• New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Glasgow Featured Masters Courses
University of Southampton Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Cass Business School Featured Masters Courses
Coventry University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"computing" AND "systems"…×
0 miles

Masters Degrees (Computing Systems)

  • "computing" AND "systems" ×
  • clear all
Showing 1 to 15 of 1,037
Order by 
The Master of Science in Embedded Computing Systems is jointly offered by the Institute of Communication, Information and Perception Technologies (TeCIP) of Sant’Anna School of Advanced Studies and the Department of Information Engineering of the University of Pisa. Read more
The Master of Science in Embedded Computing Systems is jointly offered by the Institute of Communication, Information and Perception Technologies (TeCIP) of Sant’Anna School of Advanced Studies and the Department of Information Engineering of the University of Pisa. It is aimed at providing the basic knowledge for approaching complex software design in embedded computing systems using the most modern design methodologies, and integrating specific knowledge in various research areas, including automatic control, signal acquisition and processing, real-time computing, sensors and actuators interfacing, software engineering, formal methods for software verification, distributed systems, computer architectures, and digital electronics.

The organization of teaching courses and laboratories will allow each student to achieve the most suitable and effective working environment. In order to achieve the described goals for high qualification and working environment, the maximum number of admitted students per year is 40.

People graduating in Embedded Computing Systems will have a deep knowledge in the following fields:
• real-time computing systems, scheduling algorithms and resource management;
• microprocessor, multiprocessor and multi-core architectures;
• distributed systems and sensor networks;
• paradigms, models and tools for software design.

Read less
This course runs in Germany. This course covers a range of essential topics related to distributed computing systems. Yet these modules are not isolated; each one takes its place in the field in relation to others. Read more

About the course

This course runs in Germany.

This course covers a range of essential topics related to distributed computing systems. Yet these modules are not isolated; each one takes its place in the field in relation to others.

The emphasis in the course is to build the connections between topics, enabling software engineers to achieve co-operation between distinct autonomous systems under constraints of cost and performance requirements.

The course is suitable for:

Recent graduates in Electrical or Electronic Engineering or Computer Science, who wish to develop their skills in the field of distributed computing systems.
Practicing engineers and computer professionals who wish to develop their knowledge in this area.
People with suitable mathematical, scientific or other engineering qualifications, usually with some relevant experience, who wish to enter this field.

Aims

The past few years have witnessed that Grid computing is evolving as a promising large-scale distributed computing infrastructure for scientists and engineers around the world to share various resources on the Internet including computers, software, data, instruments.

Many countries around the world have invested heavily on the development of the Grid computing infrastructure. Many IT companies have been actively involved in Grid development. Grid computing has been applied in a variety of areas such as particle physics, bio-informatics, finance, social science and manufacturing. The IT industry has seen the Grid computing infrastructure as the next generation of the Internet.

The aim of the programme is to equip high quality and ambitious graduates with the necessary advanced technical and professional skills for an enhanced career either in industry or leading edge research in the area of distributed computing systems.

Specifically, the main objectives of the programme are:

To critically appraise advanced technologies for developing distributed systems;
To practically examine the development of large scale distributed systems;
To critically investigate the problems and pitfalls of distributed systems in business, commerce, and industry.

Course Content

Compulsory Modules:

Computer Networks
Network Security and Encryption
Distributed Systems Architecture
Project and Personal Management
High Performance Computing and Big Data
Software Engineering
Embedded Systems Engineering
Intelligent Systems
Dissertation

Special Features

Electronic and Computer Engineering is one of the largest disciplines in the University, with a portfolio of research contracts totalling £7.5 million, and has strong links with industry.

The laboratories are well equipped with an excellent range of facilities to support the research work and courses. We have comprehensive computing resources in addition to those offered centrally by the University. The discipline is particularly fortunate in having extensive gifts of software and hardware to enable it to undertake far-reaching design projects.

We have a wide range of research groups, each with a complement of academics and research staff and students. The groups are:

Media Communications
Wireless Networks and Communications
Power Systems
Electronic Systems
Sensors and Instrumentation.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Distributed Computing Systems Engineering is accredited by the Institution of Engineering and Technology (IET).

