• University of Glasgow Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Cardiff University Featured Masters Courses
Middlesex University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Cass Business School Featured Masters Courses
Imperial College London Featured Masters Courses
Bath Spa University Featured Masters Courses
"contaminated" AND "land"…×
0 miles

Masters Degrees (Contaminated Land)

  • "contaminated" AND "land" ×
  • clear all
Showing 1 to 15 of 38
Order by 
The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment. Read more

Why take this course?

The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment.

This course is designed to provide you with the particular expertise required for dealing with contaminated sites. Such expertise is essential to ensuring we maintain habitable, safe and sustainable communities.

What will I experience?

On this course you can:

Use our state-of-the-art geological and geotechnic labs for practical work
Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by recognised experts with extensive knowledge in groundwater hydrology, environmental geology and contaminated land

What opportunities might it lead to?

We will give you the knowledge and practical skills to ensure an interesting and rewarding career in the specialist area of contaminated land consultancy, regulation and remediation, both in the UK and overseas.

Here are some routes our graduates have pursued:

Environmental organisations
Geotechnical consultancies
Mining companies
Local authorities
Government agencies

Module Details

You can opt to take this course in full-time or part-time mode. The course is divided into three parts. The first two comprise the taught units of the course covering the key conceptual, institutional and applied bases of the subject. The third focuses on your dissertation.

This course covers a mixture of topics including: groundwater hydrology, geochemistry, site investigation, geotechnics and contaminated land assessment.

Here are the units you will study:

Soil Mechanics: This unit is fundamental to understanding how contaminants behave and migrate in the ground. You will gain an advanced understanding of the geo-mechanical behaviour of soils, including the description and testing of soils to UK and international standards.

Desk Studies and Ground Models: These are an integral part of any contaminated land assessment. You will have training in the development of geological ground models and geomorphological terrain models through desk studies, walk-over surveys and site investigation.

Ground Investigation Techniques: You will gain advanced knowledge of ground investigation using invasive techniques, in-situ tests and geophysical methods.

Contaminated Land Risk Assessments: You will learn key techniques for site assessment, analytical testing and risk assessment.

Field Reconnaissance and Walk-Over Survey: This unit covers techniques which are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn integration and analysis of spatial datasets using GIS and interpretation of aerial photography and satellite imagery - key tools for terrain evaluation.

Independent Research Project: This provides an opportunity for you to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, workshops and practical laboratory work. You will generally be taught in small classes, providing an informal, friendly and supportive atmosphere for your studies.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Essays
Laboratory reports

Student Destinations

Contaminated land is listed as one of the key areas in which the UK has a skills shortage. This fact, combined with the vocational nature of this course, means that you will be in high demand from employers looking for newly qualified contaminated land specialists. You will find the majority of such roles in the environmental consultancy sector.

This course will provide you with a variety of transferable skills such as project planning, literature and data reviewing, report writing, along with the more general skills of presentation, communication and so on. It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
*This course is open to applications for entry from September 2016. This course is accredited by the Institution of Environmental Sciences. Read more
*This course is open to applications for entry from September 2016

Why choose this course?

This course is accredited by the Institution of Environmental Sciences
Gain an in-depth and holistic understanding and knowledge of contaminated land and freshwater environments, as well as strategies to prevent, manage, and control contamination of these environments
You'll have the opportunity to undertake a work placement to experience working with employers in a range of settings, from practical-based training to practitioner-based learning
This course will prepare you to apply the knowledge gained to real world situations and critically evaluate the outcomes to make strategic decisions
This course provides study aspects that develop an insight and skills for professionals in the government, industry, consultancy, academia, and other statutory bodies within the UK and overseas to evaluate contaminated land and freshwater management policies and strategies to achieve effective governance of these environments
We offer a learning approach suitable for recent graduates seeking a full-time study approach, and mature students in current employment a part-time route to suit their time commitments.

About this course

This is a creative programme that addresses human intervention strategies towards problem-solving in the real world, on examples such as flood defence, through the processes involved in decision-making at local authorities. This will be achieved by linking with external organisations to include practical experience through field and laboratory work, and practitioner training through placements.
Aspects of contaminated land will include legislation and regulation, identification, analysis and remediation, and human health exposure assessment through a case study approach using research informed teaching, as well as practitioner training. Within the water aspects of our course, you will focus on the environmental monitoring and assessment of freshwater, legislation and regulatory aspects, management of freshwater towards prevention and control of contamination, drinking water quality and human health, and a focus on flood defence.

