• Swansea University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Surrey Featured Masters Courses
King’s College London Featured Masters Courses
Cass Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"control" AND "system"×
0 miles

Masters Degrees (Control System)

We have 419 Masters Degrees (Control System)

  • "control" AND "system" ×
  • clear all
Showing 1 to 15 of 419
Order by 
Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. Read more

Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. They combine the diverse and rapidly expanding disciplines of automation, control, mechanics, software and signal processing.

This course is ideal if you wish to develop comprehensive knowledge and understanding of • classical and modern control theory • industrial automation • systems analysis • design and simulation • robotics.

You gain the ability to apply principles of modelling, classical and modern control concepts and controller design packages in various areas of industry. You also learn how to design and exploit automation and robotic systems in a range of manufacturing and industrial applications.

The course has six core modules which cover the major aspects of industrial automation and control systems engineering and robotics, ranging from classical linear control system design to non-linear, optimal and intelligent control systems, including distributed control systems, robotics, computer networks and artificial intelligence.

You also choose two optional modules relevant to automation and control to suit your interests. For example, if you wish to work in the manufacturing industry you can choose manufacturing systems or machine vision. There is the opportunity to study one or two management modules if you wish to apply yourself to a more managerial role.

To gain the masters you complete a major research-based project, which can be focused on an area of your particular interest or career need.

You work alongside staff from the Electrical, Electronic and Control Engineering Group and the Centre for Automation and Robotics Research (CARR) at Sheffield Hallam. This provides the opportunity to work with active researchers.

Professional recognition

This course is seeking accreditation by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

Course structure

Core modules

  • industrial automation
  • control of linear systems
  • advanced control methods
  • robotics
  • applicable artificial intelligence

Options

Choose two from

  • software engineering
  • computer networks
  • project and quality management
  • sustainability, energy and environmental management
  • machine vision
  • digital signals processing
  • manufacturing systems
  • mixed signal design
  • electrical energy systems
  • efficient machines and electromagnetic applications.

MSc

  • project and dissertation

Assessment

  • coursework
  • examination
  • presentation
  • MSc project report

Employability

This course provides you with the knowledge and skills for further advanced study in this area.

You can also apply your skills in an industrial setting for automated manufacturing, control system design, or in the wide range of industries that exploit intelligent robotics. Graduates from this course find career opportunities in areas including • automation and control • process and petrochemical • biomedical • manufacturing • energy • automotive • aerospace.

You can also pursue careers in engineering design and development, engineering research, engineering consultancy and engineering management.

Completing this course combined with further work-based experience enables you to gain Chartered Engineer status.



Read less
If you wish to embark on an exciting career in the area of control systems and engineering or are a practising engineer who wishes to update their skills then this is the course for you. Read more
If you wish to embark on an exciting career in the area of control systems and engineering or are a practising engineer who wishes to update their skills then this is the course for you.

This is a challenging course which covers all the major aspects of automatic control systems engineering.

WHY CHOOSE THIS COURSE?

This course covers all the major aspects of automatic control systems engineering, with modules ranging from classical control system design to optimal, adaptive and intelligent control systems, including an introduction to artificial neural networks and evolutionary computing.

This Course has been awarded accreditations from the IET and InstMC.

WHAT WILL I LEARN?

All students study Seven fundamental modules which serve to underpin the remainder of the course:
-Maths & Computing for Control
-Linear Control Engineering
-Digital Computer Control Systems
-Non-Linear Control engineering
-System Identification, Parameter Estimation & Filtering
-Self-Tuning and Adaptive Control
-Control Systems Engineering Project

The remaining Option Topics on the course are:
-Digital Computer Control Systems;
-Simulation of Systems
-Data Acquisition and Embedded Control
-Signal and Image Processing
-Artificial Intelligence for Control
-Single Independent Study

(Students are required to select from the modules above to complete a total of 30 credits.)

In addition, the masters project can be tailored to suit the interests of each individual, and have included in the past: Adaptive model based control of a hot steel rolling mill; Comparison of rule-based and model based control systems; Identification of diesel engine characteristics from operating records and Development of a fuzzy logic gas engine speed controller.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

On completion of this course you can expect to pursue a career in the area of control and systems engineering.

