• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
University of Birmingham Featured Masters Courses
Coventry University Featured Masters Courses
"concrete"×
0 miles

Masters Degrees (Concrete)

  • "concrete" ×
  • clear all
Showing 1 to 15 of 172
Order by 
The CIM-focused M.B.A. requires online courses in accounting, economics, finance, information systems, management, marketing, and concrete industry management. Read more
The CIM-focused M.B.A. requires online courses in accounting, economics, finance, information systems, management, marketing, and concrete industry management. This distinctive program is designed to develop long-term relationships amongst participants, while fostering a collaborative learning environment and allowing national and international recruitment with limited campus visits that are intensive and focused.

MTSU’s 15-month customized Concrete Industry Management executive M.B.A. degree program is the only one of its kind in the country and offers a mostly online delivery to draw students from the industry nationally and internationally. Students take courses in seven-week blocks via distance learning and webinars; three required trips to MTSU or industry events are spread out during the program. This rigorous, highly interactive degree program takes participants beyond basics to a true understanding of forces that shape the concrete and construction industry. Participants can immediately impact their businesses by implementing strategies and insights gained from the completed courses, resulting in immediate return on investment for their sponsoring companies. Coursework is focused around typical M.B.A. advanced business skills but tailored specifically to the concrete and construction industry. Application deadline is July 1 for the cohort that starts in January of the following year.

Career

With the growing need for middle management talent in the industry as the economic recovery continues, the CIM Executive M.B.A. program is well placed to continue to provide those highly qualified managers the industry will need. Possible career positions with this degree:

Senior project manager
Director of quality
Manager of technical services
Regional sales manager
Operations manager

Employers of MTSU alumni include:

Arthur J. Gallagher Risk Management Services
BASF
Calportland
California State University–Chico
Farlane Oldcastle Materials
Geneva Rock
Italcementi
Ozinga Ready Mix
Piedmont Precast
Refratechnik North America
Rush–Overland Manufacturing
Schwing America
Structural Group
Tex-Mix Concrete
Triple C Concrete
Vulcan Materials

Read less
Learn the analytical and design skills needed to create successful structures in challenging environments. This is the largest academic concrete research centre in the UK so you’ll benefit from some great facilities. Read more

About the course

Learn the analytical and design skills needed to create successful structures in challenging environments.

This is the largest academic concrete research centre in the UK so you’ll benefit from some great facilities.

We have international-level expertise in cement chemistry, aggregate science, binder technology, concrete durability, alternative concrete materials, structural performance and design, earthquake and nuclear reactor design, and finite element analysis.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural 
Analysis and Research Skills
Advanced Concrete Design
Sustainable Concrete Technology
Innovations in Structural Concrete
Structural Design

Examples of optional modules

Blast and Impact Effects on Structures
Advanced Simulation of High Strain Rate Dynamics
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
MSc (Eng)/PGDip Advanced Concrete Technology. This part-time, distance learning Masters course aims to develop the next generation of senior construction professionals working in concrete production, construction and design. Read more
MSc (Eng)/PGDip Advanced Concrete Technology

This part-time, distance learning Masters course aims to develop the next generation of senior construction professionals working in concrete production, construction and design. It’s designed to provide you with advanced, in-depth knowledge of both the theory and practical application of concrete technology to prepare you for a variety of senior roles.

You’ll gain academic and industrial expertise using a range of online resources that give you the flexibility to study around your work and personal lives. From health and safety and quality control to mixture proportioning, repair and maintenance and life cycle analysis, you’ll develop an understanding of a wide range of issues that affect professionals in the concrete industry today.

If you complete the MSc, you’ll also have the chance to conduct your own research project – a chance to focus on a single topic and demonstrate valuable skills when you present your findings in a comprehensive technical report.

Read less
You will study modules in computational analysis of structures, earthquake engineering, concrete materials and construction, environmental management. Read more
You will study modules in computational analysis of structures, earthquake engineering, concrete materials and construction, environmental management. Furthermore, you will undertake a project, which may be research or industry focused, or a combination of the two, and will give you the opportunity to work with Scotland’s leading civil engineering research group. The course is professionally accredited.

On the course you will study aspects of both structural engineering and concrete materials and see how the two aspects relate to each other. You will also study core modules that provide skills generic to engineering and research.

The course is backed by our Concrete Technology Unit (CTU). Our concrete research covers concrete science, environment, technology and construction; durability and repair technologies; durability, repair and maintenance strategies; recycling/reuse of materials and sustainability issues; novel construction applications; and risk assessment.

