• University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Cambridge Featured Masters Courses
Staffordshire University Featured Masters Courses
Swansea University Featured Masters Courses
"condensed" AND "matter"×
0 miles

Masters Degrees (Condensed Matter)

We have 49 Masters Degrees (Condensed Matter)

  • "condensed" AND "matter" ×
  • clear all
Showing 1 to 15 of 49
Order by 
Do you want to contribute to an area of cutting-edge research in an awe-inspiring subject? Do you want to delve deeper into advanced topics in physics or… Read more
Do you want to contribute to an area of cutting-edge research in an awe-inspiring subject? Do you want to delve deeper into advanced topics in physics or astronomy? Develop valuable new knowledge and skills? Prepare for a research career, or embark on a completely new path? Whatever your motivation, a postgraduate degree from the School of Physics and Astronomy can help you achieve your ambitions.

The MSc Physics is available in three different pathways: Particle Physic, Theoretical Physics and Condensed Matter Physics. The School of Physics and Astronomy also offers an MSc in Astrophysics and a PGCert in Astronomy and Astrophysics.

Programme outcomes

The aim of the programme is to deepen your understanding of contemporary theoretical physics, covering advanced concepts and techniques, leaving you well prepared for further doctoral level study and research. The programme will also enable you to develop skills transferable to a wide range of other careers.

This programme will:

Teach you the fundamental laws and physical principles, along with their applications, in your chosen area of physics.
Introduce you to research methodology, and how to manage your own research, making use of journal articles and other primary sources.
Allow you to communicate complex scientific ideas, concisely, accurately and informatively.
Instruct you how to use mathematical analysis to model physical behaviour and interpret the mathematical descriptions of physical phenomena.

Read less
A fully funded (fees and maintenance) position for MSc by Research in Physics is available for 12 months in the area of magnetism, superconductivity and novel quantum phenomena in solid state materials. Read more

A fully funded (fees and maintenance) position for MSc by Research in Physics is available for 12 months in the area of magnetism, superconductivity and novel quantum phenomena in solid state materials.

Control of temperature, pressure and magnetic field combined allow us to lead strongly correlated electron systems into new behaviours and properties with fascinating scientific and technological applications. In some materials in which the electrons have strong interactions, new quantum ordered states, including unconventional superconducting states, can be produced which cannot be explained by the traditional low temperature theories of matter. The nature of the states produced is related to the crystal structure and the magnetic and electronic order in the system. The project will begin by investigating variations in the crystal structure in a number of magnetic systems and relate these changes to the electronic and magnetic properties of the materials. The project is expected to involve experiments at central x-ray synchrotron and/or neutron scattering facilities. This is to probe the nature of novel quantum states around magnetic quantum critical points in low temperature and high pressure sample environments and hence to better understand the nature of the underlying interactions. The project will therefore provide a broad training in experimental techniques such as x-ray diffraction and magnetic measurements, and associated data analysis and computational modelling of crystal structures which would be advantageous for a wide range of future careers.

The successful candidate will be based at the University of Kent's main campus in Canterbury, and will benefit from the Graduate School of the University of Kent and activities within the SEPNet Consortium (South East Physics Network http://www.sepnet.ac.uk/). They will join the Functional Materials Group, and work under the supervision of Dr. Emma Pugh.

This Masters Studentship is due to start in September 2018.

Please note that you will be expected to provide personal details, education and employment history and supporting documentation (Curriculum Vitae, transcript of results and the names of two academic referees).

Deadline Date for Applications: Sunday 18th March 2018



Read less
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Read more

The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Though it may be taken as a free-standing qualification, most students take this programme as a pathway to the MSc. This pathway forms the first year of a two-year programme with successful students (gaining a merit or distinction) progressing onto the MSc Physics in second year.

Key benefits

  • King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.
  • Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".
  • The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".
  • Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials.

Description

Students will undertake a total of 120 credits

Course purpose

For students with an undergraduate degree or equivalent who wish to have the experience of one year in a leading UK Physics Department, or who may not be immediately eligible for entry to a higher degree in the UK and who wish to upgrade their degree. If you successfully complete this programme with a Merit or Distinction we may consider you for the MSc programme.

Course format and assessment

The compulsory modules are assessed via coursework. The majority of the other optional modules avaiable are assessed by written examinations.

Career destinations

Many students go on to do a higher Physics degree, work in scientific research, teaching or work in the financial sector.