The course also provides the necessary groundwork for a career in research in academia or another such research organisation, including our own Control Theory and Applications Centre (CTAC) and Applied Mathematics Research Group (AMRC).

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
We worked with industry professionals to develop an MSc Applied Instrument and Control programme that is accredited by the Institute of Measurement and Control (InstMC). Read more

We worked with industry professionals to develop an MSc Applied Instrument and Control programme that is accredited by the Institute of Measurement and Control (InstMC). It covers both the latest developments in the field and the industry knowledge we've gained through years of experience.

You'll acquire a specialised skillset and expertise that's highly desirable to employers, making you a competitive candidate for rewarding careers in many industries, with oil and gas pathways available. The programme draws on relevant case studies with real-world implications, so you'll gain practical knowledge that you can apply on the job from day one.

The programme also fulfils the Engineering Council's further learning requirements for registration as a Chartered Engineer.

  • Gain a solid foundation in measurement science and control theory
  • Practise data acquisition and instrument networking
  • Study analysis of systems for condition monitoring
  • Investigate fault detection and control system design
  • Complete a hands-on project in the industry for experiential learning

At GCU, you'll find a welcoming community of people like yourself - hardworking, career-focused individuals with the vision and discipline to pursue meaningful work. We'll help you develop the tools to be successful, in your career and in your life.

We hope you'll use those tools to make a positive impact on your community and contribute to the common good through everything you do.

What you will study

The curriculum has been developed in consultation with industry and can be broadly grouped in three areas: the introduction of new facts and concepts in measurement and control; the application of facts and concepts to real measurement problems and systems; and subjects which are of general importance to the professional engineer, for example safety and safety management and management ethics and project planning.

Students complete eight taught modules - four in trimester A and four in trimester B; and a Masters project in trimester C.The MSc project will be carried out at the student's workplace; this can be in an area relevant to the company's production/maintenance function, thus providing maximum benefit to both the company and the individual.

Control Systems

Consolidates advanced classical and modern control design techniques emphasising the practical considerations in applying control design in an industrial environment. The appropriateness and difficulties encountered in applying various design techniques in practice will be explored. In particular system sensitivity, robustness and nonlinearity will be studied.

Data Acquisition and Analysis

Develops the ability to evaluate, in a given situation, the most appropriate strategy for acquiring data and understand the merits of this strategy with respect to other approaches. A range of modern time and frequency domain analysis techniques will also be discussed.

Industrial Case Studies

Following on from the foundation in measurement and instrumentation provided by the Measurement Theory and Devices module, students will now be equipped to study in depth instrumentation in industrial processes. This module will cover aspects of designing sensor systems for industrial measurements, instrument control, system troubleshooting and optimisation in industrial applications.

Distributed Instrumentation

Develops the ability to evaluate, in a given situation, the most appropriate strategy for acquiring and transmitting data and understand the merits of this strategy with respect to other approaches. A wide range of different instrument communication and networking techniques will be studied. In addition the module provides practical experience of hardware setup and software development, relating to these techniques.

Industrial Process Systems

Identification and system modelling from real data play an important role in this module. This approach thus leads to more complex and realistic models that can be used to design more robust and reliable controllers that take into account problematic physical effects such as time-delays and sensor noise. The module will cover more advanced aspects of control design such as feed forward and multivariable control.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise-reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Measurement Theory and Devices

Adopts a generalised approach to measurement theory and devices, allowing students to become familiar with the characteristics of measurement systems in terms of the underlying principles. In this way, the students will be able to develop a systems approach to problem solving. They should find this methodology to be a considerable benefit to them when they have to apply their expertise to solving more complex industrial measurement problems.

Professional Practice

Develops the students' ability to select, develop and plan an MSc research project, to research and critically analyse the literature associated with the project and to present research findings effectively, it will also provide students with the ability to apply a competent process of thinking to project planning and give them a critical understanding of safe and ethical working.

Accreditation

The programme is accredited by the Institute of Measurement and Control (InstMC) as meeting the Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Graduate prospects

The MSc Applied Instrumentation and Control offers graduates a highly focused skillset that's valuable to an extremely wide range of industries - any business that benefits from the measurement of process variables and environmental factors. For instance, chemicals, pharmaceuticals, optics and optoelectronics, medical instrumentation and more.