Teaching & Assessment

How you will be taught

You will be taught using a variety of methods including
Lectures
Workshops
Practical classes
Site visits
How you will be assessed

Assessment is via
Coursework
Examinations
Dissertation
What you will study

The programme consists of 180 Credits. The Credits are made up as follows:
Core modules 40 credits
Specialist modules 80 credits
Research project 60 credits

Careers

This programme is accredited by the Institution of Civil Engineers (ICE), Institution of Structural Engineers (IStructE), and the Chartered Institution of Highways and Transportation (CIHT) at Chartered Engineer (CEng) Level. The programme is accredited as follows:

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information. The programme is accredited as a Technical MSc.

Read less
MSc in Concrete Structures. The Concrete Structures course provides training in the design, analysis and assessment of concrete structures including bridges and buildings. Read more
MSc in Concrete Structures

The Concrete Structures course provides training in the design, analysis and assessment of concrete structures including bridges and buildings.

This is designed to cover a broad spectrum of structural engineering issues and their impact on reinforced and prestressed concrete structures.

All our MSc courses are career-orientated and cover both theoretical background and practical design considerations. Lectures are given mainly by full-time staff but important contributions are made by visiting professors and guest lecturers who are eminent industrialists.

Many of our students continue their studies to undertake research towards a PhD.

Read less
This industry-accredited course is aimed at civil and/or structural engineers who aspire to become senior sustainability managers in both consulting engineering and contracting organisations. Read more
This industry-accredited course is aimed at civil and/or structural engineers who aspire to become senior sustainability managers in both consulting engineering and contracting organisations. It successfully balances sustainable structural engineering with advanced construction management, and is led by a fellow of the Institution of Civil Engineers and Institution of Structural Engineers. With sustainability being a key issue for the 21st century, this course offers specialised knowledge and skills that will enhance your employability potential.

Key features
-This programme builds on the research excellence in sustainable concrete construction at Kingston University and is fully compatible with the existing Government and Foresight Strategy on Sustainable Construction.
-Input from experts at leading civil engineering, construction and related companies complements the academic teaching. This enables you to develop a wider perspective and understanding of the worldwide sustainability issues facing the construction industry.

This degree is accredited by the Joint Board of Moderators, which includes the Institution of Civil Engineers and the Institution of Structural Engineers, under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc(Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

What will you study?

The hands-on course focuses on the challenges and opportunities for the concrete industry in meeting the demands of sustainability. It combines concrete technology, sustainable construction, earthquake engineering, fire assessment, geo-environmental engineering and construction management.

The advanced concrete design module is assessed by coursework based on the national university competition organised by The Concrete Centre, the trade body representing the concrete industry in the UK.

Assessment

Coursework (including real-world case studies) and/or exams, practice-led research dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Management of Project Risk, Quality and Safety
-Sustainable Construction and Substructure Design
-Structural Design in Concrete and Steel
-Estimating, Tendering and Procurement
-Dissertation

Read less
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures. Read more
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures.

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules and dissertation
-Advanced structural analysis and stability (20 credits)
-Finite element methods (15 credits)
-Dynamics of structures (15 credits)
-Structural reliability and risk (10 credits)
-Design of concrete structures (15 credits)
-Design of steel and composite structures (15 credits)
-Dissertation for MSc degree (Research Skills and Individual Project) (60 credits)

Elective modules - you will be able to study two of the following elective modules:
-Earthquake analysis of structures (15 credits)
-Analysis of steel and concrete structures for blast and fire exposure (15 credits)
-Bridge engineering (15 credits)

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2014 have moved on to jobs and further study working within the following organisations:
-WSP Consultant Engineers
-Tully De'Ath Consultant Civil and Structural Engineers
-SSA Consulting Engineers
-Bradbrook Consulting
-Clarke Nicholls Marcel

Read less
This industry-accredited course is tailored to civil and/or structural engineers wishing to become senior managers in both consulting engineering and contracting organisations, and is ideal for graduate engineers starting their career in the construction industry. Read more
This industry-accredited course is tailored to civil and/or structural engineers wishing to become senior managers in both consulting engineering and contracting organisations, and is ideal for graduate engineers starting their career in the construction industry. It successfully combines structural engineering with advanced construction management, which will enable you to perform at a managerial level for a consultant or contractor. The course is led by a fellow of both the Institution of Civil Engineers and the Institution of Structural Engineers with industrial and academic experience and expertise in advanced concrete design and seismic design.

Academic teaching is complemented by experts from leading civil/ structural engineering consultancies and construction companies, enabling you to develop a wider perspective and understanding of the worldwide issues facing the construction industry.