Read less
The Physics Department at Binghamton University offers a two-year master's (MS) degree and a PhD in physics. The MS program is for students seeking careers in applied physics or in research and development in industrial laboratories. Read more
The Physics Department at Binghamton University offers a two-year master's (MS) degree and a PhD in physics. The MS program is for students seeking careers in applied physics or in research and development in industrial laboratories. It is also intended for technical personnel in industry who wish to attain a higher level of understanding of the physical principles on which modern technology is based.

Upon completion of the PhD program, graduates will be able to lead efforts in acedeme and industry in the areas of condensed matter physics, applied physics and materials science. Graduates receive their degree having made significant contributions to advance knowledge in their particular area of research. Courses and seminars provide necessary background in the basic principles, methods and theories of physics.

As as young and vibrant program, faculty are currently engaged in various collaborative research projects, such as Physics of Metal Oxides through Piper Laboratory, Levy Studies of DNA, and Nanoelectronic Physics and Materials Science for Energy Generation and Information Processing. Research activities emphasize energy sciences, biophysics, and information sciences, with the intent to leverage significant research infrastructure investment under the Small Scale Systems Integration and Packaging Center at Binghamton University.

The Physics Department also has a major focus on materials physics and condensed matter physics with strong interactions with Materials Engineering and industry. The Nanofabrication Laboratory at Binghamton University provides state-of-the-art resources pivotal to conducting cutting-edge nano-scale research.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university you have attended. Undergraduate degree in physics or related field desirable for admission.
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE general test scores
- Official GRE subject test in physics scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores
----Physics applicant minimum TOEFL scores:
*80 on the Internet-based exam
*550 on the paper exam
----Physics applicant minimum IELTS score:
*6.5, with no band below 5.0
----Physics applicant minimum PTE Academic score:
*53

Read less
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences. Read more

The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences.

About this degree

Students learn the language and techniques of advanced quantum mechanics, quantum information and quantum computation, as well as state-of-the-art implementation with condensed matter and quantum optical systems.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), three optional modules (45 credits) and a research project (90 credits).

Core modules

All students take the following core modules:

  • Atom and Photon Physics
  • Advanced Quantum Theory
  • Quantum Communication and Computation

Optional modules

Students choose one optional module from any of the Physics MSc degrees as well as two of the following optional modules:

  • Advanced Photonic Devices
  • Nanoelectronic Devices
  • Nanoscale Processing for Advanced Devices
  • Optical Transmission and Networks
  • Order and Excitations in Condensed Matter
  • Physics and Optics of Nano-Structures
  • Research Computing with C++
  • Research Software Engineering with Python

Research project and case studies

The MSc programme culminates in the quantum technologies project and attached case studies. All students undertake two case studies related to quantum technologies as well as an independent research project (experimental or theoretical), which will be the subject of a presentation and a dissertation of 10,000-15,000 words. Research-active supervisors will provide topics which will enable the students to make contributions to research in the field.

Teaching and learning

The programme is delivered through a combination of lectures and seminars, with self-study on two modules devoted to the critical assessment of current research topics and the corresponding research skills. Assessment is through a combination of problem sheets, written examinations, case study reports and presentations, as well as the MSc project dissertation.

Further information on modules and degree structure is available on the department website: Quantum Technologies MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme prepares graduates for careers in the emerging quantum technology industries which play an increasingly important role in: secure communication; sensing and metrology; the simulation of other quantum systems; and ultimately in general-purpose quantum computation. Graduates will also be well prepared for research at the highest level in the numerous groups now developing quantum technologies and for work in government laboratories.

Employability

Graduates will possess the skills needed to work in the emerging quantum industries as they develop in response to technological advances.

Why study this degree at UCL?

UCL offers one of the leading research programmes in quantum technologies anywhere in the world, as well as outstanding taught programmes in the subjects contributing to the field (including physics, computer science, and engineering). It also hosts the EPSRC Centre for Doctoral Training in Delivering Quantum Technologies.

The programme provides a rigorous grounding across the disciplines underlying quantum technologies, as well as the chance to work with some of the world's leading groups in research projects. The new Quantum Science and Technology Institute ('UCLQ') provides an umbrella where all those working in the field can meet and share ideas, including regular seminars, networking events and opportunities to interact with commercial and government partners.