A number of factors ensure you are prepared for the workforce you will seek to join on completion of the programme; these include placement experience with employers, and field and laboratory skills. Additionally, the course is currently undergoing accreditation with the Institution of Environmental Sciences (IES), meaning students could be studying on a professional body accredited course with free student membership of the professional body and eligibility to apply for higher levels of membership upon completion.

Face-to-face delivery of modules and placements will aid your development of transferrable soft leadership and management, and communication skills required to meet the demands of current employers. Most of our student employment will be within collaborative and multi-disciplinary teams. Moreover, you will be supported in your PDP through reflection upon your own learning, performance and achievement, and planning for your personal, educational, and career development.

Read less
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste. Read more
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste.

It has been designed with industry advice to enable good science and engineering graduates begin and advance successful careers in the environmental sector, and pursue postgraduate scientific research. The MSc is delivered in first-class teaching and research facilities by a dedicated team of internationally renowned environmental scientists, and presents considerable interaction with environmental consultancies and engineers, industry, local and regulatory authorities, and research institutes.

During 2007-2011, the course was supported by 6 NERC studentships, the most awarded annually to an environmental MSc. Students on the course have won the most EMpower research projects funded by companies within the nuclear industry, and since 2008, a Prize for Best Performance Overall has been awarded annually by Arup, a global environmental engineering and consultancy company.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscenvironmentaldiagnosismanagement.aspx

Why choose this course?

- The quality of teaching and learning on the course is enhanced considerably by significant professional networking and interaction with leading experts from environmental consultants and engineers, industry, local and regulatory authorities, and universities and research institutes; who present seminars, host study visits, co-supervise research projects, and act as an advisory panel.

- Graduates of the course are skilled and knowledgeable scientists with excellent employment prospects within the environmental sector, particularly as environmental consultants and engineers, in local and regulatory authorities, industry, charitable trusts, and research institutes and universities.

- In the 2008 Research Assessment Exercise (RAE), the Department’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

Course content and structure

You will study seven taught modules, three case studies and complete an Independent Research Project:

- Communication & Co-operation Skills
Provides practical training in written and verbal communication media; project, team and time management; role playing in environmental impact assessment; careers advice and a mock job interview.

- Environmental Inorganic Analysis
A practical laboratory and field-work based introduction to quality assured sampling strategies, preparation processes and analytical methods for heavy metals in soils, surface waters, and vegetation.

- Diagnostic & Management Tools
Provides practical computer-based training in statistical analysis of environmental data, geographical information systems, and environmental risk assessment.

- Environmental Organic Chemistry Pathways Toxicology
Comprises physical and chemical properties, transport, fate and distribution, and toxicology of organic compounds in the environment.

- Contaminated Land Case Study
A practical laboratory and field-work based human health risk assessment of pollutant linkages at a former gravel extraction and landfill site. It comprises desk-top study, site investigation and sampling, laboratory analysis, data interpretation, quantitative risk assessment, and remediation options.

- Water Quality: Diagnosis & Management
A practical laboratory and field-work based introduction to aquatic science, hydrogeology, treatment of water and wastewater, and chemical, biological and physical monitoring of water quality. Includes a study visit to a global manufacturer of pesticides and herbicides.

- River Thames Basin Case Study
A combination of fieldwork, laboratory work and desk-top study to diagnose water quality in chemical and ecological terms, to identify industrial and agricultural pollutant linkages, and to determine environmental, ecological and health impacts.

- Air Pollution: Monitoring, Impacts & Management
Covers: sources, sinks, dispersion, conversion, monitoring, impacts and management of air pollutants with study visits to a local authority and a government research institute.

- Royal Holloway Campus Air Quality Case Study
Involves a consultancy company-style investigation of ambient and indoor air quality within the confines of RHUL campus; and combines desk-top research with practical fieldwork and laboratory analysis.

- Waste Management & Utilisation
Considers municipal, industrial and radioactive waste management options, with study visits to a landfill site, a waste incinerator, composting facility, recycling centre and nuclear power station.

