• Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Birmingham Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Cardiff University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Loughborough University Featured Masters Courses
"contaminated" AND "sites…×
0 miles

Masters Degrees (Contaminated Sites)

  • "contaminated" AND "sites" ×
  • clear all
Showing 1 to 3 of 3
Order by 
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. Read more
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you study two modules: 'Cellular Molecular Biology' and 'Core Genetics and Protein Biology'. These modules concentrate on the basic principles and the techniques used in modern molecular biology investigations, and on aspects of cellular molecular biology and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules: 'Industrial Biotechnology' and 'Molecular Biotechnology'. These modules will give you an in depth understanding of the application of molecular biological approaches to the production of industrial and medicinal proteins. You will also learn how to apply and design industrial and environmental biotechnology processes, such as process kinetics and design, reactor design and oxygen transfer, sterilization kinetics and the application of biotechnology processes for the bioremediation of contaminated sites.

In the third semester (Semester C) you undertake a research project to develop your expertise further. The research project falls into different areas and may include aspects of fermentation biotechnology, genetic manipulation and protein engineering, bioinformatics, microbial physiology and environmental biotechnology.

Why choose this course?

-This course gives in-depth knowledge of biotechnology and molecular biology for biosciences or biological chemistry graduates
-It has a strong practical basis giving you training in biotechnology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for chemical synthesis and purification, PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2015 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

On successful completion of the programme you will be well qualified for research and development positions in the biotechnology and pharmaceutical industries, to progress to a research degree or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project:
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Biosciences Research Methods for Masters
-Research project

All modules are 100% assessed by coursework which includes in-course tests.

Structure

Core Modules
-Biosciences Research Methods for Masters
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Project-Mol Biology, Biotechnology, Pharmacology

Read less
The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment. Read more

Why take this course?

The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment.

This course is designed to provide you with the particular expertise required for dealing with contaminated sites. Such expertise is essential to ensuring we maintain habitable, safe and sustainable communities.

What will I experience?

On this course you can:

Use our state-of-the-art geological and geotechnic labs for practical work
Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by recognised experts with extensive knowledge in groundwater hydrology, environmental geology and contaminated land

What opportunities might it lead to?

We will give you the knowledge and practical skills to ensure an interesting and rewarding career in the specialist area of contaminated land consultancy, regulation and remediation, both in the UK and overseas.

Here are some routes our graduates have pursued:

Environmental organisations
Geotechnical consultancies
Mining companies
Local authorities
Government agencies

Module Details

You can opt to take this course in full-time or part-time mode. The course is divided into three parts. The first two comprise the taught units of the course covering the key conceptual, institutional and applied bases of the subject. The third focuses on your dissertation.

This course covers a mixture of topics including: groundwater hydrology, geochemistry, site investigation, geotechnics and contaminated land assessment.

Here are the units you will study:

Soil Mechanics: This unit is fundamental to understanding how contaminants behave and migrate in the ground. You will gain an advanced understanding of the geo-mechanical behaviour of soils, including the description and testing of soils to UK and international standards.

Desk Studies and Ground Models: These are an integral part of any contaminated land assessment. You will have training in the development of geological ground models and geomorphological terrain models through desk studies, walk-over surveys and site investigation.

Ground Investigation Techniques: You will gain advanced knowledge of ground investigation using invasive techniques, in-situ tests and geophysical methods.

Contaminated Land Risk Assessments: You will learn key techniques for site assessment, analytical testing and risk assessment.

Field Reconnaissance and Walk-Over Survey: This unit covers techniques which are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn integration and analysis of spatial datasets using GIS and interpretation of aerial photography and satellite imagery - key tools for terrain evaluation.

Independent Research Project: This provides an opportunity for you to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, workshops and practical laboratory work. You will generally be taught in small classes, providing an informal, friendly and supportive atmosphere for your studies.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Essays
Laboratory reports

Student Destinations

Contaminated land is listed as one of the key areas in which the UK has a skills shortage. This fact, combined with the vocational nature of this course, means that you will be in high demand from employers looking for newly qualified contaminated land specialists. You will find the majority of such roles in the environmental consultancy sector.

This course will provide you with a variety of transferable skills such as project planning, literature and data reviewing, report writing, along with the more general skills of presentation, communication and so on. It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
There is a growing concern for environmental conservation and sustainable development across the globe. To achieve long-term environmental sustainability, it requires innovative solutions to many problems caused by human. Read more
There is a growing concern for environmental conservation and sustainable development across the globe. To achieve long-term environmental sustainability, it requires innovative solutions to many problems caused by human. These problems include the presence of micropollutants in drinking water, noxious aerosols and fumes in the air, heavy metals and toxic organics in solid wastes that will eventually overwhelm our landfill sites. The scarcity of water resources, the ever-deteriorating air quality in many metropolises, the threat of mounting volumes of waste without suitable disposal sites, and a long list of other critical issues must be resolved through the innovations of scientists and engineers.

Environmental problems are essentially interdisciplinary issues. These issues include the physical process of mixing and dilution, chemical and biological processes, mathematical modeling, data acquisition and measurement. The Environmental Engineering (EVNG) Program offered by the School of Engineering at the Hong Kong University of Science and Technology (HKUST) is one of the most successful interdisciplinary research programs in this field of study. The faculty members are leading experts committed to innovative research in a broad range of environmental engineering areas. The Environmental Engineering Program offers a comprehensive curriculum that provides a solid foundation on which students may build careers in research.

The MPhil program seeks to strengthen students’ knowledge of environmental engineering and to expose them to issues in environmental pollution and conservation, and sustainable development. Students are required to undertake coursework and successfully complete a thesis to demonstrate competence in research.

Research Foci

The program focuses on innovative technologies for different applications in the environmental engineering area and seeks to provide research students with an understanding of effective environmental management strategies.

The main research areas include:
-Innovative Water and Wastewater Treatment Technologies
-Solid/Hazardous Waste Management and Waste Recycling/Reuse
-Contaminated Land and Groundwater Remediation
-Indoor and Outdoor Air Quality
-Environmental Sustainability and Renewable Energy

Facilities

The facilities of the Environmental Engineering Laboratories are divided into standard instruments and advanced stationary equipment, as required for different environmental studies. Standard instruments can provide accurate measurements of routine environmental analyses, such as DO, pH, COD, BOD5, ORP, salinity, conductivity, and turbidity.

Advanced equipment includes: a FTIR system with MIR and DTGS detectors for the analyses of functional groups in solid or non-aqueous liquid samples, total organic halogen with ion chromatography system to measure the amount of TOX in liquid or solid samples, UV/Vis spectrophotometer for measuring absorbance or transmittance of liquid samples, florescence spectrometer for analyzing luminescence samples, programmable tube furnace with three control zones for various degree of combustion of different materials, and BET system for the characterization of surface area and pore volume of solid samples.

A relevant central facility is the Material Characterization and Preparation Facility comprising 10 main research groups: surface science, electron microscopy, scanning probe microscopy, x-ray diffraction, nuclear magnetic resonance, thin film deposition, optical characterization, electrical and magnetic characterization, thermal analysis, and sample preparation. Each research group houses state-of-the-art multidisciplinary instrumentation, supported by a team of experienced staff. Major items include X-ray diffraction systems, transmission electron microscopes, scanning electron microscopes, thin film sputtering and evaporation systems, a multi-technique surface analysis system (XPS Auger, ISS), a TOF-SIMS system, a Dynamic SIMS system, scanning probe microscopes (STM, AFM and MFM), FTIR/Raman spectrometers, thin film measurement systems, thermal analysis instruments.

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X