined with careful selection of candidates has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy, with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists.

It is widely recognised that a steady influx of fresh people and ideas is vital for the longer-term success and stability of an organisation, and it is therefore expected that recruitment will continue, especially for those with motivation and the appropriate qualifications.

Read less
The Master's programme in Sustainable Systems Engineering is designed for highly qualified graduate students holding a Bachelor‘s degree in engineering or science. Read more
The Master's programme in Sustainable Systems Engineering is designed for highly qualified graduate students holding a Bachelor‘s degree in engineering or science. It provides an in-depth knowledge in fields such as sustainable materials, energy systems, and resilience. The successful completion of the Master's programme qualifies for a career in research, as well as for head positions in industries of conventional and renewable energy, in supply companies and in energy or transport infrastructure operators.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X