• Coventry University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Imperial College London Featured Masters Courses
Ulster University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"control" AND "automation…×
0 miles

Masters Degrees (Control And Automation)

  • "control" AND "automation" ×
  • clear all
Showing 1 to 15 of 98
Order by 
The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. Read more

Mission and goals

The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. She/he may take on full responsibility for designing, installing, testing and maintaining complex machines and systems. The goal of the Automation and Control Engineering programme is to provide the graduate with a strong background in fundamental scientific disciplines, such as mathematics and physics, in classical engineering fields, such as thermodynamics, mechanics, electric drives, automatic control, and in the disciplines of the information and telecommunication technology, like computer science, electronics, communication networks. Thanks to the interdisciplinary nature of her/his background, the graduate has all the necessary skills to design or manage systems resulting from the integration of highly diverse components and technologies. This flexibility both in the attitude and in the competences is a significant asset of the Automation and Control Engineer, in view of the large variety of possible applications, of the continuous and rapid evolution of the technologies, as well as of the dynamics of the job market.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Career opportunities

Automation and Control Engineering offers challenging and fulfilling careers for engineering technologists in design, research and development, and technical support, in many fields where automation and control are of paramount importance, such as: (a) industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems; (b) process industry (pulp and paper, energy production and conversion, chemical and petrochemical industry, etc.); (c) transportation systems (ground, marine and aerospace), concerning both the development of vehicles (cars, boats, helicopters, aircrafts, satellites), and the design, management and control of infrastructures; (d) transportation and distribution networks; (e) food industry; (f) electrical appliances and domotics; (g) environmental resources.

Typical companies where the automation and control engineers may operate include those producing and selling automation systems (both hardware and software); companies that use automated production plants or that manage highly complex services; engineering and consulting firms that design and project complex, economically challenging and technologically advanced plants and systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Automation_Engineering.pdf
This programme aims at providing the graduates with sound engineering skills to design, develop, implement and manage automation systems for manufacturing plants, industrial processes, mechatronic devices, distribution networks and environmental systems. Graduates have a strong background in the classical engineering fields and in the information and telecommunication technology. The interdisciplinary nature of this programme provides the graduates with all the skills to design/manage systems resulting from the integration of highly diverse technologies.
Graduates will have wide employment opportunities in many fields: industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems, process industry, transportation systems, transportation and distribution networks, food industry, electrical appliances, home automation and environmental resources.
The programme is taught in English.

Subjects

The mandatory courses are:
- Advanced and multivariable control
- Automation and control laboratory
- Computer aided manufacturing
- Dynamics of electrical machines and drives
- Dynamics of mechanical systems
- Model identification and data analysis
- Software engineering

Among the optional courses:
- Automation and control in vehicles
- Automation of energy systems
- Control of industrial robots
- Production systems control
- Safety in automation systems
- Thesis and final exam

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. Read more
Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. They combine the diverse and rapidly expanding disciplines of automation, control, mechanics, software and signal processing.

This course is ideal if you wish to develop comprehensive knowledge and understanding of
-Classical and modern control theory.
-Industrial automation.
-Systems analysis.
-Design and simulation.
-Robotics.

You gain the ability to apply principles of modelling, classical and modern control concepts and controller design packages in various areas of industry. You also learn how to design and exploit automation and robotic systems in a range of manufacturing and industrial applications.

The course has six core modules which cover the major aspects of industrial automation and control systems engineering and robotics, ranging from classical linear control system design to non-linear, optimal and intelligent control systems, including distributed control systems, robotics, computer networks and artificial intelligence.

You also choose two optional modules relevant to automation and control to suit your interests. For example, if you wish to work in the manufacturing industry you can choose manufacturing systems or machine vision. There is the opportunity to study one or two management modules if you wish to apply yourself to a more managerial role.

To gain the masters you complete a major research-based project, which can be focused on an area of your particular interest or career need.

You work alongside staff from the Electrical, Electronic and Control Engineering Group and the Centre for Automation and Robotics Research (CARR) at Sheffield Hallam. This provides the opportunity to work with active researchers.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-automation-control-and-robotics

Professional recognition

This course is seeking accreditation by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

Course structure

Full time – 12 to 18 months.
Part time – 3 years.
Start dates September and January.