- Independent Research Project
Consists of a four-month, independent scientific investigation, usually in collaboration with environmental consultants and engineers, local and regulatory authorities, industry, research institutes, and universities. Projects may comprise a desk-top study or practical laboratory and field investigation, they may be funded, and often lead to employment or to PhD research. Final results are presented at the Research Project Symposium to an audience from within the environmental sector

On completion of the course graduates will have acquired the experience, knowledge, and critical understanding to enable them to:

- Conduct themselves as professional environmental research scientists, consultants, and managers, convey in a professional manner, scientific, technical and managerial information, and manage projects and resources efficiently

- Apply quality assured sampling strategies, preparation procedures and analytical systems to quantify health risks posed by inorganic and organic pollutant linkages in soils, waters and air

- Apply statistical analysis, geographical information systems, and environmental impact and risk assessment to the interpretation of environmental data

- Appreciate the importance and impacts of hydro-geological, and bio- and physico-chemical processes on the treatment of water and wastewater, and on the quality of groundwater and aquatic ecosystems

- Appreciate the emissions, dispersion, conversion, and monitoring of natural and man-made gaseous and particulate air pollutants, their impacts on climate change, human health and vegetation, and management on local, regional and global scales

- Appreciate the prevention, re-use, recycling, recovery, disposal and utilisation of municipal and industrial waste and the management of nuclear waste within the constraints of national and international legislation

- Manage an independent environmental science research project, often with professional collaboration, and of significant value to their career development.

Assessment

- Written examinations test understanding of the principles and concepts taught in the modules and case studies, and the ability to integrate and apply them to environmental diagnosis and management.

- Assessment of module work and practical computing, laboratory and fieldwork evaluates critical understanding of the environmental science taught, and mastery of producing quality assured data, and its analysis, interpretation, presentation and reporting.

- Assessment also reflects the ability to work independently and in teams, and to learn during study visits.

- Assessment of research projects is based on the ability to manage and report on an original piece of independent scientific work.

- All assessed work has significant confidential written and verbal feedback.

Employability & career opportunities

94% of the graduates of the MSc from 2008 to 2013 either successfully secured first-destination employment as international environmental consultants and engineers, in industry, local and regulatory authorities and charitable trusts, or are conducting postgraduate research within international research institutes and universities.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
Professional geologists working in consultancies, regulatory authorities and government environmental agencies are required to apply a wide range of transferrable skills to their jobs. Read more
Professional geologists working in consultancies, regulatory authorities and government environmental agencies are required to apply a wide range of transferrable skills to their jobs. Candidates who are able to demonstrate skills in public engagement, communication, professional research and report-writing, in addition to academic knowledge and field skills, are therefore highly sought after in these professions.

This full-time MSc Applied Environmental Geology is part taught and part professional project. We aim to develop your transferrable skills in a professional context and give you a head start in the geology profession of your choice or starting a PhD.

Distinctive features:

• Our location in South Wales provides us with a wide range of highly relevant geoenvironmental and geotechnical locations, which we visit during fieldtrips and use in case studies.

• Embed your skills in professional practice through a five month professional project, usually as part of a placement.

• Strong links with industry and government agencies ensure the quality and relevance of the course, and give you the opportunity to make contacts.

• Fully integrated with the professional development (CPD) lecture programme of the Southern Wales Group of the Geological Society of London.

Structure

There are two stages to the MSc Applied Environmental Geology.

Stage 1 lasts for 7 months (September – April), where you will complete taught modules and fieldwork, with significant contributions from industry professionals.

In these modules, we will investigate general themes, such as the principles of geotechnical engineering and geophysics. We will also look into environmental themes in more depth including land contamination, environmental regulation, behaviour of soils and water.

If you pass Stage 1 you will progress onto Stage 2, which is a 5-month professional project from May to September culminating in a dissertation. We will, wherever possible, offer you an industrial placement with a professional company either in the UK or overseas over the summer to complete your project.

For the first seven months, from September to April, you will complete taught modules and fieldwork at Cardiff University. After this, you will progress onto a 5-month placement in the UK or overseas where you will undertake a professional project and complete your dissertation.

Core modules:

Project Planning, Design and Management For Applied Environmental Geology
Geotechnical Engineering
Engineering Behaviour of Soils
Contaminated Land
Environmental Assessment and Regulation
Remote Sensing and Applied Geophysics
Transferable Skills
Water in the Environment
Dissertation AEG

Optional modules:

Environmental Geology/Hydrogeology Report

Teaching

The methods of teaching we employ may vary from module to module. Generally we teach using a mixture of lectures, practical work and fieldwork. We also have a series of lectures with invited speakers from across the profession, as well as strong links with the Geological Society.

On the course, you will undertake laboratory work in several modules. This includes standard laboratory tests covering the physical and mechanical properties of soils, and water flow experiments to learn hydrologic and hydrogeologic concepts.