Across these industries, you might focus on computer-controlled instrumentation systems, process instrumentation, technical management and sales, process control and automation, sensor development and manufacturing, instrument networking, industrial development or test and measurement systems.

You might also pursue a career with a company that designs and manufactures measurement systems.



Read less
Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Instrumentation and Control Engineering - one-year full time
  • MSc Instrumentation and Control Engineering - two-years part time
  • MSc Instrumentation and Control Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Instrumentation and Control Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This programme helps you develop your knowledge and skills in instrumentation, electronics and control engineering. And you develop your ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Data Acquisition and Signal Processing Techniques
  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • Robust Control Systems
  • Signal Conditioning and Data Processing

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. As a graduate you can expect to be employed in a range of sectors including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

This programme will help you develop your knowledge and skills in instrumentation, electronics and control engineering, and it will help you develop the ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Robust Control Systems
  • Signal Conditioning and Data Processing

MSc only

  • Major Project

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. Graduates can expect to be employed in a wide range of sectors, including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
The global market for aerial, ground, and marine Autonomous Vehicles has grown rapidly due to the advent of drones and driverless cars. Read more

The global market for aerial, ground, and marine Autonomous Vehicles has grown rapidly due to the advent of drones and driverless cars. Defence, Aerospace, Automotive, and Marine Industries seek graduates conversant in key aspects of Autonomy including: dynamics & control, guidance & navigation, decision making, sensor fusion, data & information fusion, communication & and networking. These durable and transferrable skills are the bedrock of this unique MSc course whose content has been based on advice from the Industrial Advisory Board, comprising the relevant Industrial representatives from Big Primes to Small and Medium-sized Enterprises.

Who is it for?

The Autonomous Vehicle Dynamics and Control MSc is a unique course for graduates in engineering, physics, or mathematics wishing to acquire durable and transferrable skills in Autonomous Vehicles to pursue career opportunities in Defence, Aerospace, Automotive, and Marine Industries.

Why this course?

We are unique in that we offer a combination of subjects much sought after in the Autonomous Vehicle Industry and not covered in a single MSc course anywhere else. Successful graduates of our MSc course become conversant in key aspects of Autonomy which advantageously differentiates them in today's competitive employment market

The Autonomous Vehicle Dynamics and Control MSc course begins with the fundamentals of autonomous vehicle dynamics and control, and progresses to the core subjects of guidance & navigation, decision making, sensor fusion, data & information fusion, communication & and networking. A choice of optional modules allows individual tailoring of these subjects to specialise in appropriate subject areas.

The taught part of the course is followed by Individual Research Projects (IRPs) and the topic of each of the IRPs is provided by one of the member of the Industrial Advisory Board. The real-world relevance of the IRP topics is another unique feature of our MSc course and can be another effective differentiator in the job market.

This course is also available on a part-time basis enabling you to combine studying with full-time employment. This is enhanced by a three-stage programme from a Postgraduate Certificate, to a Postgraduate Diploma through to an MSc.

Informed by Industry

The relevant, competent and pro-active Industrial Advisory Board includes:

  • BAE Systems
  • Airbus Defence & Space
  • Thales UK
  • Leonardo
  • Raytheon UK
  • Lockheed Martin UK
  • Boeing UK (Phantom Works)
  • UTC Aerospace Systems
  • QinetiQ
  • Spirent Communications
  • Tekever
  • MASS Consultants
  • Plextek
  • Stirling Dynamics
  • RaceLogic

who not only continuously advise on updating the course content but also provide topics for Individual Research Projects (IRPs). After the final oral exams in early September, all students present posters summarising their IRPs to the whole Industrial Advisory Board thus exposing their work to seasoned professionals and potential employers. The IRPs benefit from our own lab where real autonomous vehicles can be designed and tested.

Accreditation

Accreditation is being sought for the MSc in Autonomous Vehicle Dynamics and Control from the Royal Aeronautical Society, the Institution of Mechanical Engineers (IMechE) and the Institution of Engineering & Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The taught course element consists of lectures in three areas: dynamics, control systems, and autonomous systems and technology. The MSc consists of two equally weighted components, taught modules and an individual research project.