Read less
Course description. This masters by research course brings together the University of Sheffield’s expertise in quantum photonics and nanomaterials. Read more

Course description

This masters by research course brings together the University of Sheffield’s expertise in quantum photonics and nanomaterials.

There is a particular focus on the study of novel fundamental phenomena in condensed matter systems as well as applications in quantum information processing, photovoltaics and optoelectronics.

Core modules

  • Optical Properties of Solids
  • Advanced Electromagnetism
  • Semiconductor Physics and Technology
  • Research Skills in Physics
  • Solid State Physics
  • Research Project in Physics

Examples of optional modules

Choose from a range including:

  • Biological Physics
  • Magnetic Resonance: Principles and Applications
  • Physics in an Enterprise Culture
  • Further Quantum Mechanics
  • Advanced Quantum Mechanics
  • The Physics of Soft Condensed Matter
  • Statistical Physics

Teaching and assessment

One-year individual programme of research.

Taught material is complemented by a 12-month research project in one of our world-leading research groups.

Your training will cover optical experiments and fabrication of devices in our state-of-the-art laboratories as well as numerical methods and more.



Read less
The course is run jointly by the. Mathematical Institute. and the. Department of Physics. It provides a high-level, internationally competitive training in mathematical and theoretical physics, right up to the level of modern research. Read more

The course is run jointly by the Mathematical Institute and the Department of Physics. It provides a high-level, internationally competitive training in mathematical and theoretical physics, right up to the level of modern research. It covers the following main areas:

  • quantum field theory, particle physics and string theory
  • theoretical condensed matter physics,
  • theoretical astrophysics, plasma physics and physics of continuous media
  • mathematical foundations of theoretical physics

The course concentrates on the main areas of modern mathematical and theoretical physics: elementary-particle theory, including string theory, condensed matter theory (both quantum and soft matter), theoretical astrophysics, plasma physics and the physics of continuous media (including fluid dynamics and related areas usually associated with courses in applied mathematics in the UK system). If you are a physics student with a strong interest in theoretical physics or a mathematics student keen to apply high-level mathematics to physical systems, this is a course for you.

The course offers considerable flexibility and choice; you will be able to choose a path reflecting your intellectual tastes or career choices. This arrangement caters to you if you prefer a broad theoretical education across subject areas or if you have already firmly set your sights on one of the subject areas, although you are encouraged to explore across sub-field boundaries.

You will have to attend at least ten units' worth of courses, with one unit corresponding to a 16-hour lecture course or equivalent. You can opt to offer a dissertation as part of your ten units. Your performance will be assessed by one or several of the following means: 

  • invigilated written exams
  • course work marked on a pass/fail basis
  • take-home exams
  • mini-projects due shortly after the end of the lecture course.

The modes of assessment for a given course are decided by the course lecturer and will be published at the beginning of each academic year. As a general rule, foundational courses will be offered with an invigilated exam while some of the more advanced courses will typically be relying on the other assessment methods mentioned above. In addition, you will be required to give an oral presentation towards the end of the academic year which will cover a more specialised and advanced topic related to one of the subject areas of the course. At least four of the ten units must be assessed by an invigilated exam and, therefore, have to be taken from lecture courses which provide this type of assessment. A further three units must be assessed by invigilated written exam, take-home exam or mini-project. Apart from these restrictions, you are free to choose from the available programme of lecture courses.

The course offers a substantial opportunity for independent study and research in the form of an optional dissertation (worth at least one unit). The dissertation is undertaken under the guidance of a member of staff and will typically involve investigating and write in a particular area of theoretical physics or mathematics, without the requirement (while not excluding the possibility) of obtaining original results.



Read less
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy. Read more
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy.

We supervise MPhil students whose interests match the expertise we have in our four main research themes.

Condensed matter and nanoscale physics

We research electronic, optical, structural and magnetic properties of novel solid-state materials, particularly novel semi-conductor structures and nanostructured materials such as nanocrystals and nanowires. Theoretical studies use quantum mechanical approaches and involve massively parallel supercomputing.

Our development of new approaches to quantum modelling is changing the size and complexity of systems that can be modelled. Experimental work takes place at synchrotron facilities in Europe and America and related work takes place with colleagues in the Emerging Technology and Materials (ETM) Group in the School of Electrical, Electronic and Computer Engineering.

Biophysics

Our research in biophysics explores the structure and function of cells with the aim of creating artificial life and building machines based on biological parts. Projects include protocell development and the construction of a cyborg robot. An understanding of biological physics is needed that uses techniques including single molecule manipulation, atomic force microscopy and scanning tunnelling microscopy.