You will also develop your knowledge of numerical tools to model real-world geotechnical problems. Application software, such as CorelDraw, Surfer, ArcGIS, as well as professional geoengineering software, such as Rockscience and Landsim, are used throughout the course.

Throughout the course we encourage communication and teamwork. For example, we may ask you to work in teams in laboratories and on field-trips. Our project training includes skills in supervision and co-ordination of a range of tasks designed to address specific geotechnical and geoenvironmental problems.

Assessment

We use a wide range of assessment methods, depending on the module. These include exams, coursework, presentations, practical assessment, your industrial placement and dissertation (20,000 words).

Placements

You will undertake a professional placement in industry as part of the second stage of the course. This placement will last for 5 months (May - September), during which you will undertake a research project and complete your dissertation.

We endeavour wherever possible to place students with industrial partners. This placement can be located in the UK or overseas as long as the project is deemed to be logistically safe and academically viable.

Fieldwork

South Wales provides a wide range of highly relevant geoenvironmental and geotechnical case studies and site visits. These include site visits to the Cardiff Bay Barrage, acid mine drainage from abandoned mines and active landslides in the south Wales Valleys. Field work includes surveying skills, rock engineering to the Rhondda Valley and Cardigan, site investigation visits to the Mumbles, Bournville landslide, as well as contaminated land studies at Barry Docks and Bryn Pica landfill site. All fieldwork on this course is compulsory.

Career prospects

Our graduates are widely sought after in industry and often have an advantage in the job market, due to the applied nature of the course and the transferrable skills they have been equipped with.

Following this degree you may choose to work in consultancy, regulatory authorities or government environmental agencies across the world. You may also decide to conduct further research and complete a PhD.

Former students can be found working for the likes of Network Rail, Mott McDonald, Natural Resources Wales, Environment Agency England, WSP, Ove Arup, Atkins and numerous other specialist geo-environmental consultancies and agencies based around the UK.

Read less
The MSc Environmental Engineering course provides highly employable graduates who will act as managers and leaders serving the environmental needs of the process industries. Read more
The MSc Environmental Engineering course provides highly employable graduates who will act as managers and leaders serving the environmental needs of the process industries.

The scale of modern industralisation has given rise to environmental problems of unprecedented complexity. This MSc examines environmental problems like toxic waste, air pollution, waste disposal, global warming, contaminated land and water. The challenge for today’s environmental engineers is to manage these problems through a high level of resource management and technological innovation.

Today’s environmental problems require innovation in improvements to manufacturing processes and in the utilisation
of natural resources. Both the assessment and management of the effects of natural and human activity on the natural and built
environment are examined in this course. The course demands a high level of resource management and is designed to enable graduates to work across the interface between engineering and the environment.

Students will develop:
a solid understanding of existing technology and its application, and an appreciation of the economic, legal, social and ethical aspects of the problems presented
skills in research, project management, problem solving and reporting
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
the ability to plan and undertake an individual project
the ability to understand and apply the theory, method and
practice of environmental engineering
interpersonal communication and professional skill

Previous research projects have included:
assessment of energy crops for combined heat and power systems
bio-diesel process optimisation
microbial Fuel Cells
nanobots for contaminated land remediation
metal contamination of lakes near Nottingham
starch nanoparticles for water treatment
renewable energy at point of consumption

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
The environmental impact of oil and gas exploration, production and distribution is critical and mistakes of the past have left disastrous consequences. Read more
The environmental impact of oil and gas exploration, production and distribution is critical and mistakes of the past have left disastrous consequences.

The MSc Energy & Environmental Management (Oil & Gas) gives you the opportunity to analyse problems such as ground water pollution and contaminated land and the health and social issues they raise.

This course has several different available start dates and study methods:
SEPTEMBER 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02587-1PTA-1718/Energy_&_Environmental_Management_(Oil_&_Gas)_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02587-1PTAB-1617/Energy_&_Environmental_Management_(Oil_and_Gas)_January?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2017 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02553-1FTAB-1617/Energy_&_Environmental_Management_(Oil_&_Gas)_January?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02553-1FTAB-1718/Energy_&_Environmental_Management_(Oil_&_Gas)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02587-1PTAB-1718/Energy_&_Environmental_Management_(Oil_&_Gas)_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

The oil and gas industries are widely affected by a growing range of factors, including shifting global economics, an evolving global energy mix and environmental issues.