Core modules
-Industrial automation
-Control of linear systems
-Advanced control methods
-Robotics
-Computer networks
-Applicable artificial intelligence

Options
Choose two from:
-Software engineering
-Project and quality management
-Sustainability, energy and environmental management
-Machine vision
-Digital signals processing
-Manufacturing systems

MSc
-Project and dissertation

Assessment: coursework, examination, presentation, MSc project report.

Other admission requirements

International students
India: a first class BE in a relevant discipline, or a good second class BE with a strong performance in mechanical and manufacturing subjects.

China: a four year Bachelors degree in a relevant discipline, with an overall average of at least 80 per cent or equivalent.

Other countries: a good honours degree or equivalent in a relevant subject.

Overseas applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills (or equivalent) is the standard for non-native speakers of English. If your English language skill is currently below an IELTS score of 6.0 with a minimum of 5.5 in all skills we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

Read less
IN THIS 18-MONTH INTENSIVE PART-TIME PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in instrumentation, process control and industrial automation. Read more
IN THIS 18-MONTH INTENSIVE PART-TIME PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in instrumentation, process control and industrial automation
- Guidance from industrial automation experts in the field
- Knowledge from the extensive experience of instructors, rather than from the clinical information gained from books and college
- Credibility as the local industrial automation expert in your firm
- Networking contacts in the industry
- Improved career prospects and income
- An Advanced Diploma of Industrial Automation

Next intake starts October 09, 2017. Applications now open; places are limited.

Contact us now to secure your place!

Payment is not required until around 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of of Industrial Automation is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Gain strong underpinning knowledge and expertise in Industrial Automation covering a wide range of skills ranging from instrumentation, automation and process control, industrial data communications, process plant layout, project and financial management and chemical engineering with a strong practical focus. Industrial Automation is an extremely fast moving area especially compared to the more traditional areas such as electrical and mechanical engineering. The field is diverse and dynamic and offers the opportunity for a well paid and enjoyable career. The aim of the course is to empower you with practical knowledge that will improve your productivity in the area and make you stand out as a leader in industrial automation amongst your peers.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Industrial Automation. Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

PROGRAM STRUCTURE

The program is composed of 72 topics within 21 modules. These cover the following seven engineering threads to provide you with maximum practical coverage in the field of industrial automation:

- Instrumentation, Automation and Process Control
- Electrical Engineering
- Electronics
- Industrial Data Communications and Networking
- Mechanical Engineering
- Project Management
- Chemical Engineering

The modules will be completed in the following order:
1. Practical Instrumentation for Automation and Process Control
2. Practical Fundamentals of Chemical Engineering (for Non- Chemical Engineers)
3. Control Valve Sizing, Selection and Maintenance
4. Fundamentals of Process Plant Layout and Piping Design
5. Practical Process Control for Engineers and Technicians
6. Practical Tuning of Industrial Control Loops for Engineers and Technicians
7. Practical Distributed Control Systems (DCS)
8. Practical Programmable Logic Controllers (PLCs) for Automation and Process Control
9. Best Practice in Industrial Data Communications
10. Practical Advanced Process Control for Engineers and Technicians
11. Practical Boiler Control and Instrumentation for Engineers and Technicians
12. Practical Hazardous Areas for Engineers and Technicians
13. Practical Safety Instrumentation and Emergency Shutdown Systems for Process Industries Using IEC 6155 and IEC 61508
14. Practical HAZOPS (Hazard and Operability Studies) for Engineers and Technicians
15. Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout of Electronic Systems
16. Practical Wireless Ethernet and TCP/ IP Networking
17. Practical Radio Telemetry Systems for Industry
18. Practical SCADA Systems for Industry
19. Motor Protection, Control and Maintenance Technologies
20. Practical Power Distribution for Engineers and Technicians
21. Practical Project Management for Electrical, Instrumentation and Mechanical Engineers and Technicians

COURSE FEES

EIT provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.

Read less
The Applied Process Control MSc/PGDip will qualify you to manage the challenges of modern process control and process automation technology. Read more
The Applied Process Control MSc/PGDip will qualify you to manage the challenges of modern process control and process automation technology. It will provide you with advanced understanding of the principles of chemical engineering, and process control and automation methodologies.