Astrophysics

Galaxies and the interstellar medium, the source of the galactic magnetic field and its influence on the structure of the galaxy form the focus of our research in astrophysics. There is also interest in cosmology, particularly the early universe and its origin in the big bang.

Ultrafast optics

Our research focuses on coherent optical control of atomic collisions in ultracold gases by femtosecond laser light for studies of problems in fundamental physics, such as the measurement of time dependence of the fundamental constants of nature. We also research metrological protocols for characterisation of broadband light, specifically those relating to foundational aspects of quantum mechanics and its application.

Read less
The Department of Physics is leading an interdisciplinary Centre for Doctoral Training (CDT) on Theory and Simulation of Materials. Read more
The Department of Physics is leading an interdisciplinary Centre for Doctoral Training (CDT) on Theory and Simulation of Materials.

The Centre offers a four-year PhD, the first year of which leads to an MSc. Self-funded students may take the MSc by itself as a 12-month full-time course.

This course is aimed at mathematically talented students who relish theoretical and computational treatments of condensed matter that are relevant to major issues facing society today, such as energy supply, global warming, health and security.

It provides a foundation in the theoretical physics of materials and its application in simulations across different length and time scales to problems of technological importance.

With strong links to industry, other leading academic institutions, and government labs in the UK and overseas, there are plenty of opportunities to engage with external organisations, including collaborative research projects.

Read less
The School offers a two-year Master’s degree in Physics in partnership with the South East Physics Network (SEPnet) which comprises the universities of Kent, Portsmouth, Queen Mary London, Royal Holloway London, Southampton, Surrey and Sussex. Read more
The School offers a two-year Master’s degree in Physics in partnership with the South East Physics Network (SEPnet) which comprises the universities of Kent, Portsmouth, Queen Mary London, Royal Holloway London, Southampton, Surrey and Sussex.

The programme involves both a taught and research component.

Key benefits

This is a unique opportunity to join the only programme of its kind in the UK and to tailor it to your individual needs. Here are just some of the benefits:

• You can choose to study at any one of the seven universities within the SEPnet consortium. This offers great flexibility and variety - you can even change location for your second year.
• Through events and state-of-the-art video conferencing, you’ll benefit from the combined facilities, specialist knowledge and brilliant minds at all of the universities.
• Our European Masters is designed similarly to Erasmus and Socrates programmes.
• Recognised by European employers and equivalent to 120 ECTS credits, you’ll be qualified to pursue a career in physics or take on a PhD anywhere in the world.
• Our graduates are highly sought after by global employers which opens up a whole world of possibilities.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/16/physics-euromasters

Course detail

Spend a year studying at your choice of seven world-class universities in the South of England that are at the forefront of pioneering research from nanoscales to cosmology, from experiments to theory. Then spend a year in research working with some of the finest minds in physics on groundbreaking research projects such as ATLAS and LOFAR that push the boundaries of science.

In the first year, you will follow a taught Master’s course, which includes specialised research, and in the second year you will undertake an advanced research project with the option to change locations to a SEPnet partner university or research institution. This may include Cern, Switzerland, the UK’s Rutherford Appleton Laboratory, ISIS, Diamond or NPL. The School of Physical Sciences at Kent offers EuroMasters research strands in Atomic and Condensed Matter and Astrophysics.

Purpose

Study the European way: the MSc in Physics (EuroMasters) is fully compatible with the European Credit Transfer Accumulation System across the European Union and other collaborating European countries, and qualifies students to pursue a PhD or a career in physics upon completion. It is also open to UK entrants.

Applications

Although the delivery of this programme is consistent, the criteria, application process and scholarship opportunities will depend on the university you want to study it at in your first year. They are:

• Queen Mary - University of London
• Royal Holloway - University of London
• University of Kent
• University of Portsmouth
• University of Southampton
• University of Surrey
• University of Sussex

So, to discover more about our programme, scholarship and research projects, click the 'visit website' link below.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

How to apply: https://www.kent.ac.uk/courses/postgraduate/apply/

Why study at The University of Kent?