Individual project

Our industry partners sponsor individual research projects allowing you to choose a topic that is commercially relevant and current. Topics are chosen during the first teaching period in October and you begin work during the second half of the MSc course (May - August). The project allows you to delve deeper into an area of specific interest, taking the theory from the taught modules and joining it with practical experience.

Projects encompass various aspects of operations, not only concerned with design but including payloads, civil applications, system, sensors and other feasibility studies industry wishes to explore.

For the duration of the project, each student is assigned both a university and industry supervisor. In recent years, students have been based at sponsor companies for sections of their research and have been given access to company software/facilities.

During the thesis project all students give regular presentations to the course team and class, which provides an opportunity to improve your presentation skills and learn more about the broad range of industry sponsored projects.

Previous projects have included:

Assessment

Taught modules 50%, Individual research project 50%. Please note: Modules for this course are under review, to incorporate the latest advice from the Industrial Advisory Board.

Your career

The industry-led education makes Cranfield graduates some of the most desirable all over the world for recruitment by companies competing in the autonomous vehicle market including:

  • BAE Systems
  • Defence Science and Technology Laboratory
  • MBDA
  • Other companies from our Industrial Advisory Board.

Graduates from this course will be equipped with the advanced skills which could be applied to the security, defence, marine, environmental and aerospace industries. This approach offers you a wide range of career choices as an autonomous systems engineer, design engineer or in an operations role, at graduation and in the future. Others decide to continue their education through PhD studies available within Cranfield University or elsewhere.



Read less
Gain the advanced knowledge necessary to devise innovative solutions and systems in the broad field of automation and control. Automation and control are important aspects of modern manufacturing and utility supply. Read more
Gain the advanced knowledge necessary to devise innovative solutions and systems in the broad field of automation and control.

Automation and control are important aspects of modern manufacturing and utility supply. Many manufacturing assembly lines and processes utilise programmable control systems.

It is essential to equip the prospective engineer in this field with the appropriate theoretical and practical knowledge. This course will extend your skills across essential areas in the field of automation and control.

See the website http://www.napier.ac.uk/en/Courses/MSc-Automation-and-Control-Postgraduate-FullTime

[{What you'll learn]]

You’ll use your existing knowledge of engineering theory and practice as the base to build new skills in this field such as embedded systems and control system design.

Using specialist equipment in our dedicated laboratories, you’ll learn to use Programmable Logic Controllers (PLCs) and Supervisory Control and Data Acquisition (SCADA) systems, the industry standard for the development of effective control systems.

Combined with a suitable accredited undergraduate degree, the MSc degree would then satisfy the academic requirements of the UK Engineering Council for Chartered Engineer (CEng) status.

Modules

• Sustainable energy technologies
• Embedded system applications
• Automation and robotics
• Research skills and project management
• Control engineering
• Mechatronic systems
• MSc project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

Think of any modern manufacturing or utility supply process and you’re seeing automated assembly lines, robotic systems and programmable controls. These services need to be created, updated and maintained by skilled workers with the right qualifications. After graduation future roles include:

• automotive industries
• automation and control industries
• renewable energy industries
• engineering research
• engineering design and development
• engineering management
• engineering consultancy

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
IN BRIEF. Emphasis on feedback control, robotics, flight control and discrete event manufacturing control. Real opportunities for career progression in to the automation industry. Read more

IN BRIEF:

  • Emphasis on feedback control, robotics, flight control and discrete event manufacturing control
  • Real opportunities for career progression in to the automation industry
  • Programme designed using Engineering Council benchmarks
  • Part-time study option
  • International students can apply

COURSE SUMMARY

The overall objective of this course is to add value to your first degree and previous relevant experience by developing a focused, integrated and critically aware understanding of underlying theory and current policy and practice in the field of control systems engineering.

The course is control systems focused, with the emphasis on control systems theory together with a range of control applications including industrial control (SCADA), intelligent control, flight control and robotic control. The control systems approach provides continuity in learning throughout the one year of study.