Control Engineers apply engineering principles to design, build, and manage sophisticated computer-based instrumentation and control systems in the manufacturing industries. This sector depends on process control and automation technology to maintain a competitive edge.

Through this course you will understand the fundamental principles of chemical engineering and key aspects of:
-Mathematics
-Statistics
-Information technology
-Process control and automation methodologies

The interdisciplinary nature of this course qualifies you to manage the challenges of modern process control technology.

Engineers with training in these areas are in demand and enjoy a wide range of careers in the chemical and process industries.

The course is delivered by the School of Chemical Engineering and Advanced Materials.

Delivery

The MSc requires you to study 120 credits of taught modules and undertake a 60 credit research project. The PGDip requires 120 credits of taught modules only.

Modules to the value of 60 credits are delivered in both semester one and semester two. The Research project is carried out in semester three (June to August).

You have the opportunity to attend lectures and seminars from external industry lecturers. Some of the research projects are industry based and involve guidance from industrial supervisors.

The majority of the modules in semester one run for the duration of the semester, whereas most of the semester two modules are delivered in blocks, ie over one week. All teaching is carried out during weekdays.

Facilities

We have a Process Control laboratory with four control rigs operated by computer control systems. These rigs are equipped with industrial scale instrumentations.

We also have a dedicated postgraduate computer cluster with relevant software, including:
-MATLAB
-Simulink
-Aspen HYSYS
-Multivariate statistical data analysis and monitoring tools (Pre-screen, MultiData, and BatchData)

The Robinson Library has a large collection of text books and journals used by the course.

Read less
Gain the advanced knowledge necessary to devise innovative solutions and systems in the broad field of automation and control. Automation and control are important aspects of modern manufacturing and utility supply. Read more
Gain the advanced knowledge necessary to devise innovative solutions and systems in the broad field of automation and control.

Automation and control are important aspects of modern manufacturing and utility supply. Many manufacturing assembly lines and processes utilise programmable control systems.

It is essential to equip the prospective engineer in this field with the appropriate theoretical and practical knowledge. This course will extend your skills across essential areas in the field of automation and control.

See the website http://www.napier.ac.uk/en/Courses/MSc-Automation-and-Control-Postgraduate-FullTime

[{What you'll learn]]

You’ll use your existing knowledge of engineering theory and practice as the base to build new skills in this field such as embedded systems and control system design.

Using specialist equipment in our dedicated laboratories, you’ll learn to use Programmable Logic Controllers (PLCs) and Supervisory Control and Data Acquisition (SCADA) systems, the industry standard for the development of effective control systems.

Combined with a suitable accredited undergraduate degree, the MSc degree would then satisfy the academic requirements of the UK Engineering Council for Chartered Engineer (CEng) status.

Modules

• Sustainable energy technologies
• Embedded system applications
• Automation and robotics
• Research skills and project management
• Control engineering
• Mechatronic systems
• MSc project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

Think of any modern manufacturing or utility supply process and you’re seeing automated assembly lines, robotic systems and programmable controls. These services need to be created, updated and maintained by skilled workers with the right qualifications. After graduation future roles include:

• automotive industries
• automation and control industries
• renewable energy industries
• engineering research
• engineering design and development
• engineering management
• engineering consultancy

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
This course covers all the major disciplines in automation and control. It includes in-depth study of advanced control systems, industrial automation technologies, systems integration, distributed control systems and field bus protocols. Read more
This course covers all the major disciplines in automation and control. It includes in-depth study of advanced control systems, industrial automation technologies, systems integration, distributed control systems and field bus protocols.

The Automation and Control MSc equips engineering graduates with the theory and practical experience to begin a career as a design or development engineer in control and automated systems. It also develops skills in research and knowledge acquisition, which provides the foundation for further study.

You study modern and classic control systems and industrial automation technologies. The course also provides the latest information on systems integration using field buses and distributed control systems. You use industry standard test and measurement equipment and also experimental hardware and software packages relevant to the field of automation and control.