This degree is accredited by the Joint Board of Moderators, which includes the Institution of Civil Engineers and the Institution of Structural Engineers, under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc(Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

What will you study?

You will learn how to carry out the conceptual and detailed design of standard and innovative structures and substructures under normal and earthquake actions, to latest standards, using steel and concrete. You will also study the financial, legal and contractual problems associated with the construction process, and will learn how to apply your knowledge of management techniques and contract administration in the supervision of construction projects.

You will have the opportunity to carry out research and undertake industry-relevant dissertation projects.
The advanced concrete design module is assessed by coursework based on the national university competition organised by The Concrete Centre, the trade body representing the concrete industry in the UK.

Assessment

Coursework (including real-world case studies) and/or exams, practice-led research dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Management of Project Risk, Quality and Safety
-Seismic Design of Structures and Substructure Design
-Structural Design in Concrete and Steel
-Estimating, Tendering and Procurement
-Dissertation

Read less
Develop skills in the analysis and design of steel and concrete structures. You can tailor the course to your specific interests, so it’s ideal for practising structural engineers who want to enhance their skills or for anyone pursuing a career in this field. Read more

About the course

Develop skills in the analysis and design of steel and concrete structures. You can tailor the course to your specific interests, so it’s ideal for practising structural engineers who want to enhance their skills or for anyone pursuing a career in this field.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis; Structural Design; Computational Structural Analysis and Research Skills; Structural Dynamics and Applications to Earthquake Engineering and Vibration.

Examples of optional modules

Innovations in Structural Concrete; Advanced Concrete Design; Structural Design and Fire Resistance of Medium Rise Steel-framed Buildings; Advanced Simulation of High Strain Rate Dynamics; Blast and Impact Effects on Structures; Design of Earthquake Resistant Structures; Geotechnical Design; Sustainable Concrete Technology.

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
This industry-accredited course offers a strategic overview of civil engineering and management issues; addressing the challenges facing the construction industry. Read more
This industry-accredited course offers a strategic overview of civil engineering and management issues; addressing the challenges facing the construction industry. It successfully combines structural engineering with advanced construction management. The course is aimed at civil and/or structural engineers who aspire to become senior managers in both consulting engineering and contracting organisations, and is particularly suitable for graduate engineers starting their career in the construction industry. It will develop your professional, analytical and management skills, as well as improve your technical skills and knowledge.

This degree is accredited by the Joint Board of Moderators, which includes the Institution of Civil Engineers and the Institution of Structural Engineers, under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc(Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

What will you study?

There are four taught modules and a thesis. Three of the modules are intended to provide you with an understanding of the core management skills needed to make a major contribution within the industry, while one structural design module enables you to broaden and deepen your technical knowledge of specialised civil engineering areas. You will also cover subjects that are both specific and complementary to civil engineering. In addition, you will develop the ability to resolve the broader problems that arise in civil engineering.

The advanced concrete design module is assessed by coursework based on the national university competition organised by The Concrete Centre, the trade body representing the concrete industry in the UK.

Assessment

Coursework and/or exams, research thesis.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Management of Project Risk, Quality and Safety
-Business in Practice
-Structural Design in Concrete and Steel
-Estimating, Tendering and Procurement
-Dissertation

Read less
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering. Read more
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering.

Successful completion of this programme will aid you in pursuing a career as a bridge engineer with a consultancy, a specialist contractor or a local authority.

PROGRAMME OVERVIEW

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Steel and Composite Bridge Design
-Long-Span Bridges

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Foundation Engineering

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering and Management Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources Management and Hydraulic Modelling
-Water Policy and Management
-Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for bridge analysis
-The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
-The ability to design bridge structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in bridge engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
-The ability to critically evaluate bridge engineering concepts
-The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
-The ability to understand the limitations of bridge analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to bridges
-The awareness of the commercial, social and environmental impacts associated with bridges
-An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
-The ability to generate innovative bridge designs (B)
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of bridge engineering in a commercial/business context
-Ability to use computer software to assist towards bridge analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

Read less
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. Read more
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. It builds the advanced capabilities in analysis and codified design in specialised aspects of structural engineering that are required by industry.

PROGRAMME OVERVIEW

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn). This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for structural analysis
-The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
-The ability to design structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to structural engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practice to structural design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in structural engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning structural engineering
-The ability to critically evaluate structural engineering concepts
-The ability to apply the appropriate analysis methodologies to common structural engineering problems as well as unfamiliar problems
-The ability to understand the limitations of structural analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to structures
-The awareness of the commercial, social and environmental impacts associated with structures
-An awareness and ability to make general evaluations of risk associated with the design and construction of structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of structural engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to generate innovative structural designs
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of structural engineering in a commercial/business context
-Ability to use computer software to assist towards structural analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation. Read more

About the course

The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation.