COURSE DETAILS

This course has been awarded accredited status by both the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE) for 2010 to 2014 intake cohorts as meeting the exemplifying academic benchmark for registration as a Chartered Engineer (CEng) for students who also hold an accredited BEng Honours degree. Candidates who do not hold an appropriately accredited BEng Honours degree will gain partial exemption for CEng status; these candidates will need to have their first qualification individually assessed if they wish to progress onto CEng registration.

Professional registration and Institution membership will enhance your career in the following ways:

  • Access to continuous professional development
  • Careers advice and employment opportunities
  • Increased earning potential over the length of your career
  • International recognition of your qualifications, skills and experience
  • Evidence of your motivation, drive and commitment to the profession
  • Networking opportunities

On completion of the course you should have a critical awareness and understanding of current problems in control engineering, techniques applicable to research in the field of control systems and how established techniques of research and enquiry are used to create and interpret knowledge in the field of control systems. You should also be able to deal with complex issues both systematically and creatively, make sound judgments in the absence of complete data, and communicate your conclusions clearly to specialist and non-specialists.

TEACHING

Teaching will be delivered through a combination of lectures, tutorials, computer workshops and laboratory activities.

ASSESSMENT

  • 35% examinations
  • 65% coursework (labs, reports, dissertation)

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control & Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

EMPLOYABILITY

A wide range of control and automation opportunities in manufacturing and engineering companies, opportunities in the aerospace sector.

FURTHER STUDY

There are opportunities to go on to further research study within our CASE control and Intelligent Systems Research Centre.

Research themes in the Centre include:

  • Control Engineering
  • Railway/Automotive Research
  • Computational Intelligence and Robotics
  • Biomedical Research
  • Energy and Electrical Engineering


Read less
This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Students have a chance to broaden and deepen their knowledge in wide range of mechanical engineering subjects. This enables our students to undertake an advanced treatment of core mechanical engineering disciplines such as design and critical evaluation of structural integrity, computation fluid dynamics, advanced materials, energy and control systems.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) and Institution of Engineering and Technology (IET), meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics that will help equip you to work as a mechanical engineer in a broad spectrum of mechanical engineering business activity management, research, design and development roles. You will also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Structural Integrity: Contemporary approaches are applied to the evaluation of mixed mode fracture and fatigue failure. Dynamic plastic responses of structures and the performance of composite structures are evaluated.

Industrial Control Systems: This unit covers mathematical representation of control system models is developed principally using Laplace transforms. System behaviour and simulation is analysed with practical case studies, leading to control system specifications.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Energy Systems: This unit is designed to study the principles and techniques of operation of thermodynamics and combustion systems, as well as the provision and management of energy. The current and future requirements and trends in energy production and consumption are addressed.

Structural Application of Finite Elements: The use of finite element analysis techniques and software applied to structural problems is developed. Modelling with both isotropic and orthotropic materials is investigated, as well as such topics as cracking in dissimilar materials and composite laminates.

Computational Fluid Dynamics: A practical case study analysis approach is used for model formulation and CFD simulation. Fundamental principles are used to appraise the results of CFD analysis of problems with industrial applications.

Individual Project: A strong feature of the course is the individual project, which comprises a third of the course. We encourage students to undertake projects in industrial companies, but we can also use our extensive resources and staff skills to undertake projects within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled mechanical engineers is always present and it is generally accepted that there is a current shortage of engineers.

When you graduate from this course you could find employment in a wide range of mechanical engineering-based careers, such as design, research and development and manufacturing. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Mechanical engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
This course has been developed in consultation with the nuclear engineering industry to provide advanced theoretical and practical knowledge to work with modern control and instrumentation technologies. Read more

This course has been developed in consultation with the nuclear engineering industry to provide advanced theoretical and practical knowledge to work with modern control and instrumentation technologies. This course offers an opportunity not only to specialise in nuclear engineering control, instrumentation and standards for operation and maintenance but also provides sufficient scope for students wishing to develop advanced skills in modern automation and in working with large industrial networks.

You may build valuable skills through a selection of option units and a project to gain advanced knowledge in sustainable energy systems and smart technologies for power system applications or in specialising in embedded systems as well as in applied digital signal processing for industrial applications. The course will also offer opportunities for those interested in combining engineering skills with management practice.

