• University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
King’s College London Featured Masters Courses
University of Reading Featured Masters Courses
Durham University Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"contaminant"×
0 miles

Masters Degrees (Contaminant)

We have 8 Masters Degrees (Contaminant)

  • "contaminant" ×
  • clear all
Showing 1 to 8 of 8
Order by 
The aim of the Option is to provide graduates with the skills to enter a wide range of environmental careers, with particular emphasis on environmental consultancy and regulatory job markets. Read more

The aim of the Option is to provide graduates with the skills to enter a wide range of environmental careers, with particular emphasis on environmental consultancy and regulatory job markets. The Option is designed to train students in analysis and assessment methods applicable to environmental contamination problems.

The Environmental Analysis and Assessment (EAA) Option comprises lectures plus two practical case studies, each with a different technical emphasis.

 A large number of the lectures are from consultants, the regulators and industry professionals, many from alumni of the Option, providing the student with first-hand contact with live issues as well as the chance to discuss job opportunities with potential employers. 

The Option lectures are supported by a number of site visits plus a five-day study tour to provide practical underpinning of the Option material.

Aims

The EAA Option is designed to train students from diverse scientific and technical backgrounds in assessment methods applicable to environmental contamination and pollution problems.

The emphasis throughout the course is on the use of quantitative environmental assessment methodologies, including:

  • field sampling and laboratory analysis for direct determination of contaminant concentrations and distributions within environmental systems and;
  • predictive computer modelling techniques to assess the risks and impacts associated with either real or hypothetical contamination scenarios.

A thorough grounding in physical, chemical and biological processes of contaminant behaviour in the environment is provided as the basis for understanding the impacts of chemical contamination. This is strengthened by the introduction to, and use of, predictive modelling techniques for assessing risks and impacts associated with either real or hypothetical contamination scenarios.

To complement and enhance teaching of quantitative aspects of environmental assessment techniques, classical EIA and auditing methodologies are also an important course component.

After completion of the course the students should be able to:

  • understand the fundamental pathways and processes controlling the behaviour and fate of contaminants in environmental systems;
  • design suitable field sampling strategies for the assessment of contaminant distributions in the near-surface atmosphere, surface and ground waters and soils;
  • suggest appropriate sampling and analytical methods for inorganic and organic contaminants in different environmental media and to liaise effectively with analysts and laboratories specialising in the analysis of individual contaminating substances;
  • organise data sets obtained from field sampling and laboratory analytical studies and be able to configure these in a suitable format for higher level data analysis using a computer tool such as a Geographical Information System;
  • apply suitable computer models to evaluate critical pathways and processes of contaminant transport in the environment or to perform simulations of future impacts of contaminant releases from a variety of sources;
  • understand the legal and policy framework within which quantitative environmental assessment activities are carried out and to apply EIA and auditing methodologies where appropriate.

Module Aims and Learning Outcomes

Environment and Health

  • To give the student a foundation in science and policy basics to understand aspects of environmental management and technology and its impact on health.
  • Be able to explain the main chemical and biological processes important in the physical environment, the parameters that define environmental quality and its effect on health.

 Air Pollution and Climate Change

  • To familiarise students with how our incomplete but expanding scientific understanding of pollution is translated into policy and practice for Air Pollution & Climate Change management.
  • Be able to integrate understanding of atmospheric chemistry and physics together with biological implications and pollution control technology, with the application of Air Pollution modelling and monitoring for review and assessment of air quality & climate.

Waste and Resource Management

  • To provide students with an introduction to the legal, technical and practical issues involved in waste and resources management.
  • Be able to appreciate the principal features of legislation and policy relating to waste management and appreciate from a technical point of view the primary waste and resource management problems in the UK and European Union today.

Environmental Decision Making and Tools

  • To introduce students to some of the most important policy tools and techniques to assist them in decision-making.
  • Be able to select and use certain management techniques and policy tools to support decision- making in environmental management and policy.

Integrated Land Management

  • To provide students with an overview of problems, potential remedies and possible outcomes involved in holistic management of the environment.
  • Be able to assess environmental problems and environmental relationships in order to propose holistic solutions that maximise overall benefits and minimise adverse impacts.

Environmental Pollution and Assessment

  • To enhance students' understanding of the pollution pathways in the environment from source to receptor.
  • Be able to describe water recycling technologies and assess the physical and chemical processes involved in the progress of pollutants from source to receptor.

Careers

The majority of the graduates enter environmental consultancy both in the UK and abroad usually within the risk assessment and contaminated land areas, but this is not an exhaustive list. A second path of graduates is to regulatory agencies/government bodies such as the Environment Agency of England & Wales and the Department of Environment, Food & Rural Affairs. Other paths have included further study, the retail sector and banking. To date, the Option has had an excellent track record of employment with over 90% of graduates employed within 12 months of completing the MSc.