Read less
By studying Computing Systems at a postgraduate level at Nottingham Trent University, you will learn the high-level skills necessary to pursue a career in software engineering, specifically for industrial and business systems. Read more
By studying Computing Systems at a postgraduate level at Nottingham Trent University, you will learn the high-level skills necessary to pursue a career in software engineering, specifically for industrial and business systems.

Both the Postgraduate Diploma and MSc courses address commercially relevant topics such as analysis and design, software implementation and computer architecture. You are also encouraged to take a hands-on approach to developing your skills through practical projects.

There is an increasing demand for individuals who are capable of implementing the new computerised and automated industrial and business processes. Companies are finding it hard to recruit the suitably qualified people who are needed to maintain the cutting-edge status of global business and exploit new technologies. As a result, career prospects for Computing Systems graduates are excellent.

This course aims to produce individuals who have the skills relevant to applied software engineering for computing systems in industry, business and research, and are able to hit the ground running in their chosen careers. On completing these courses, you should be able to use suitable programming languages and their development environments to produce new software solutions.

Modules

-Analysis and Design
-Computer Systems
-Major Project
-Research Methods
-Software Engineering
-Software Project Management

COME VISIT US ON OUR NEXT OPEN DAY!

Register here: https://www.ntu.ac.uk/university-life-and-nottingham/open-days/find-your-open-day/science-and-technology-postgraduate-and-professional-open-event2

The course is a part of the School of Science and Technology (http://www.ntu.ac.uk/sat) which has first-class facilities (http://www.ntu.ac.uk/sat/facilities).

Read less
EMECS is a two-year programme run with Kaiserslautern University and the Norwegian University of Science and Technology at Trondheim. Read more

Course Summary

EMECS is a two-year programme run with Kaiserslautern University and the Norwegian University of Science and Technology at Trondheim. Students benefit from the University of Southampton’s expertise in system-on-chip and electronics, Trondheim’s knowledge of electronics and communications and Kaiserslautern’s strong track record in embedded systems. EMECS covers the fundamentals of embedded computing systems and offers an equivalent education in the three institutions. The elective part of the programme reflects the profiles of the participating partner universities. You will also write a masters thesis. Key facts additional information: (120 ECTS credits) pursued at two of the three participating institutions students spend one year at each of their selected universities and receive a joint degree from the respective institutions; language of instruction is English.

Visit our website for further information...



Read less
This degree programme aims to give students a Masters-level postgraduate education in the knowledge, skills and understanding of research methods to enable them to operate effectively in the application of computing in industry, commerce or research. Read more
This degree programme aims to give students a Masters-level postgraduate education in the knowledge, skills and understanding of research methods to enable them to operate effectively in the application of computing in industry, commerce or research. Students with an interest in topics covered by our research teams will find this is an excellent opportunity to get involved in progressive research.

Why study MSc Computing Research at Dundee?

The MSc Computing Research degree is designed for graduates with a good degree in Computing or a related subject who wish to gain deep knowledge of research methods and experience of working in an active research environment.

The School of Computing provides a distinctive, balanced and enjoyable learning environment, matched to the future needs of both society and the computing field. Its research has strong foundations in mathematical and logical techniques, and in probabilistic and machine learning algorithms that are applied in its work on computer vision and multi-agent systems. In its applied research, the multi-disciplinary School has an international reputation in computer support for older and disabled people, healthcare computing, space systems and interaction design. All these areas of research have been developed through strong, long-term relationships with other leading academic institutions worldwide, and in collaboration with professional and industrial partners. The School is also active in commercialising its research, with several recent spin out companies fostering an entrepreneurial atmosphere.

The School of Computing has four major research groups:
Assistive and Healthcare Systems
Computational Systems
Interactive Systems Design
Space Technology Centre

What's so good about MSc Computing Research at Dundee?