You will learn advanced concepts in the principles and operation of instrumentation for control, including control system architectures, communications, open systems security, hazard analysis, system reliability, safety and protection.

The course enables the appreciation of the practical aspects of control design and maintenance and offers hands-on experience in designing and developing solutions for control problem-solving using the IEC61131-3 standard. The course covers specialist and intelligent sensor systems, PLC-based control, Profibus and Profinet.

Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Features and benefits of the course

-Research in the School of Engineering was rated 'internationally excellent' in the Research Excellence Framework (REF).

-Many of our academic staff who teach worked in their industry sector and have well-established links and contacts, ensuring that our curriculum is relevant for future employment.

-Engineering facilities are excellent with a dedicated £4m heavy engineering workshop for research and teaching in surface engineering, materials and dynamics, and state-of-the-art kit including rapid prototyping machines and water jet cutters

About the Course

Our engineering Masters programmes are designed to meet the needs of an industry which looks to employ postgraduates who can learn independently and apply critical thinking to real-world problems. Many of the staff who teach in the School also have experience of working in industry and have well-established links and contacts in their industry sector, ensuring your education and training is relevant to future employment.

Assessment details

Assessment is though a combination of written reports, oral presentations, practical assignments and written examinations.



Read less
This course is accredited by the Institute of Measurement and Control. You’ll specialise in control and instrumentation, and develop the skills and knowledge you’ll need to apply for registration as a Chartered Engineer (CEng) when you graduate. Read more

About this course

This course is accredited by the Institute of Measurement and Control. You’ll specialise in control and instrumentation, and develop the skills and knowledge you’ll need to apply for registration as a Chartered Engineer (CEng) when you graduate.

The course is flexible, so you’ll have lots of choice in the specialist subject modules you take and the ways you learn. You’ll be taught by experienced and supportive tutors, who will help you reach your full potential and you’ll develop the skills and knowledge employers are looking for in areas such as automotive, aerospace, petrochemical, scientific or manufacturing applications.

You'll focus on advanced aspects of control and instrumentation, alongside broader engineering topics. You'll deepen your knowledge of control and instrumentation while addressing current engineering issues and technological advanced across a broad spectrum of subjects.

You’ll study modules such as:

Research Methods: Application and Evaluation
Intelligent Instrumentation Systems
Embedded Systems Design
CPD and Strategic Management
Modern Control System Design
Industrial Electronics
Negotiated Technical Module
Independent Engineering Scholarship

Read less
This Systems and Control MSc degree aims to develop a sound understanding and knowledge of systems and control, and offers a wide choice of modules to suit your individual needs. Read more
This Systems and Control MSc degree aims to develop a sound understanding and knowledge of systems and control, and offers a wide choice of modules to suit your individual needs. You will learn the combined skills in your chosen area including artificial intelligence for control, image and signal processing, data acquisition and embedded control.

The European Systems and Control course option, requires students to study for modules in a partner EU institution.

WHY CHOOSE THIS COURSE?

Job satisfaction and remuneration prospects are excellent, with employer demand for those with a supply chain background outstripping the supply of suitably qualified applicants.

Enhance your qualifications and release your potential to improve yourself and move your organisation forward.

Classes are taught by academics with a long track record of working with industry and who bring in leading industry experts wherever that is possible.

This Course has been awarded accreditations from the IET and InstMC.

WHAT WILL I LEARN?

Topics: The course has the following six core taught modules:
-Maths and Computing for Control
-Linear Control Engineering
-Digital Computer Control Systems
-Artificial Intelligence for Control
-Control Systems Engineering Project

Option Topics: To complete the programme students should add a further 60 credits from below:
-Non-Linear Control engineering
-System Identification, Parameter Estimation and Filtering
-Self-Tuning and Adaptive Control
-Simulation of Systems
-Data Acquisition and Embedded Control
-Signal and Image Processing
-Single Independent Study

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Graduates may apply for membership of the Institution of Electrical Engineers and the Institute of Measurement and Control. Career opportunities range from project engineers, systems and control engineers, and computer systems integrators across a wide range of industrial sectors.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The MSc Embedded Systems and Control aims to provide the knowledge and skills required of a professional engineer to design embedded systems for use in control, diagnostics, monitoring and communications. Read more
The MSc Embedded Systems and Control aims to provide the knowledge and skills required of a professional engineer to design embedded systems for use in control, diagnostics, monitoring and communications. State-of-the-art techniques in control system design, signal processing and software design will be core elements of the course.