The course comprises a mixture of lectures, tutorials, coursework and practical laboratory classes. Innovative educational techniques equip you with practical design skills and research methodologies. A specialist topic of your choice is developed through an in-depth research project. You will engage with experts with world-wide reputations for high quality research in the field of Electrical Engineering and Control.

The course is delivered by the School of Electrical and Electronic Engineering. Find out from our staff and previous students about the benefits of studying Electrical and Electronic Engineering at Newcastle.

Delivery

You take modules to a total value of 180 credits over three semesters. Taught modules, worth 120 credits, take place during the first and second semesters with exams held in January and May/June. An individual project, worth 60 credits, is undertaken over semesters two and three.

Background reading and design work take place during the second semester. The majority of experimental work and preparation of your dissertation takes place during semester three.

Teaching is delivered in modern lecture theatres equipped with audio visual equipment. Blackboard, a web based Virtual Learning Environment (VLE), supports your taught modules. Practical sessions take place in small groups in world-class laboratories with extensive computing facilities.

Accreditation

The course is accredited by the Institution of Engineering and Technology (IET) and Engineering Council, and therefore provides a good foundation for professional registration.

Read less
Control Engineering is a multi-disciplinary subject, with applications across a wide range of industrial sectors. The Control Systems Group in the School of Electrical and Electronic Engineering at the University of Manchester has been running an MSc course in Advanced Control and Systems Engineering since 1968. Read more
Control Engineering is a multi-disciplinary subject, with applications across a wide range of industrial sectors. The Control Systems Group in the School of Electrical and Electronic Engineering at the University of Manchester has been running an MSc course in Advanced Control and Systems Engineering since 1968. The course is geared for graduates from a variety of scientific and engineering disciplines.

The aims of the course are to:
-Provide an advanced education in control and systems engineering, emphasising modern theoretical developments and their practical application
-Give a sound fundamental understanding of the principles underlying the operation of control systems
-Enable students to apply modern control principles in various areas of industry

Students acquire a range of intellectual skills that cover the design, analysis and simulation of control systems. A strong emphasis is placed on practical and transferable skills through laboratory exercises and the use of software packages.

Coursework and assessment

The taught part of the course comprises six course units of 15 credits each. This is assessed by written examinations, coursework and laboratory reports.

A strong feature of the course is the dissertation project, which constitutes 60 Credits. The project introduces students to cutting edge control theory and applications.

Course unit details

Typical course units include Control and Computer Laboratory, Linear Optimal Control, Intelligent Systems, Non-linear Controllers & Systems, Self-tuning and Adaptive Systems, Manufacturing Automation and Data Engineering, Fault Detection and Diagnosis, and Process Control Systems.

Career opportunities

In 2008 we celebrated the 40 th anniversary of our MSc course. In that time graduates of the course have achieved top ranking industrial and academic positions in their home countries, in the UK and around the world.

Graduates from the course are employed in a variety of industries, including process and petro-chemical industries, manufacturing, power generation and the automotive and aerospace sectors. Recently there has been a surge in demand for control engineers in the field of biomedicine. More generally feedback control and systems engineering skills play an important part in an ever widening range of high tech applications.

The MSc can also be used a spring board for postgraduate research. Approximately 50% of the current PhD students in the Control Systems Group are graduates from the MSc course.

Read less
This course is for students who already have a strong engineering background and wish to specialise in robotics and automation. This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence. Read more
This course is for students who already have a strong engineering background and wish to specialise in robotics and automation. This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence.

You will gain a firm grounding in control engineering and intelligent systems concepts, along with the ability to comprehend and fully specify integrated automation systems embodying intelligence, robotic and automation hardware and software, and virtual reality (VR)/simulation technologies.

The course also provides a suitable background for research in advanced autonomous systems with reference to robotics.

Key benefits:

• Gain a firm grounding in control engineering and intelligent systems concepts
• This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence
• Projects supported by internationally-leading research

Visit the website: http://www.salford.ac.uk/pgt-courses/robotics-and-automation

Suitable for

Suitable for students who already have a strong engineering background and wish to specialise in robotics and automation.

Format

You will be taught via a series of lectures and workshops with many of the modules taught via extensive hands-on practical lab-based sessions.

Practical experience includes the use of robotics platforms to produce a software system using the MATLAB toolboxes or the C programming language or to produce a finished hardware/software based mobile robotics system.