There is an increasing demand for those working in the industries to develop an intelligent awareness of this complex business environment and to grasp the ways in which these changes will affect organisations.

Developed in conjunction with industry, the School of Engineering and Built Environment at GCU offers a suite of programmes designed to provide the knowledge required for a range of professional careers within the oil and gas industry.

The environmental impact assessment of oil and gasexploration, production and distribution is absolutelycrucial. Mistakes of the past which has left disastrous consequences such as ground water pollution, contaminated land, health and social problems, must not be repeated. This programme produces graduates that are aware of these problems, are capable of analysing the problems and offering solutions taking into account the local circumstances.

Why Choose This Programme?

With increasing environmental legislation and regulation, commercial and industrial organisations, local authorities and public bodies, all require some environmental input to their activities. The environment offers opportunities to those who understand the issues involved and have a vision broad enough to grasp their inter-disciplinary nature. Thus, the programme offers students the challenge to broaden their understanding of environmental issues in the context of their previous backgrounds and qualifications.

Assessment Methods

The taught modules are assessed by coursework only or a combination of coursework and examination. The MSc project is assessed by project reports, practical operation and an electronic presentation.

Career Opportunities

Graduates of this programme can expect to find work as environmental specialists within the oil and gas industry and a wide range of sectors often related to various previous qualifications. Graduates of the MSc Energy & Environmental Management have gone on to work for: regulators such as Scottish Environmental Protection Agency (SEPA); various local authorities; and national and international consultancy companies, including Carl Bro Group, ERS Land Regeneration and Valpack.

Read less
OVERVIEW. The Environmental Management MSc degree provides graduates with a range of skills, knowledge and expertise in the field of environmental management. Read more
OVERVIEW

The Environmental Management MSc degree provides graduates with a range of skills, knowledge and expertise in the field of environmental management.

This well-established Environmental Management course allows students to specialise in industrial environment, natural environment, geoinformation systems or law and policy.

Whichever route is selected there is a choice from a tailored selection of modules or for those wanting a broad course it is possible to study modules across disciplines.

WHY CHOOSE THIS COURSE?

National governments, local authorities, industrial companies, commercial enterprises, conservation agencies as well as environmental consultancies are keen to recruit employees who possess a broad range of environmental skills.

A choice of a tailored selection of modules to study.

Choose the modules best suited to your background and career aspirations.

WHAT WILL I LEARN?

Indicative Course Content

A wide range of modules are available allowing you to either broaden your experience of environmental management and its applications or to focus on more specific areas.

Many modules are based around case studies, industrial or field visits and extensive laboratory facilities allow practical work in the analysis of soils, airs and waters for physical, chemical and biological properties.

Subjects normally available include:

Energy and environmental management systems,
environmental auditing,
environmental impact assessment,
renewable energy,
climate change – the physical Science basis,
contaminated land,
impacts of oil production,
pollution prevention and control,
environment monitoring laboratories,
ecological management and assessment,
regulation, monitoring and assessment of water pollution,
water and waste water treatment,
environmental law,
international environmental law,
corporate social responsibility,
remote sensing and digital image analysis,
geospatial information analysis,
geographical information Science, systems and services,
the final period of study is based on your own area of interest in environmental management and involves and individual project.

Read less
This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes. Read more

Why take this course?

This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes.

You will be fully trained by internationally recognised experts in hazard identification, terrain evaluation techniques as well as hazard modelling and risk assessment techniques. Providing you with the essential skills to monitor, warn and help control the consequences of natural hazards.

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, hazard modelling and mapping, soil mechanics and rock mechanics, contaminated land, flooding and slope stability.

Here are the units you will study:

Natural Hazard Processes: The topic of this unit forms the backbone of the course and give you an advanced knowledge of a broad range of geological and environmental hazards, including floods, landslides, collapsible ground, volcanoes, earthquakes, tsunamis, hydro-meteorological and anthropogenic hazards. External speakers are used to provide insights and expertise from an industry, regulatory and research perspective.

Numerical Hazard Modelling and Simulation: This forms an important part of the course, whereby you are trained in the application of computer models to the simulation of a range of geological and environmental hazards. You will develop skills in computer programming languages and use them to develop numerical models that are then used to simulate different natural hazard scenarios.

Catastrophe Modelling: On this unit you will cover the application of natural hazard modelling to better understand the insurance sector exposure to a range of geological and environmental hazards. It includes external speakers and sessions on the application of models for this type of catastrophe modelling.