- Shortlisted for University of the Year 2015
- Kent has been ranked fifth out of 120 UK universities in a mock Teaching Excellence Framework (TEF) exercise modelled by Times Higher Education (THE).
- In the Research Excellence Framework (REF) 2014, Kent was ranked 17th* for research output and research intensity, in the Times Higher Education, outperforming 11 of the 24 Russell Group universities
- Over 96% of our postgraduate students who graduated in 2014 found a job or further study opportunity within six months.
Find out more: https://www.kent.ac.uk/courses/postgraduate/why/

Postgraduate scholarships and funding

We have a scholarship fund of over £9 million to support our taught and research students with their tuition fees and living costs. Find out more: https://www.kent.ac.uk/scholarships/postgraduate/

English language learning

If you need to improve your English before and during your postgraduate studies, Kent offers a range of modules and programmes in English for Academic Purposes (EAP). Find out more here: https://www.kent.ac.uk/courses/postgraduate/international/english.html

Read less
This MSc is designed for graduates from the physical sciences and relevant engineering disciplines who wish to develop skills in this new and exciting area. Read more

This MSc is designed for graduates from the physical sciences and relevant engineering disciplines who wish to develop skills in this new and exciting area. Nanotechnology is rapidly establishing itself as a key technology, in industries ranging from microelectronics to healthcare, with a consequent demand for appropriately trained graduates.

About this degree

The programme introduces students to and provides training in the skills essential for almost all fields of nanotechnology research, including key laboratory skills and techniques in planning, building devices, analysis, and results comparison. The core lecture programme covers essential topics in physics, electrical and electronic engineering, and biology.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (75 credits), three optional modules (45 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits) is offered. The diploma consists of six core modules (75 credits) and three optional modules (45 credits).

Core modules

  • Physical Science for Nanotechnology
  • Nanoscale Processing and Characterisation for Advanced Devices
  • Experimental Techniques for Nanotechnology
  • Nanotechnology and Society
  • Electrical Transport in Nanosystems
  • Photonics in Nanosystems

Optional modules

  • Quantum Computation and Communication
  • Order and Excitations in Condensed Matter
  • Molecular Biophysics
  • Molecular Physics
  • Entrepreneurship: Theory and Practice
  • Bioprocess Microfluidics
  • Physics and Optics of Nano-Structures
  • Materials and Nanomaterials
  • Innovation Practices
  • Physics of Advanced Materials

Dissertation/report

All students undertake an extensive research project on an experimental or theoretical topic which is assessed through an interim report, dissertation and oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, laboratory classes, tutorials and seminars. Student performance is assessed through coursework, laboratory notebooks, case studies, written examination, a dissertation, and written and oral presentations.

Further information on modules and degree structure is available on the department website: Nanotechnology MSc

Careers

Recent graduates have gone on to work as engineers for companies including EDF Energy and Intel, as analysts and consultants for firms including Standard Bank PLC and DN Capital, or to undertake PhD study at the Universities of Oxford, Bath and Glasgow.

Recent career destinations for this degree

  • Business Analyst, Efficio
  • EngD in Molecular Modelling and Materials Science, UCL
  • PhD in Diamond Electronics, UCL
  • Researcher, SCS (Sensor Coating Systems) and studying PhD in Materials, Imperial College London
  • Junior Electronics Engineer, Samsung

Employability

This MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of nanotechnology, from the basis of the fabrication of nanostructures for advanced device applications, to fundamental quantum information and molecular biophysics, from nanotechnology in life science to nanotechnology in healthcare, and from experimental technology to theoretical modelling. Nanotechnology MSc graduates are expertly equipped either to pursue PhD study or become consultants or engineers in a wide range of nanotechnology fields.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The London Centre for Nanotechnology (LCN) is a new UK-based multidisciplinary enterprise operating at the forefront of science and technology.

Forming a bridge between the physical and biomedical sciences, it brings together two of the world's leading institutions in nanotechnology, UCL (University College London) and Imperial College London.

The centre aims to provide leading-edge training in nanotechnology and students on this programme benefit from excellent new facilities, including a £14 million research building furnished with state-of-the art equipment, and a £1 million teaching facility in UCL Electronic & Electrical Engineering.

Accreditation

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Electronic & Electrical Engineering

97% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This MSc provides students with the skills, knowledge and research ability for a career in physics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field. Read more

This MSc provides students with the skills, knowledge and research ability for a career in physics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field.

About this degree

Students develop insights into the techniques used in current projects, and gain in-depth experience of a particular specialised research area, through project work as a member of a research team. The programme provides the professional skills necessary to play a meaningful role in industrial or academic life.