Read less
This course provides both fundamental and applied knowledge to understand airflows, vehicle dynamics and control and methods for computational modelling. Read more

This course provides both fundamental and applied knowledge to understand airflows, vehicle dynamics and control and methods for computational modelling. It will provide you with practical experience in the measurement, analysis, modelling and simulation of airflows and aerial vehicles.

You have the choice of two specialist options which you chose once you commence your studies: Flight Dynamics or Aerodynamics. 

Who is it for?

Suitable if you have an interest in aerodynamic design, flow control, flow measurement, flight dynamics and flight control. Choose your specialist option once you commence your studies.

  • Flight Dynamics option: if you want to develop a career in flight physics and aircraft stability and control, more specifically in the fields of flight control system design, flight simulation and flight testing.
  • Aerodynamics option: if you want to develop a career in flight physics and specifically in the fields of flow simulation, flow measurement and flow control.

Why this course?

The aerospace industry in the UK is the largest in the world, outside of the USA. Aerodynamics and flight dynamics will remain a key element in the development of future aircraft and in reducing civil transport environmental issues, making significant contributions to the next generation of aircraft configurations. 

In the military arena, aerodynamic modelling and flight dynamics play an important role in the design and development of combat aircraft and unmanned air vehicles (UAVs). The continuing search for aerodynamic refinement and performance optimisation for the next generation of aircraft and surface vehicles creates the need for specialist knowledge of fluid flow behaviour.

Cranfield University has been at the forefront of postgraduate education in aerospace engineering since 1946. The MSc in Aerospace Dynamics stems from the programme in Aerodynamics which was one of the first masters' courses offered by Cranfield and is an important part of our heritage. The integration of aerodynamics with flight dynamics reflects the long-term link with the aircraft flight test activity established by Cranfield. 

Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which holds a number of networking and social events throughout the year.

Informed by Industry

The Industrial Advisory Panel, comprising senior industry professionals, provides input into the curriculum in order to improve the employment prospects of our graduates. Panel members include:

  • Adrian Gaylord, Jaguar Land Rover (JLR)
  • Trevor Birch, Defence, Science and Technology Laboratory (DSTL)
  • Chris Fielding, BAE Systems
  • Anastassios Kokkalis, Voith
  • Stephen Rolson, European Aeronautic Defence and Space Company (EADS)
  • Clyde Warsop, BAE Systems

Accreditation

The MSc in Aerospace Dynamics is accredited by the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

This course consists of optional taught modules, an individual research project and a group flight test project.

The group flight test project consists of two compulsory modules that offer an initial introduction to aerospace dynamics and provide grounding for the group flight test. Choice is a key feature of this course, with specialist options in either aerodynamics or flight dynamics. Choose your option once you have commenced your studies.

Group project

All students undertake the Group Flight Test Report during October to December. This involves a series of flight tests in the The National Flying Laboratory Centre (NFLC) Jetstream which are undertaken, reported and presented as a group exercise. This is an important part of the course as it enables candidates to experience the application of specialist skills within a real plane to a collaborative report/presentation.

Individual project

The individual research project allows you to delve deeper into an area of specific interest. It is very common for industrial partners to put forward real world problems or areas of development as potential research project topics. The project is carried out under the guidance of an academic staff member who acts as your supervisor. The individual research project component takes place between April and August.

If agreed with the course director, part-time students have the opportunity to undertake projects in collaboration with their place of work, which would be supported by academic supervision.

Previous Individual Research Projects covered:

Aerodynamics option

  • Spiked body instabilities at supersonic speeds
  • Aerodynamic loads on a race car wing in a vortex wake
  • Lateral/directional stability of a tailless aircraft.
  • Aerodynamic drag penalties due to runback ice
  • Automotive flow control using fluidic sheets
  • Aerodynamic design and optimisation of a blended wing body aircraft.