Volcanology and Seismology: You will gain an in-depth knowledge of the nature of volcanism and associated hazards and seismology, associated seismo-tectonics and earthquake hazards. This unit is underpinned by a residential field course in the Mediterranean region that examines the field expression of volcanic, seismic and other natural hazards.

Flooding and Hydrological Hazards: These are a significant global problem that affect urban environments, one that is likely to increase with climate change. This unit will give you an in-depth background to these hazards and opportunities to simulate flooding in order to model the flood hazard and calculate the risk.

Hazard and Risk Assessment: This unit gives you the chance to study the techniques that are employed once a hazard has been identified and its likely impact needs to be measured. You will have advanced training in the application of qualitative and quantitative approaches to hazard and risk assessment and their use in the study of different natural hazards.

Field Reconnaissance and Geomorphological Mapping: These techniques are integral to the course and an essential skill for any graduate wishing to work in this area of natural hazard assessment. On this unit you will have fieldwork training in hazard recognition using techniques such as geomorphological mapping and walk-over surveys, combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn how to acquire and interpret aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS – all key tools for hazard specialists.

Geo-mechanical Behaviour of Earth Materials: You will train in geotechnical testing and description of soils and rocks to the British and international standards used by industry.

Landslides and Slope Instability: This unit will give you an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Impacts and Remediation of Natural Hazards: You will cover a growing area of study, including the impact of hazardous events on society and the environment, and potential mitigation and remediation methods that can be employed.

Independent Research Project: This provides you with an opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Student Destinations

This course provides vocational skills designed to enable you to enter this specialist environmental field. These skills include field mapping, report writing, meeting deadlines, team working, presentation skills, advanced data modelling and communication.

You will be fully equipped to gain employment in the insurance industry, government agencies and specialist geoscience companies, all of which are tasked with identifying and dealing with natural hazards. Previous destinations of our graduates have included major re-insurance companies, geological and geotechnical consultancies, local government and government agencies.

It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. Read more
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. The course is designed to provide specialist postgraduate professional development in this emerging discipline, encompassing areas traditionally within civil engineering, earth sciences and biology.

Geoenvironmental engineering is an inclusive discipline which recognises that many environmental challenges cannot be solved by one traditional discipline alone. The solutions to environmental challenges relating to human interaction with soil, groundwater and surface water require engineers to possess a broad range of knowledge and expertise. Cardiff University's MSc in Civil and Geoenvironmental Engineering prepares you to meet these challenges.

Civil engineering, earth sciences and the life sciences are all part of the discipline of geoenvironmental engineering. As a geoenvironmental engineer you could be involved in a wide range of activities, including contaminated land management, hydrogeology, water resource management, geochemical analysis, groundwater and surface water contamination fate and transport prediction, environmental impact assessment, environmental risk assessment, and habitat management. Geoenvironmental engineers frequently work in multidisciplinary project teams and developments.

Distinctive features

• Professional practice issues are integrated with the scientific and engineering foundation of the MSc through a series of short, workshop-style training courses covering practical aspects. These short courses are delivered by recognised professional practitioners in the industry.

• The course involves an innovative partnership between the Cardiff School of Engineering, the School of Earth, Ocean and Planetary Sciences and the Cardiff School of Biosciences.

• The MSc in Civil and Geoenvironmental Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The degree programme is available on a one year full-time basis or on a three year part-time basis. The full-time programme is delivered over two taught semesters followed by a research period and preparation of a dissertation. The part-time course is taught over three years. On successful completion of Part 1, the taught part of the course, you will proceed to the research project and dissertation stage.

This MSc is a partnership between the School of Engineering, the School of Earth, Ocean and Planetary Science and the School of Biosciences, and is administered by the School of Engineering.

For a list of the modules taught on the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc

For a list of the modules taught on the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc-part-time

Teaching

Part 1 of your course involves taught classes such as lectures, laboratory sessions and tutorials. You will be taught by leading international researchers in the fields of civil and geoenvironmental engineering.

A feature of the MSc in Civil and Geoenvironmental Engineering is the series of short, workshop style training courses covering practical applications, integrating professional practice issues with the scientific and engineering foundation of the course. These workshops are delivered by recognised professional practitioners in the industry.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Geoenvironmental Engineering is excellent, with the majority of graduates joining engineering consultants. A small number of graduates each year go on to further study, typically a PhD.