Students undertake modules to the value of 180 credits.

The programme consists of a choice of three core modules (45 credits), three optional modules (45 credits), a research essay (30 credits) and a dissertation (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months, part-time two years) is offered.

Core modules

  • Advanced Quantum Theory
  • Particle Physics
  • Atom and Photon Physics
  • Order and Excitations in Condensed Matter
  • Mathematics for General Relativity
  • Climate and Energy
  • Molecular Physics
  • Please note: students choose three of the above.

Optional modules

Students choose three from the following:

  • Astrophysics MSc Core Modules
  • Space and Climate Science MSc Core Modules
  • Medical Physics MSc Core Modules
  • Intercollegiate fourth-year courses
  • Physics and Astrophysics MSci fourth-year courses
  • Selected Physics and Astrophysics MSci third-year courses
  • Plastic and Molecular (Opto)electronics
  • Biophysics MSc Core Modules

Dissertation/report

All students submit a critical research essay and MSc students undertake an independent research project which culminates in a substantial dissertation and oral presentation.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials and practical, laboratory and computer-based classes. Student performance is assessed through coursework and written examination. The research project is assessed by literature survey, oral presentation and the dissertation.

Further information on modules and degree structure is available on the department website: Physics MSc

Funding

Candidates may be eligible for a Santander scholarship.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Physics-based careers embrace a broad range of areas e.g. information technology, engineering, finance, research and development, medicine, nanotechnology and photonics.

Recent career destinations for this degree

  • Management Consultant, OpenSymmetry
  • Management Consultant, PwC

Employability

A Master's degree in Physics is highly regarded by employers. Students gain a deep understanding of both basic phenomena underpinning a range of technologies with huge potential for future development, e.g. quantum information, as well as direct knowledge of cutting-edge technologies likely to play a major role in short to medium term industrial development while addressing key societal challenges such as energy supply or water sanitisation.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Physics & Astronomy is among the top departments in the UK for this subject area.

The department's participation in many international collaborations means we provide exceptional opportunities to work as part of an international team. Examples include work at the Large Hadron Collider in Geneva, and at the EISCAT radar instruments in Scandinavia for studying the Earth's upper atmosphere.

For students whose interests tend towards the theoretical, the department is involved in many international projects, some aimed at the development of future quantum technologies, others at fundamental atomic and molecular physics. In some cases, opportunities exist for students to broaden their experience by spending part of their time overseas.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Laser Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Laser Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Laser Physics enables students to pursue a one year individual programme of research. The Laser Physics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The two main research groups within the Department of Physics currently focus on the following areas of research:

Atomic, Molecular and Quantum Physics Group

Fundamental Atomic Physics

Condensed Matter and Material Physics

Analytical Laser Spectroscopy

Particle Physics Theory Group

String theory, quantum gravity and the AdS/CFT correspondence

Lattice gauge theories, QCD

Supersymmetric field theory, perturbative gauge theory

Field Theory in curved spacetime

Physics beyond the standard model

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the Laser Physics programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less
Degree. Master of Science (two years) with a major in Applied Physics or Master of Science (two years) with a major in Physics. Teaching language. Read more

Degree: Master of Science (two years) with a major in Applied Physics or Master of Science (two years) with a major in Physics

Teaching language: English

The Material Physics and Nanotechnology master's programme provides students with specialist knowledge in the area of new materials. Huge advances in modern technology and products in recent decades have to a large extent relied on developments in this field.

The importance of advanced materials in today’s technology is best exemplified by the highly purified semiconductor crystals that are the basis of the electronic age. Future implementations and applications of materials in electronics and photonics involve such subjects as nano-scale physics, molecular electronics and non-linear optics.

With support from internationally competitive research activities in materials physics at Linköping University, the programme has been established with distinct features that offer students high‑level interdisciplinary education and training in fundamental solid state physics and materials science within the following areas:

  • Electronic materials and devices
  • Surface and nano-sciences
  • Theory and modelling of materials
  • Organic/molecular electronics and sensors.

Advanced equipment training

The programme emphasises the comprehension of scientific principles and the development of personal and professional skills in solving practical engineering problems. Studies begin with mandatory courses, including nanotechnology, quantum mechanics, surface physics and the physics of condensed matter, in order to provide students with a solid knowledge foundation for modern materials science and nanotechnology. Moreover, through courses in experimental physics and analytical methods in materials science, students gain extensive training in operating the advanced instruments and equipment currently used in the research and development of new materials.