The University of Dundee is at the forefront of computing research. We currently have 23 academics and 35 researchers working alongside our 27 PhD students. Since January 2008 our school of computing has generated 313 publications and counting. In this time, we've produced 129 projects totalling more than £12.3 million in funding making Dundee a great place to come to engage in computing research.

We encourage a professional, inter-disciplinary and user-centred approach to computer systems design and production, and will enable you to develop the skills so that you can undertake independent research and participate in proposal development and innovation.

Our facilities

You will have 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

Postgraduate culture

The School of Computing maintains a friendly, intimate and supportive atmosphere, and we take pride in the fact that we know all of our students - you're far more than just a matriculation number to us. We have a thriving postgraduate department with regular seminars and guest speakers.

How you will be taught

We know how important it is to be at the leading edge of computing and so you will learn from research-active staff in the School of Computing. Leading researchers teach you and small class sizes mean that they really get to know you, making for an informal and supportive community.

What you will study

You study three taught modules, during the period January-March, making your module selections with your advisor, as follows:
Computing Research Frontiers
One of: Designing Innovative Research OR Research Methods
One of: Human Computer Interaction OR Multi-agent Systems and Grid Computing

Subject to examination performance, you then progress to the individual research project which runs from May to December. You will be based with one of the research groups within the School of Computing:

Assistive & healthcare technologies
Computational systems
Interactive systems design
Space technology centre

How you will be assessed

The taught modules are assessed by continuous assessment plus end of semester examinations in March/April. The project is assessed by dissertation.

Careers

Our students are highly employable:
They develop the expertise that employers want from computing graduates - our Industrial Advisory Board includes experts from a range of industries including Amazon, Scottish Enterprise Tayside, NCR, Chevron and Microsoft
They are prepared for a wide range of good career prospects in computing - the UK faces a massive shortage of graduates qualified to fill the 120,000 new jobs in computing and IT every year

Graduates may also choose to continue to a PhD in the School of Computing or elsewhere.

Computing at the University of Dundee is ranked 21st in the UK according to most recent Times Good University Guide and 12th in the UK according to the Guardian University League Table 2009. The University of Dundee has powered its way to a position as one of Scotland's leading universities with an international reputation for excellence across a range of activities. With over 18,000 students, it is growing fast in both size and reputation. It has performed extremely well in both teaching and research assessment exercises, has spawned a range of spin-out companies to exploit its research and has a model wider-access programme.

Dundee has been described as the largest village in Scotland which gives an indication of how friendly and compact it is. With a population of 150,000 it is not too large but has virtually all the cultural and leisure activities you would expect in a much larger city. It is situated beside a broad estuary of the river Tay, surrounded by hills and farmland, and for lovers of the great outdoors it is hard to imagine another UK location that offers so much all year round on land and water. The University is situated in the centre of Dundee, and everything needed is on the one-stop campus: study facilities, help, advice, leisure activities... yet the attractions of the city centre and the cultural quarter are just a stroll away.

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study High Performance and Scientific Computing at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study High Performance and Scientific Computing at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc in High Performance and Scientific Computing is for you if you are a graduate in a scientific or engineering discipline and want to specialise in applications of High Performance computing in your chosen scientific area. During your studies in High Performance and Scientific Computing you will develop your computational and scientific knowledge and skills in tandem helping emphasise their inter-dependence.

On the course in High Performance and Scientific Computing you will develop a solid knowledge base of high performance computing tools and concepts with a flexibility in terms of techniques and applications. As s student of the MSc High Performance and Scientific Computing you will take core computational modules in addition to specialising in high performance computing applications in a scientific discipline that defines the route you have chosen (Biosciences, Computer Science, Geography or Physics). You will also be encouraged to take at least one module in a related discipline.