Module titles

• Automation and Robotics
• Interactive Visualisation
• Artificial Intelligence
• Mobile Robotics
• MSc Project/ Dissertation

Assessment

70% coursework and 30% examination.

Career potential

This qualification will equip you for employment in a number of industries. Excellent opportunities exist in areas including robotic design, control systems integration and design, factory automation, engineering management and research.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
This course has been developed in consultation with the nuclear engineering industry to provide advanced theoretical and practical knowledge to work with modern control and instrumentation technologies. Read more
This course has been developed in consultation with the nuclear engineering industry to provide advanced theoretical and practical knowledge to work with modern control and instrumentation technologies. This course offers an opportunity not only to specialise in nuclear engineering control, instrumentation and standards for operation and maintenance but also provides sufficient scope for students wishing to develop advanced skills in modern automation and in working with large industrial networks.

You may build valuable skills through a selection of option units and a project to gain advanced knowledge in sustainable energy systems and smart technologies for power system applications or in specialising in embedded systems as well as in applied digital signal processing for industrial applications. The course will also offer opportunities for those interested in combining engineering skills with management practice.

You will learn advanced concepts in the principles and operation of instrumentation for control, including control system architectures, communications, open systems security, hazard analysis, system reliability, safety and protection.

The course enables the appreciation of the practical aspects of control design and maintenance and offers hands-on experience in designing and developing solutions for control problem-solving using the IEC61131-3 standard. The course covers specialist and intelligent sensor systems, PLC-based control, Profibus and Profinet.

Features and benefits of the course

-Research in the School of Engineering was rated 'internationally excellent' in the Research Excellence Framework (REF).
-The main student intake is in September but it is also possible to begin studying in January.
-Many of our academic staff who teach worked in their industry sector and have well-established links and contacts, ensuring that our curriculum is relevant for future employment.
-Engineering facilities are excellent with a dedicated £4m heavy engineering workshop for research and teaching in surface engineering, materials and dynamics, and state-of-the-art kit including rapid prototyping machines and water jet cutters

About the Course

Our engineering Masters programmes are designed to meet the needs of an industry which looks to employ postgraduates who can learn independently and apply critical thinking to real-world problems. Many of the staff who teach in the School also have experience of working in industry and have well-established links and contacts in their industry sector, ensuring your education and training is relevant to future employment.

Assessment details

Assessment is though a combination of written reports, oral presentations, practical assignments and written examinations.

Read less
Developed by the Bristol Robotics Laboratory, this Masters gives students unique exposure to world-leading robotics research, real-life automation and computer vision projects, and the opportunity for placements in UK companies to work on topical industry problems. Read more
Developed by the Bristol Robotics Laboratory, this Masters gives students unique exposure to world-leading robotics research, real-life automation and computer vision projects, and the opportunity for placements in UK companies to work on topical industry problems.

The last 20 years have seen a phenomenal growth in the development and application of computer and machine vision technology. With increasingly complex applications across diverse areas, including manufacturing, security and medicine, there is a growing need for professionals who can evaluate, design and implement technically appropriate and economically viable automation systems for enhancing quality and productivity.

The MSc in Automation and Computer Vision at UWE Bristol is one of the very few postgraduate courses that brings together both of these disciplines into one industry-focused, research-informed Masters.

Key benefits

Some students may be able to do an industry placement as part of their dissertation. Projects will be focused on real problems companies are working on. Those that don't go down the industry route will work at UWE Bristol on a topical research problem.

Course detail

The course provides a unique combination of these two overlapping disciplines, with a strong emphasis on robotics hardware for solving 'real-world' problems. You will develop both the technical knowledge and the business skills needed to introduce advanced automation and machine vision techniques in the workplace.

You will also benefit from the University's close links with industry, with guest lectures on many modules and the chance to work on real-life automation and computer vision projects.

Modules

• Automation and Control (30 credits)
• Machine Vision (30 credits)
• Managing finance (15 credits)
• Project management (15 credits)
• Industrial applications (15 credits)
• Industrial case studies (15 credits)

You will also work on an individual project (60 credits), which forms a major part of the course and gives you the chance to work on real-world research or industry projects

Format

Alongside the strong industry-focus of the course, you will have the opportunity to be part of, and work on, projects in the world-leading Bristol Robotics Laboratory, which brings together influential researchers in service robotics, autonomous systems and bio-engineering.