In-depth CDIO courses

A variety of elective courses is offered from the second term onwards, many of them involving the use of cutting-edge technology. These courses give students a broad perspective of today’s materials science research and links to applications in semiconductor technology, optoelectronics, bioengineering (biocompatibility), chemical sensors and biosensors, and mechanical applications for high hardness and elasticity. Students will also be instructed through in-depth CDIO (Conceive – Design – Implement – Operate) project courses, to develop abilities in creative thinking and problem solving.

Students complete a thesis project in the area of materials science and nanotechnology, either with an in-house research group or the industry.



Read less
Interdisciplinary approach. Our Chemistry Master's programme provides you with an exceptional toolbox for your future. The programme is closely associated with the research Institute for Molecules and Materials (IMM). Read more

Interdisciplinary approach

Our Chemistry Master's programme provides you with an exceptional toolbox for your future. The programme is closely associated with the research Institute for Molecules and Materials (IMM). Its mission is to fundamentally understand, design and control the functioning of molecules and materials. The institute is a centre of excellence that trains the next generation of leaders in science and entrepreneurship. Research in the IMM ranges from condensed matter science to chemical biology, and builds on novel theoretical, synthetic and spectroscopic methods. Our goal is to explore new roads proceeding from synthesis and growth to design and architecture of molecular constructs and materials with specific, desired properties. The cooperation of chemists and physicists, and increasingly biologists, in one research institute is unique worldwide. It is the secret of IMM's success and its many scientific breakthroughs.

Specialisations within the Master's in Chemistry

The Master's programme in Chemistry offers you three specialisations:

- Chemistry for Life

- Molecular Chemistry

- Physical Chemistry

Top scientists

The funding we have received for our research reflects the achievements we have made. Prof. dr. Wilhelm Huck received an ERC Grant for his research on chemical reactions in extremely small drops of water. The ultimate goal is to build a synthetic cell for this. We need to understand how complex networks function in confined spaces and how the physical environment of the cell impacts on enzymatic reactions. Prof. dr. Roeland Nolte received an ERC to do research on the development of supramolecular catalysts and materials using nature as a guide. Prof. dr. Jan van Hest received funding from the Gravitation programme for his work on self-repairing materials, materials that continually adapt to their environment. This includes the idea of how the body repairs its cells and ensures that the right substances reach the right places at the right time. They want to gain fundamental understanding of the complexity of that dynamic.

The Nijmegen approach

The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the people that you will meet, working, exploring and studying there. It is no wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personal Master's programme.

Career prospects

Most of our graduates take up a PhD position, either in Nijmegen or elsewhere in the world. Our research institutes have many vacancies for PhD projects every year. Our graduates also find work as researchers and managers in industry, in business and in research institutes.

Our approach to this field

"The Republic has no need of chemists and savants", were the words with which Antoine Lavoisier, one of the founders of modern chemistry, ended up on the guillotine during the French revolution. Fortunately these days the importance of chemistry for the benefit of a sustainable society is well-recognised. As such, chemistry has been designated a key area by the Dutch "innovatieplatform". So there will be many chemistry-related innovation initiatives in both industry and academia. This will be substantiated by a steering committee formed by the Association of Dutch Chemical Industries (VNCI) and the Chemical Science division of the Netherlands' Organisation for Scientific Research (NWO/CW). These developments demand a continuous influx of well-trained chemists.

An integrated Chemistry programme was set up at the University of Nijmegen in 1962. The current Master's degree programme in Chemistry derives from the integrated programme that was established in 1999.

Radboud University Nijmegen aims to provide a Master's degree programme in Chemistry at an internationally recognised level. The programme is based on the research themes that exist within the Research Institute for Molecules and Materials (IMM) and to a somewhat lesser extent, the Radboud Institute for Molecular Life Sciences (RIMLS). In recent years, the IMM has focused on chemistry research in the areas of organic chemistry (synthetic, bio-organic, supramolecular and materials), nuclear magnetic resonance (solid state NMR and biophysical chemistry), and solid state chemistry. Furthermore, increasing research interaction with biology and physics groups has emerged to offer ample opportunities for new research and education. Based on this research, modern, high quality education can be provided within the Master's degree programme.

See the website http://www.ru.nl/masters/chemistry

Radboud University Master's Open Day 10 March 2018



Read less

Show 10 15 30 per page



Cookie Policy    X