Modules of High Performance and Scientific Computing MSc

The modules you study on the High Performance and Scientific Computing MSc depend on the route you choose and routes are as follows:

Biosciences route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Conservation of Aquatic Resources or Environmental Impact Assessment
Ecosystems
Research Project in Environmental Biology
+ 10 credits from optional modules

Computer Science route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Partial Differential Equations
Numerics of ODEs and PDEs
Software Engineering
Data Visualization
MSc Project
+ 30 credits from optional modules

Geography route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Partial Differential Equations
Numerics of ODEs and PDEs
Modelling Earth Systems or Satellite Remote Sensing or Climate Change – Past, Present and Future or Geographical Information Systems
Research Project
+ 10 credits from optional modules

Physics route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Partial Differential Equations
Numerics of ODEs and PDEs
Monte Carlo Methods
Quantum Information Processing
Phase Transitions and Critical Phenomena
Physics Project
+ 20 credits from optional modules

Optional Modules (High Performance and Scientific Computing MSc):

Software Engineering
Data Visualization
Monte Carlo Methods
Quantum Information Processing
Phase Transitions and Critical Phenomena
Modelling Earth Systems
Satellite Remote Sensing
Climate Change – Past, Present and Future
Geographical Information Systems
Conservation of Aquatic Resources
Environmental Impact Assessment
Ecosystems

Facilities

Students of the High Performance and Scientific Computing programme will benefit from the Department that is well-resourced to support research. Swansea physics graduates are more fortunate than most, gaining unique insights into exciting cutting-edge areas of physics due to the specialized research interests of all the teaching staff. This combined with a great staff-student ratio enables individual supervision in advanced final year research projects. Projects range from superconductivity and nano-technology to superstring theory and anti-matter. The success of this programme is apparent in the large proportion of our M.Phys. students who seek to continue with postgraduate programmes in research.

Specialist equipment includes:

a low-energy positron beam with a highfield superconducting magnet for the study of positronium
a number of CW and pulsed laser systems
scanning tunnelling electron and nearfield optical microscopes
a Raman microscope
a 72 CPU parallel cluster
access to the IBM-built ‘Blue C’ Supercomputer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

The Physics laboratories and teaching rooms were refurbished during 2012 and were officially opened by Professor Lyn Evans, Project Leader of the Large Hadron Collider at CERN. This major refurbishment was made possible through the University’s capital programme, the College of Science, and a generous bequest made to the Physics Department by Dr Gething Morgan Lewis FRSE, an eminent physicist who grew up in Ystalyfera in the Swansea Valley and was educated at Brecon College.

Read less
The impact of Information Systems on everyday life continually expands at a monumental rate. Computing is increasingly embedded in everything we use from; transport, financial and telecommunications systems to everyday personal items such as toothbrushes and running shoes. Read more
The impact of Information Systems on everyday life continually expands at a monumental rate. Computing is increasingly embedded in everything we use from; transport, financial and telecommunications systems to everyday personal items such as toothbrushes and running shoes. The pervasive nature of computing coupled with the ever increasing demand for improved products and services drives the discovery of innovative solutions through the use of information systems. This has led to a critical dependence emerging between computing and practically all industries.

Graduates and engineers who are able to fully exploit the potential that computing and information systems offer within a range industries including, Retail, Manufacturing, Health, and Communications; are highly sought after. If you are looking to further your employment options in your current industry, but have little or no technical experience, then this programme is for you.

* This programme is suited to students from a non-IT background or with little prior technical experience who want to further enhance or or change career focus, to widen employment opportunities in a vast selection of computing related industries and sectors.
* Designed for non-IT professionals who want to develop a firm technical foundation in the latest industry relevant programming languages and software development techniqus (agile, which can open up more technical and senior level positions in their current industry.
* Guided by academics with an extensive spectrum of industrial experience, the programme introduces you to the core aspects of computing and allows you to choose from a variety of optional specialist modules, such as Mobile Devices and Social Networks, Business Technology Strategy and Graphical User Interface design, developing both your practical and theoretical skills.
* The core modules introduce aspects of computing, including a double module in object-oriented programming (using Java) and a double module in information systems.
* These core modules are supplemented by optional specialist modules covering a broad range of subjects relevant to the software industry, such as Network Planning, Finance and Management, Entrepreneurship in Information Technology and Decision and Risk.
* Your project work will typically involve the design and implementation of a significant piece of software within your chosen specialism. Projects undertaken for external organisations focusing on an industrial or commercial application encouraged.
* You will learn about and develop extensive technical knowledge of the latest developments in new languages and tools for web systems (XML, Advanced databases, Semantic web).
* This intensive one year programme is aimed at students without a background in Computer Science � it is a conversion course for those who want a career in computing.