The core modules give you a grounding in engineering analysis and design. In the second semester, you can follow your interests and choose from a list of specialist modules.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Specialist facilities

Our laboratories are equipped to a very high standard:

Large-scale tri-axial apparatus for stress path and cyclic load testing; flexible walled tri-axial calibration chambers; optical microscopy, digital camera and measurement software; model pile testing and durability testing facilities. We have recently established the Centre for Energy and Infrastructure Ground Research that is home to our world leading 4m diameter beam centrifuge and complementary £1m teaching facility.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural Analysis and Research Skills
Structural Design
Design of Earthquake Resistant Structures
Advanced Simulation of High Strain Rate Dynamics

Examples of optional modules

Advanced Concrete Design
Sustainable Concrete Technology
Structural Design and Fire Resistance
Innovations in Structural Concrete
Blast and Impact Effects on Structures
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. Read more
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. It will also provide you with knowledge to design structures under dynamic and earthquake conditions.

The modules taught focus on learning advanced methods and techniques while developing analytic skills across a range of structural engineering topics.

Two modules, Finite Elements and Stress Analysis and Advanced Computing Structural Simulation, focus on learning advanced computing methods and commercial computing software for structures modelling and simulation.

Advanced Structural Analysis and Design and the Masonry and Timber Engineering modules will cover advanced structural theory and designing traditional structures, such as, steel, concrete, masonry and timbers. Earthquake Engineering will cover design of structures in seismic areas and analysis of structures under dynamic loading.

Soil-Structure Engineering will cover interaction of geotechnics and structures as well as foundation structures. Finally, you'll either conduct a structural related research project or a design project.

If you'd like any further information, please contact the course administrator, Ms. Jo Hillman: or call 020 7815 7106.

Accreditation:
Joint Board of Moderators (ICE, IStructE, IHE, CIHT)

See the website http://www.lsbu.ac.uk/courses/course-finder/structural-engineering-msc

Modules

Teaching techniques include: lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Module descriptions

- Advanced structural design
The module will deal with the design of structural elements and complex structural systems using the increasingly popular structural Eurocodes. It will cover engineering design principles and analytic techniques as well as the application of industrial standard software packages. There will also be an element of group and research work based on innovative design techniques.

- Soil-structure engineering
To acquaint the student with classical and modern methods for the analysis and design of structures that are embedded in the ground, specifically embedded retaining walls, piled foundations, and tunnels.

- Finite elements and stress analysis
The module will equip the student with linear elastic analysis of thin-walled sections, 2D and 3D stress analysis and transformations. It will introduce the Finite Element method theory and use ANSYS software.

- Masonry and timber engineering
This module introduces students to the materials, properties and design processes using timber and masonry construction. Eurocodes are used for the design of elements. Proprietary computer programmes are used alongside hand calculations. New techniques are introduced and discussed.

- Structural dynamics and earthquake engineering
The module aims to develop a thorough understanding of causes and nature of vibration in structures and to enable students to analyse the response of a structure under earthquake loadings.

- Advanced computing and structural simulation
The module will enable the students to use the advanced Finite Element Analysis (FEA) software (ANSYS) for modelling steel, reinforced concrete and composite structures. Both material and geometrical nonlinearities will be considered which link the complex structural system.

- Project / dissertation
This module is one third of the course and is an individually supervised piece of work that is typically either a research project or an innovative design exercise. The theme is related to topics covered on the course.

Employability

Employment prospects for graduates of Structural Engineering are strong. Successful students will enter into a variety of positions with employers which might include: structural engineer, consultant, project manager, government advisor and researcher.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

This degree is an accredited MSc (Technical) course by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Read less
The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation. Read more

About the course

The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation.

The core modules give you a grounding in engineering analysis and design. In the second semester, you can follow your interests and choose from a list of specialist modules.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis; Structural Design; Geotechnical Design; Constitutive Modelling of Geotechnical Materials; Hydrogeology and Research Skills.

Optional modules

These vary but can include:

Advanced Hydraulics
Engineering Hydrology
Innovations in Structural Concrete
Advanced Concrete Design
Blast and Impact Effects on Structures
Design of Earthquake Resistant Structures
Sustainable Concrete Technology
Flood Risk Management
SuDS and Green Infrastructure
Computational Methods in Water Engineering
Design of Water Distribution and Sewer Networks
Coastal Engineering

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X