Fieldwork

One piece of fieldwork is undertaken in collaboration with the WM and Health and HGWEoptions of the MSc, and provides a "real-world" case study of contaminated land and water on Hounslow Heath, near Heathrow Airport, in close collaboration with Hounslow London Borough Council. The second piece of fieldwork is a waste management project in collaboration with Veolia Waste Management Services Ltd., providing an opportunity for students to work on a typical waste management problem.

At the end of the Option term the EAA students will spend a week on location at a city somewhere in the UK visiting a variety of industrial facilities, plants and operations.



Read less
This is a vocational programme relevant to graduates with good Honours degrees in appropriate subjects (for example, Geosciences, Engineering, Physics, Mathematics, Chemistry, Biosciences, and Environmental Sciences). Read more
This is a vocational programme relevant to graduates with good Honours degrees in appropriate subjects (for example, Geosciences, Engineering, Physics, Mathematics, Chemistry, Biosciences, and Environmental Sciences). It is important to have a good knowledge of mathematics.
The lecture component of the programme encompasses the full range of hydrogeology. Modules cover drilling, well design, aquifer test analysis, laboratory test analysis, groundwater flow, hydrogeophysics, inorganic chemistry of groundwaters, organic contamination of groundwater, contaminated land and remediation, groundwater modelling, contaminant transport, hydrology, and groundwater resources assessment.

These lecture modules are supported by practical field sessions, and by computing and hydrogeological modelling based on industry standard software. Integration of concepts developed in the taught programmes is facilitated through student-centred investigations of current issues linked to a diverse range of hydrogeological environments.

Examinations are held in January and April. From May onwards, you undertake a project, a report on which is submitted in September.

Projects may be field-, laboratory-, or modelling- based, and are usually of an applied nature, although a few are research-orientated. Our chemical (inorganic and organic), rock testing, computing, geophysical and borehole-logging equipment is available for you to use during this period.

Career openings include those with consulting engineering and environmental firms, government scientific services and regional water companies, both in this country and abroad. Demand for hydrogeologists is substantial and students from the course are highly regarded by employers.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
We have a broad range of civil engineering water resource research. Our expertise ranges from climate modelling to developing practical responses to global change challenges. Read more
We have a broad range of civil engineering water resource research. Our expertise ranges from climate modelling to developing practical responses to global change challenges. Our research has global consequences and our academics are leaders in their field.

Our School of Civil Engineering and Geosciences has a successful research group that focuses on water resources. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Our research themes include:
-Catchment hydrology and sustainable management
-Flood risk and coastal management
-Climate change impacts and adaptation

We supervise MPhil and PhD students in the following areas:
-Flow and transport processes in surface and subsurface systems. This includes river mechanics and contaminant and sediment transport
-Planning and control of hydraulic networks
-Sustainable management of the water environment, including urban, rural agricultural and forestry environments
-Climate change impact assessment, including flood risk
-Environmental hazard assessment and mitigation, including landslide hazard
-Integrated surface and groundwater pollution controls
-Integrated assessment of coupled natural, technological and human systems

Our research has access to facilities and centres within the Newcastle Institute for Sustainability:
-Water Resource Systems Research Laboratory
-Centre for Earth Systems Engineering Research (CESER)
-Centre for Land Use and Water Resources Research (CLUWRR)

Delivery

We offer the MPhil and PhD on a full time and part time basis. You will have formal training in research skills and methods. Discipline-specific training is available if you need it. You may be able to undertake paid laboratory demonstrating to gain teaching experience.

Read less
Why this course?. The MSc in Environmental Health Sciences has been designed to allow graduates from a range of science and engineering disciplines to develop and extend knowledge in risk-based assessment and management of environmental influences on human health. Read more

Why this course?

The MSc in Environmental Health Sciences has been designed to allow graduates from a range of science and engineering disciplines to develop and extend knowledge in risk-based assessment and management of environmental influences on human health.

Environmental health is the assessment and management of environmental influences on human health. This includes the study of:

- environmental protection including control of air, water and land pollution

- food safety and hygiene including production, distribution and fitness for human consumption

- occupational health and safety including investigation and control of work-related accidents and ill health

- the built environment including homes, workplaces and public spaces

Environmental health work is important and highly worthwhile and many of our students are motivated by a desire to directly improve living and working conditions for a wide range of people.

You'll develop expertise in current methods for examining factors that affect human health, assessing and managing the risks involved, and meeting the challenges resulting from changes in the interaction between people and the environment.

The wide scope of environmental health sciences and the corresponding breadth of the degree reflect rapid technological progress. Environmental impact assessment, sustainable development, air, water and noise pollution are increasingly important and there is a pressing need for graduates with skills in these disciplines.

This course also provides an emphasis on teaching subjects that are relevant to contemporary problems faced by communities, government, industry and commercial organisations.