Why study with us?

Queen Mary has a prestigious history in computing and electronic engineering, we had one of the first Computer Science Departments in the country, and The School of Electronic Engineering and Computer Science is rated in the top 20 universities in the UK for studying computer science and electronic engineering.

The best things I have found about the course have been the breadth of content available and the quality of teaching.
Anuruddha Jaithirtha

* This programme is available part-time
* It permits students to follow a technical or business focus
* There is a wide range of employment-relevant module choices
* Early coverage of Networks in core modules
* There are lectures and laboratories specific to students on this programme, a number of modules have invited talks from commercial and other organisations
* Up-to-date modules in real-time and critical systems, functional programming and security, intelligent and multi-agent systems (such as Siri), and web-based document databases

Read less
The MSc in Computing is perfect for students looking to develop upon their previous computing-based qualifications from courses such as Computing, Information Technology, Information Systems, Software Engineering or related disciplines. Read more
The MSc in Computing is perfect for students looking to develop upon their previous computing-based qualifications from courses such as Computing, Information Technology, Information Systems, Software Engineering or related disciplines. This course provides the opportunity and guidance necessary for students to build upon their existing knowledge and gain the skills necessary to succeed in both commercial computing and research.

Why study MSc Computing at Dundee?

This degree programme aims to give students a Masters-level postgraduate education in the knowledge, skills and understanding of computing and software development to enable them to operate effectively in the application of computing in industry, commerce or research.

"The intersection of business models and IT requires people with varied experience, professional versatility, multidiscipline knowledge and technology understanding – a hybrid professional, in other words."
Diane Morello, Vice President and Gartner Fellow, Gartner Inc, 2008

What's so good about MSc Computing at Dundee?

This course is highly flexible, adapting to your skill level to create a programme tailored to suit you. We encourage a professional, inter-disciplinary and user-centred approach to software design and production, and will enable you to develop the skills so that you can undertake a major software development project.

In keeping with our theme of flexibility, this course offers its students a wide choice of individual projects to choose from.

Our facilities

You will have 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

How you will be taught

We know how important it is to be at the leading edge of computing and so you will learn from research-active staff in the School of Computing. Leading researchers teach you and small class sizes mean that they really get to know you, making for an informal and supportive community.

Industrial collaboration is part of our ethos too, so we regularly include guest experts from industry.

What you will study

You select six taught modules, three per semester, during the period September-April. You will make module selections with your advisor, and this will be partially dictated by your background and previous study.

The typical list for students with limited computing background is shown *. Any module which has a significant overlap with your previous education will be disallowed, for students with a computing-related degree this will usually include most of the modules shown +.

The six taught modules will be chosen from topics such as the following:

Software Development+
Technology Innovation Management
Computer Vision
Computer Graphics
Computing the User Experience
Big Data Analysis
Database Systems
Secure Internet Programming
Software Engineering+
Agile Engineering
Computing Research Frontiers
Research Methods
Human Computer Interaction and Usability Engineering


Subject to examination performance, you then progress to the MSc project which runs from May to September, or to a Diploma project lasting 9 weeks.

Please note that some of the modules in the programme are shared with other masters programmes and some of the teaching and resources may be shared with our BSc programme. These joint classes offer a valuable opportunity to learn from, and discuss the material with, other groups of students with different backgrounds and perspectives.

How you will be assessed

The taught modules are assessed by continuous assessment plus end of semester examinations in December and March/April. The project is assessed by dissertation.

Coursework is often very practical, eg writing computer programs, designing interfaces, writing reports, constructing web sites, testing software, implementing databases, analysing problems or presenting solutions to clients.