For those already working, we offer this course as a work-based learning course, as well as a standard full or part-time Masters. Employees of relevant industries can attend part of the course to supplement their existing skills or to be assessed on their current skills and knowledge of these highly topical subject areas.

Assessment

We will make use of a range of types of assessment on the course, including written exams, oral assessments and presentations, reports and project work and written assignments.

Careers / Further study

The course is a good grounding for wider careers in engineering, science, information technology, management and medical imaging. For those wishing to pursue further study, the course is also good preparation for a career in academia or research in fields such as computer vision, robotics, medical imaging, or more general engineering, science and information technology.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
This course introduces students to the major aspects of control theory and its application to the design of control systems. Read more
This course introduces students to the major aspects of control theory and its application to the design of control systems.

In response to the growing demands of the chemical, oil, aerospace, aeronautical, power and defence industries, control theory has developed into a well established body of knowledge that many engineers need to acquire.

Additional areas of application include:

Industrial automation
Robotics
Mechanical systems
Biomedical control

Students also acquire expertise in the use of standard computer packages for control design.

Read less
This full-time course covers the theoretical and practical aspects of communications theory and networks, fundamental control technology and digital signal processing (DSP). Read more

Why this course?

This full-time course covers the theoretical and practical aspects of communications theory and networks, fundamental control technology and digital signal processing (DSP). All these topics are critical to the information and communications age.

You’ll gain an advanced knowledge of the principles of the communications, control and DSP domains. You’ll also develop an understanding of the current and future developments and technologies within these three disciplines.

Along with full accreditation from the Institution for Engineering and Technology (IET), this course will enable you to capitalise on job opportunities across a range of sectors including:
- control
- telecommunications
- signal processing
- electronics
- IT user companies

EDF Energy, Siemens and Texas Instruments are just some of the multinationals where our graduates have secured positions.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/communicationscontroldigitalsignalprocessing/

You’ll study

You’ll take two semesters of compulsory and optional taught classes. These are followed by a three-month research project in your chosen area. Opportunities exist to do the project through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners including Selex ES, ScottishPower, SmarterGridSolutions. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

We’ve a wide range of excellent teaching spaces including interactive classrooms and brand new state-of-the-art laboratories equipped with the latest technologies including:
- White Space Communications Facility
- Hyperspectral Imaging Centre
- DG Smith Radio Frequency Laboratory

You’ll have access to our IT facilities including web based resources, wireless internet and free email. There’s an IT support team to help with all your needs.

Accreditation

The course is fully accredited by the professional body, the Institution for Engineering and Technology (IET).
This programme also fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme or equivalent.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development.
Xilinx, Texas Instruments, MathWorks, and Selex ES are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project consists of four elements, with individual criteria:
1. Interim report (10%, 1,500 to 3,000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

By concentrating on three distinct disciplines, this course enables you to capitalise on job opportunities across a range of sectors including control, telecommunications, signal processing, electronics and IT user companies. Globalisation of the communications, electronic & digital sectors means if graduates wish to work abroad, this course provides an ideal passport to anywhere in the world.
Almost all of our graduates secure jobs by the time they have completed their course. They have gained professional and technical occupations with international companies such as Samsung, MathsWorks, Nokia and Texas Instruments, as well as joining Wolfson Microelectronics, Seles ES and Linn Products in the UK.
Increasingly, graduates of this course also play leading roles in the power and renewable energy sectors, supporting data analytics, information transmission and security for organisations such as EDF Energy, Siemens & Petrofac Engineering.

Where are they now?