For example, professionals from outside Strathclyde work together with academic staff and students in the teaching of case studies of outbreaks of water-borne and food-borne diseases and also in urban and industrial air quality management.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/environmentalhealthsciences/

You’ll study

Teaching is based on a core of conventional lectures and tutorials, complemented by group projects, laboratory classes, student-led seminars and fieldwork. The programme can be studied over one year full-time, two years part-time or up to five years through Open Access.

On the full-time programme, you’ll follow a core curriculum of eight classes and four optional class. Each class is taught for two to three hours per week over eight to 12 weeks.

Following successful completion of the taught component, you’ll undertake a dissertation from June to August.

Facilities

Our laboratory facilities are well-equipped for a wide range of chemical and biological measurements. High-technological instrumentation and space are available to investigate:

- marine and freshwater quality

- air quality

- solid and hazardous wastes

- environmental microbiology

Teaching staff

The course is delivered by staff from the Department of Civil & Environmental Engineering. The academic team includes:

- Dr Iain Beverland, programme manager of the MSc in Environmental Health Sciences. He has research & teaching interests in the areas of air pollution control, environmental epidemiology, exposure assessment, & public/environmental health. Current research includes study of the effects of exposure to air pollution on human health, with a focus on traffic-related air pollution in urban areas.

- Dr Tara K Beattie has expertise in the field of public health and the management of water and solid waste. Her research interests include free-living protozoa and their potential to cause human disease.

- Dr Raymond Wong has research and teaching interests in the areas of food laws (EU and UK), policies and compliance; food poisoning, contamination and prevention; and food safety management systems.

- Dr Christine Switzer specialises in contaminant fate, transport and remediation with emphases on non-aqueous phase liquids and aggressive remediation technologies.

Additional information

Staff within the Department of Civil & Environmental Engineering have engaged with developing Environmental Health training in Africa for almost 20 years.

Flexible Options – Distance Learning & CPD

This course is also offered via Distance Learning mode, which allow you to complete an MSc via online study at home, at a time that suits you. This means you can study while balancing your existing work and family commitments. This option is suitable for students located anywhere in the world. The MSc via Distance Learning is via part-time study over 3 years.

Home students can also choose to study through the Professional Development route. You register for one module at a time and have the option to build up credits eventually leading to a Postgraduate Certificate, Postgraduate Diploma or MSc. You can take up to five years to achieve the qualification. This option is popular with students in employment, who may wish to undertake modules for Continuing Professional Development purposes. Students who do not meet the normal MSc entry requirements for this programme are welcome to apply through this route instead.

Careers

Graduates in environmental health sciences are well prepared for a wide range of professions that require intellectual flexibility and analytical skill.

Many of our graduates have highly successful careers in environmental regulation, government departments, environmental consultancy, health and safety management, food industry, public water utilities, and waste management.

There is increasing recognition by employers in the private sector that graduates in environmental health have skills and backgrounds that are well suited to management roles in a range of related business activities, including the specialist field of corporate social responsibility.

Employers of Strathclyde Environmental Health graduates include:

AECOM; ACS Physical Risk Control Ltd; British Army; British Petroleum; Glasgow Caledonian University; GlaxoSmithKline plc; Health Protection Scotland; IBI Group Inc; International Atomic Energy Agency; Institute of Occupational Medicine; Malaysian Government; Maltese Government; Swaziland Department of Health; Logica plc; Malawi Government; National Health Service in Scotland; Ricardo AEA Ltd; Royal Bank of Scotland; Royal Environmental Health Institute of Scotland; Royal Navy; RPS Group Plc; Scottish Environmental Protection Agency; Scottish Government; UK Meteorological Office; University of Edinburgh; University of Glasgow; University of Strathclyde; World Health Organisation.

The MSc Environmental Health Sciences programme is not a pre-training programme for students wishing to become a local government Environmental Health Officer in Scotland through the Royal Environmental Health Institute of Scotland (REHIS) scheme of professional training.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp



Read less
This programme focuses on applied aspects of advanced and emerging analytical technologies to address current issues in food safety, nutrition and food supply. Read more

Research Strategies

This programme focuses on applied aspects of advanced and emerging analytical technologies to address current issues in food safety, nutrition and food supply. It covers the entire food chain from farm to fork and places a strong emphasis on the link between improved food safety and nutrition and improved public health.

Research Strengths

•Advanced and emerging technology platforms (biosensors and omics)

•Animal food and feed safety

•Animal health and disease diagnostics

•Food and nutrition metabolomics

•Food and nutrition quality measurements

•Food chemistry

•Food safety detection methodology

•Food traceability and authenticity

•Immunodiagnostics for food contaminant and toxin detection

•Natural compounds and their health applications

•Novel and functional foods

•Therapeutic biomolecules

Special Features

•Students will be based in modern, world-class laboratory facilities equipped with state-of-the-art, highly advanced analytical instruments.

•Students will gain excellent practical experience of advanced and emerging analytical techniques for food safety analysis and monitoring.

•The School has a wide range of strong, international links with governments, academia and industry.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X