Careers

Career opportunities in software development, website design, network support, database development and research, working as computer systems manager, data processing manager, software engineer, computer analyst & programmer, computer & IT consultant.

Our students are highly employable:
They develop the expertise that employers want from computing graduates - our Industrial Advisory Board includes experts from a range of industries including Amazon, Scottish Enterprise Tayside, NCR, Chevron and Microsoft
They are prepared for a wide range of good career prospects in computing - the UK faces a massive shortage of graduates qualified to fill the 120,000 new jobs in computing and IT every year

Computing at the University of Dundee is ranked 21st in the UK according to most recent Times Good University Guide and 12th in the UK according to the Guardian University League Table 2009. The University of Dundee has powered its way to a position as one of Scotland's leading universities with an international reputation for excellence across a range of activities. With over 18,000 students, it is growing fast in both size and reputation. It has performed extremely well in both teaching and research assessment exercises, has spawned a range of spin-out companies to exploit its research and has a model wider-access programme.

Dundee has been described as the largest village in Scotland which gives an indication of how friendly and compact it is. With a population of 150,000 it is not too large but has virtually all the cultural and leisure activities you would expect in a much larger city. It is situated beside a broad estuary of the river Tay, surrounded by hills and farmland, and for lovers of the great outdoors it is hard to imagine another UK location that offers so much all year round on land and water. The University is situated in the centre of Dundee, and everything needed is on the one-stop campus: study facilities, help, advice, leisure activities... yet the attractions of the city centre and the cultural quarter are just a stroll away.

Read less
Industry and commerce have an increasing need for IT-enabled decision makers and business-aware IT professionals. This postgraduate degree is designed to meet that need. Read more
Industry and commerce have an increasing need for IT-enabled decision makers and business-aware IT professionals. This postgraduate degree is designed to meet that need. The degree aims to give students a firm grounding in the knowledge, skills and understanding of computing, software development with a user-centric approach and the global business environment.

Why study MSc Computing with International Business at Dundee?

The MSc in Computing with International Business offers students a practical mix of technical computing modules such as internet programming and software development and business modules like economics for business managers and international business strategy.

At the University of Dundee we have a flexible approach to Computing with International Business. This course can be tailored to suit students with a strong computing background or those with less experience seeking to develop their skills while simultaneously developing their business acumen.

We encourage a professional, inter-disciplinary and user-centred approach to software design and production, and enable you to develop research skills so that you can undertake a major software development project.

What's great about Computing with International Business at Dundee?

International Business at the University of Dundee is well known abroad and as a result, there is a strong multicultural aspect in these classes. Students from countries all over the world like India, China Nigeria and more come here to study giving you the opportunity to work alongside people with a multitude of different ideas, skills and experiences.

The University of Dundee is at the leading edge of computing giving you the opportunity to take advantage of tutelage from leading researchers in an informal and supportive environment.

Your studies will take place in the Queen Mother Building, the University of Dundee’s award-winning epicentre of computing, which boasts an array of conventional and specialised equipment.

The start date is September each year. The MSc course lasts for 12 months and the PGDip lasts for 9 months.

- Degree Combinations
Computing with International Business with Work Placement MSc

How you will be taught

We know how important it is to be at the leading edge and so you will learn from research-active staff. Leading researchers teach you and small class sizes mean that they really get to know you, making for an informal and supportive community.

Industrial collaboration is part of our ethos too, so we regularly include guest experts from industry.

What you will study

You select six taught modules, three per semester, during the period September-April. You make module selections with your advisor, and this will be partially dictated by your background and previous study, plus any timetabling restrictions.

The typical list for students with limited computing background is shown *. Any module which has a significant overlap with your previous education will be disallowed, for students with a computing-related degree this will usually include most of the modules shown +.