Substantial industrial involvement with the design and delivery of the course ensures the continuing relevance of the MSc as preparation for professional employment work in this area.

Read less
This programme offers an advanced, interdisciplinary coverage of a range of environmental issues. It aims to significantly enhance your skills and knowledge of these issues in both a national and international context, and from the perspectives of the natural, physical and social sciences. Read more
This programme offers an advanced, interdisciplinary coverage of a range of environmental issues. It aims to significantly enhance your skills and knowledge of these issues in both a national and international context, and from the perspectives of the natural, physical and social sciences.

The course is delivered by internationally renowned experts in the fields of flood risk management, climate science, contaminated land management, and agrienvironmental governance and management. You will also benefit from the expertise of external practitioners and scholars who contribute to the programme.

A unique tutorial system supports your learning in a small group setting, and you will have opportunities for optional field work at our Malaysia or China campus.

Key facts

- This is a vocationally-orientated route through environmental management and is not funded through the Economic and Social Research Council (ESRC).
- 73% of our research was rated as 'world leading' or 'internationally excellent' in the most recent Research Excellence Framework in 2014.
- We were rated 'excellent' in the Higher Education Funding Council for England (HEFCE) assessment of teaching provision.
- We are ranked 11th by The Times Good University Guide 2015, and 12th by The Complete University Guide 2016.
- We are ranked 39th worldwide for Geography according to QS World University Rankings by subject 2014-5.

Read less
The Environmental Engineering MSc provides you with the advanced understanding, technical knowledge and practical skills required to enable you to develop a successful career in the environmental industries worldwide. Read more
The Environmental Engineering MSc provides you with the advanced understanding, technical knowledge and practical skills required to enable you to develop a successful career in the environmental industries worldwide.

Environmental Engineers apply scientific and engineering principles to protect the environment and public health. This comprehensive course enables you to provide clean water, treat wastewater, manage solid waste, remediate contaminated land and control air pollution.

You will study the areas of:
-Mathematical and scientific analytical methods appropriate to environmental engineering and research investigations
-Engineering project management and design
-Integrated pollution prevention and control
-Management principles and business practices
-Design, construction and operations practices
-Health and safety issues

This well-respected course has been running since 1963. Its rich history of both teaching and research assure the quality of the experience for today’s students. More than 1000 alumni of the course are now working across the world including some in senior governmental, academic and scientific positions.

Accreditation

This course is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates with an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) degree.

The course is also accredited by the Chartered Institution of Water and Environmental Management (CIWEM) and the Royal Institution of Chartered Surveyors (RICS).

Facilities

The School of Civil Engineering and Geosciences has an exceptional range of laboratories equipped with a wide range of analytical instrumentation supporting our research, teaching and contract research projects.

Chemical and Biological Research Laboratories
Geotechnics and Structures Research Laboratories

Read less
About the course. -Gain a thorough understanding of the key principles of environmental science that underpin the assessment and management of contaminated and polluted environments. Read more
About the course:
-Gain a thorough understanding of the key principles of environmental science that underpin the assessment and management of contaminated and polluted environments
-Take core modules dedicated to providing a solid understanding of the impact of pollution
-Develop skills applicable to a career in environmental consultancy, contaminated land management and remediation
-Take advantage of outstanding collections and facilities
-Participate in world-leading fieldwork and research

WHAT WILL YOU STUDY?

Sample modules:
-Pollutant behaviour in the environment
-Practical site investigation and assessment
-Field class
-Waste and environmental management
-Air pollution

Please note that all modules are subject to change.

WHAT CAREER CAN YOU HAVE?

Our students go on to work in a wide variety of academic and research posts, as well as in public and private sector organisations within the UK and internationally.

Graduates are highly employable in the growing market for environmental managers and consultants. Our programmes also provide in-service training for those already working within the profession

Read less
This interdisciplinary programme is designed to provide an opportunity to explore the interplay between scientific knowledge and law. Read more
This interdisciplinary programme is designed to provide an opportunity to explore the interplay between scientific knowledge and law. You may take courses that address the international legal response to the growing number of pressures on the global environment, and complement these by studying a variety of courses designed to give an introduction to physical and/or biological sciences.

Climate change, acid rain, biodiversity conservation, species extinction, contaminated land - these are but a few of the environmental issues that constitute headline news today. Modules offered by the School of Law are designed to give a wider understanding of EC and international law perspectives on environmental problems that frequently can only be addressed through regional or international regulation. How has international environmental law evolved historically? Who are the main actors in the field? What key principles underpin regulation? What do we mean by the pursuit of “sustainable development”? How is the law in this area enforced?