Flight Dynamics option

  • Flight dynamic modelling of large amplitude rotorcraft dynamics
  • Decision making for autonomous flight in icing conditions
  • Comparative assessment of trajectory planning methods for UAVs
  • Machine vision and scientific imaging for autonomous rotorcraft
  • Linear parameter varying control of a quadrotor vehicle
  • Gust load alleviation system for large flexible civil transport.

Assessment

Taught modules 40%, Group project 20% (dissertation for part-time students), Individual project 40%

Your career

Industry driven research makes our graduates some of the most desirable in the world for recruitment in a wide range of career paths within the aerospace and military sector. A successful graduate should be able to integrate immediately into an industrial or research environment and make an immediate contribution to the group without further training. Increasingly, these skills are in demand in other areas including automotive, environmental, energy and medicine. Recent graduates have found positions in the aerospace, automotive and related sectors. 

Employers include:

  • Airbus
  • BAE Systems
  • Onera
  • Deutsches Zentrum für Luft- und Raumfahrt (DLR)
  • Defence, Science and Technology Laboratory (DSTL)
  • QinetiQ
  • Rolls-Royce plc
  • Snecma
  • Thales
  • Selex ES
  • MBDA
  • Jaguar Land Rover
  • Tata
  • Science Applications International Corporation (SAIC)
  • Triumph Motorcycles.

A significant number of graduates go on to do research and higher degrees.



Read less
The Department of Chemical Engineering is seeking to appoint an MPhil/MRes student to conduct research for Eco-Innovation Cheshire and Warrington Industry Collaboration programme. Read more

The Department of Chemical Engineering is seeking to appoint an MPhil/MRes student to conduct research for Eco-Innovation Cheshire and Warrington Industry Collaboration programme. This studentship is part funded by the European Regional Development Fund (ERDF).

 

Background

The proposed project will investigate the design of a continuous bioreactor for maximum capture of CO2.

Autichem Ltd has developed a new type of flow reactor (DART). DART is designed to be a fully scalable technology with capacities from miso scale (10ml) to industrial scale. 

It is proposed that the MPhil/MRes project runs for 1 year and will utilize DART to achieve a process design for the optimized capture of CO2.

 

Summary of research tasks and work programme

Using the Autichem Ltd’s DART technology as the continuous process platform, the projects objectives will be, but not limited to the following:

·        To convert a batch process to a continuous process

·        To research and understand the possibilities of applying closed loop control to a continuous process.

·        The design an industrial scale process that is based on the knowledge gained during the research and testing phases of the project.

Project Deliverables

The project should aim to deliver the following:

·        A process design for a lab scale flow reactor system based on Autichem Ltd’s DART reactor

·        Data which demonstrates the successful operation of the process in the prototype DART reactor system at lab/pilot scale.

·        A detailed process design for an industrial scale system

·        All research documents relating to the development of the reactor and associated control system.

·        3 off research posters which provide insight into the operation of the process in the DART system and which can be used to promote what has been achieved. These could, for example, be on the general topic areas of: converting batch to continuous; control of a continuous process and scaling up a continuous process to industrial scale.

 

Skills and knowledge

·        A fundamental understanding of continuous process design at industrial scale.

·        Experience with bio process development

·        Knowledge of working with micro organisms

Funding

This MPhil attracts a tax exempt stipend of £15,000 per annum. Post graduate fees are funded for UK/EU based students. International students will be required to make an additional contribution to their post graduate fees.

 

Application process

A completed University of Chester Postgraduate Research Degree (MPhil) application form including contact details of two referees (at least one must be familiar with your most recent academic work).

 Candidates should apply online via the University of Chester  https://www.chester.ac.uk/research/degrees/studentships and specify their reference number when applying. The reference number is: RA001802

Availability for interview

Please be available for interview during the week of the 20th November 2017. Exact time and date to be agreed.

Further information

Prospective applicants are encouraged to initially contact Steve Wilkinson 01244 513921 to discuss the project further. For general enquiries contact " target="_blank">

 Closing date: 14th November 2017



Read less

Show 10 15 30 per page



Cookie Policy    X