87.5% of our graduates are in work or further study.*

Job titles include:
- Graduate controls engineer
- Graduate software engineer
- Lecturer
- Plant controls graduate

Employers include:
- FTDI
- MacDonald Humfrey (Automation)
- Mehran University of Engineering
- Vestas

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12)

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_energy_ren.pdf
This track of the Master of Science in Electrical Engineering aims to form graduates with a comprehensive scientific and technological background on electrical power systems. It builds on basic disciplines (covering digital signal processing, electromagnetic compatibility and engineering electromagnetics, measurements and diagnosis techniques, power electronics and electrical drives, design of electrical machines and apparatus, etc.) and provides solid skills in the areas of electrical energy and renewable sources, electrical systems in transportation, design and automation of electrical systems. Graduates will be highly employable in the sectors of generation, transmission, distribution and utilization of electrical energy; manufacturing of electrical machines and power electronics equipment; industrial automation; design, production and operation of electrical systems for transportation (rail, automotive, aerospace and marine); companies operating on the electricity market.
The programme is taught in English.

Subjects

Measurement Oriented Digital Signal Processing, Electric Power Systems, Science And Technology of Electrical Materials, Power Electronics, Applied Statistics, Electromagnetic Compatibility, Electrical Switching Apparatus (or other offered courses), Construction and Design of Electrical Machines, Electric Systems for Transportation, Reliability Engineering and Quality Control, Electrical Drives

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The overall objective of this course is to add value to your first degree and previous relevant experience by developing a focused, integrated and critically aware understanding of underlying theory and current policy and practice in the field of control systems engineering. Read more
The overall objective of this course is to add value to your first degree and previous relevant experience by developing a focused, integrated and critically aware understanding of underlying theory and current policy and practice in the field of control systems engineering.

The course is control systems focused, with the emphasis on control systems theory together with a range of control applications including industrial control (SCADA), intelligent control, flight control and robotic control. The control systems approach provides continuity in learning throughout the one year of study.

Key benefits:

• Emphasis on feedback control, robotics, flight control and discrete event manufacturing control
• Real opportunities for career progression in to the automation industry
• Programme designed using Engineering Council benchmarks

Visit the website: http://www.salford.ac.uk/pgt-courses/advanced-control-systems

Suitable for

This course is suitable for engineering graduates seeking employment in the automation and control sector, and, in part-time mode, for practising engineers from the control systems area who wish to extend and update their skills.

Programme details

On completion of the course you should have a critical awareness and understanding of current problems in control engineering, techniques applicable to research in the field of control systems and how established techniques of research and enquiry are used to create and interpret knowledge in the field of control systems. You should also be able to deal with complex issues both systematically and creatively, make sound judgments in the absence of complete data, and communicate your conclusions clearly to specialist and non-specialists.

Format

Teaching will be delivered through a combination of lectures, tutorials, computer workshops and laboratory activities.

Module titles

• Automation and Robotics
• Instrumentation and Control
• Artificial Intelligence
• Flight Dynamics and Control
• Operations Techniques and Management
• MSc Project and Dissertation

Assessment

• 35% examinations
• 65% coursework (labs, reports, dissertation)

Career potential

The course could lead to control and automation opportunities in manufacturing and engineering companies, plus careers in the aerospace sector. There are also opportunities to pursue further research within our CASE control and Intelligent Systems Research Centre.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering. Read more
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you have an engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of electronics and electrical engineering, this programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated system design module, allowing development of skills in project management, quality management and accountancy.
◾You will benefit from access to our outstanding laboratory facilities and interaction with staff at the forefront of research in electronics and electrical engineering.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills of management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen electronics and electrical engineering subjects.

Core course

◾Integrated systems design project

Optional courses

(a choice of two)
◾Computer communications
◾Electrical energy systems
◾Micro- and nano-technology
◾Microwave and millimetre wave circuit design
◾Microwave electronic and optoelectronic devices
◾Optical communications
◾Real-time embedded programming.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May - August). This will give you an opportunity to apply and consolidate your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to electronics and electrical engineering projects, and January entry students have a choice of electronics and electrical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronic and Electrical Engineering or the Management portion of your degree.
◾Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the electronic and electrical engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾If you are looking to advance to a senior position in industry and to perform well at this level, knowledge and understanding of management principles will give you a competitive edge in the jobs market.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronic and Electrical Engineering include Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Graduates of this programme have gone on to positions such as:
Project Engineer at TOTAL
Schedule Officer at OSCO SDN BHD
Control and Automation Engineer at an oil and gas company.

Read less

Show 10 15 30 per page



Cookie Policy    X