Treaty regimes explored include those relating to acid deposition, climate change, ozone layer depletion, nuclear contamination and freshwater pollution. In addition, an insight will be given to the various treaty regimes that seek to address the continuing pressures on the world’s biodiversity. For example, how is commercial whaling now regulated? What system is in place to regulate trade in endangered species? What of the protection of wetlands, Antarctica, world heritage and of migratory species?

The scientific element of the programme is designed to provide a background in biological and/or physical sciences, and also an understanding of relevant mathematical and computer science to facilitate a quantitative understanding of environmental issues.

Addressing these issues to ensure a clean and healthy environment for the enjoyment of future generations is one of the greatest challenges for environmental science and law.

Key facts

The School of Law is rated as ‘internationally outstanding’ (Grade 5A on a scale of 1-5) for its research and as ‘Excellent’ for its teaching quality.
The School enjoys important professional relationships with international institutions; leading firms in the City of London and the provinces; private industry and consultancies; and non-governmental organisations.
The School of Biosciences is one of the largest and strongest Schools of its kind in the UK.
It has consistently achieved high ratings in independent UK assessments of both research and teaching quality, receiving an RAE grade of 5A and 23/24 in the latest Teaching Quality Assessment.
The Sutton Bonington Campus is a self-contained, 16-hectare site in the beautiful countryside of South Nottinghamshire and it offers a number of dedicated facilities applicable to this course.

Read less
With an increased international focus on health and safety and environmental issues, there is an international demand for SHE (Safety, Health and Environmental) Managers. Read more
With an increased international focus on health and safety and environmental issues, there is an international demand for SHE (Safety, Health and Environmental) Managers. Our course is the perfect preparation for such a role.

Course overview

Sunderland’s postgraduate training is designed to give you the skills and professionalism needed to take up these opportunities. Our course is accredited by The Institution of Occupational Safety and Health (IOSH) which is the leading professional body for people working in the field of Health and Safety, which demonstrates the real-world value of this Masters.

This Masters is one of the few postgraduate courses to include an eight-week placement for all students. This allows you to apply your new skills in the workplace. The placements can be extended by a further 12 weeks and many placements have led to job offers.
You will be taught by academic staff with wide practical experience as well as active research interests. Research specialisms include behavioural safety, air pollution, contaminated land and life cycle assessment.

The taught modules will cover the management of both health safety and environment, covering risk assessment, accredited management systems and monitoring and control of environmental and health and safety hazards. You can negotiate the topic of your research project to fit your personal interests and career aspirations.

Course content

The course mixes taught elements with independent research and supportive supervision. At MSc level, responsibility for learning lies as much with you as with your tutor. Modules on this course include:

Core modules
-Data Analysis and Research Methods (15 Credits)
-Health and Safety 1 (15 Credits)
-Health and Safety 2 (15 Credits)
-Environmental Auditing and Management Systems (15 Credits)
-Environmental Impact Assessment (15 Credits)
-Pollution Monitoring and Control (15 Credits)
-Risk Assessment and Management (15 Credits)
-Life-Cycle Analysis (15 Credits)
-Research Project (50 Credits)

Choose one of the following:
-Work Experience Placement (10 Credits)
-Dissertation (10 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, group activities, guest speakers and site visits.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment is mainly through coursework and the research project.

Facilities & location

Sunderland has excellent facilities that have been boosted by multi-million pound redevelopments.

Sciences Complex
This course is based in the Sciences Complex at our City Campus, which has benefited from multi-million pound investment in modern facilities. The technical equipment is backed up with excellent IT facilities, with hundreds of workstations available for students to use. If you have any computer problems, just ask the friendly helpdesk team.

University Library Services
The University boasts a collection of more than 430,000 books in total, with many more titles available through the inter-library loan service. There are nearly 9,000 journal titles, mostly in electronic format. Each year the University invests around £1 million in new resources.

Learning environment
Overall Sunderland offers a vibrant learning environment with an international dimension thanks to the presence of students from around the world. At the same time, the University is fully plugged into relevant environmental safety industry organisations, with strong links and an exchange of ideas and people.

Employment & careers

Employers in the Health and Safety sector increasingly expect candidates to be members of professional bodies such as IOSH.

Read less

Show 10 15 30 per page



Cookie Policy    X