Four Computing modules from:

Software Development+
Technology Innovation Management
Computer Vision
Computer Graphics
Computing the User Experience
Big Data Analysis
Database Systems
Secure Internet Programming
Software Engineering+
Agile Engineering
Computing Research Frontiers
Research Methods
Human Computer Interaction and Usability Engineering

Two Business modules from:

Corporate Finance
Performance Management and Reporting
Operations Management and Change
Business Accounting for Non-specialists
Principles of Marketing Practice
International Business Strategy
Global Marketing
Human Resource Management Strategies
Marketing Management and Strategy
Strategic Management Accounting
International Human Resource Management

Subject to examination performance, you then progress to the MSc project which runs from May to September, or to a Diploma project lasting 9 weeks.

Please note that some of the modules in the programme are shared with other masters programmes and some of the teaching and resources may be shared with our BSc programme. These joint classes offer a valuable opportunity to learn from, and discuss the material with, other groups of students with different backgrounds and perspectives.

How you will be assessed

The taught modules are assessed by continuous assessment plus end of semester examinations in December and March/April. The project is assessed by dissertation.

Coursework is often very practical, eg writing computer programs, designing interfaces, writing reports, constructing web sites, testing software, implementing databases, analysing problems or presenting solutions to clients.

Careers

Career opportunities in software development, website design, network support, database development and research, working as computer systems manager, data processing manager, software engineer, computer analyst & programmer, computer & IT consultant.

Our students are highly employable:
They develop the expertise that employers want from computing graduates - our Industrial Advisory Board includes experts from a range of industries including Amazon, Scottish Enterprise Tayside, NCR, Chevron and Microsoft

They are prepared for a wide range of good career prospects in computing - the UK faces a massive shortage of graduates qualified to fill the 120,000 new jobs in computing and IT every year

Computing at the University of Dundee is ranked 21st in the UK according to most recent Times Good University Guide and 12th in the UK according to the Guardian University League Table 2009. The University of Dundee has powered its way to a position as one of Scotland's leading universities with an international reputation for excellence across a range of activities. With over 18,000 students, it is growing fast in both size and reputation. It has performed extremely well in both teaching and research assessment exercises, has spawned a range of spin-out companies to exploit its research and has a model wider-access programme.

With a population of 150,000 Dundee is not too large but has virtually all the cultural and leisure activities you would expect in a much larger city. It is situated beside a broad estuary of the river Tay, surrounded by hills and farmland, and for lovers of the great outdoors it is hard to imagine another UK location that offers so much all year round on land and water. The University is situated in the centre of Dundee, and everything needed is on the one-stop campus: study facilities, help, advice, leisure activities... yet the attractions of the city centre and the cultural quarter are just a stroll away.

Read less
This programme delivers a thorough grounding in current technologies and trends, offering comprehensive training in the fundamentals of the subject. Read more
This programme delivers a thorough grounding in current technologies and trends, offering comprehensive training in the fundamentals of the subject.

It combines high-quality education with rigorous intellectual challenges, enabling you to understand the principles of knowledge management, decision-making and design in process systems and business-information technologies.

PROGRAMME OVERVIEW

The MSc Information and Process Systems Engineering programme is aimed at graduates of traditional engineering, science and related disciplines.

Graduates from non-IT or related disciplines tend to be ill-prepared for the information and knowledge-related challenges and demands of today’s business environments.

We offer a wide selection of modules spanning process engineering, information systems, business and management. All taught modules are delivered by qualified experts in the topics and academic staff, assisted by specialist external lecturers.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year. Part-time students must study at least two taught technical modules per academic year. The programme consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Information Security Management
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Technology, Business and Research Seminars
-Database Systems
-Knowledge-Based Systems and Artificial Intelligence
-Process and Energy Integration
-Process Systems Design
-Supply Chain Management
-Biomass Processing Technology
-Process Safety and Operation Integrity
-Process and Energy Integration
-Transition to a Low Carbon Economy
-Dissertation

FACILITIES, EQUIPMENT AND ACADEMIC SUPPORT

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

An extensive library is available for individual study. It stocks more than 85,000 printed books and e-books, and more than 1,400 (1,100 online) journal titles, all in the broad area of engineering. The library support can be extended further through inter-library loans.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects.

In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications, as well as modelling of process systems.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, on-going research. In the past, several graduates have carried on their MSc research to a PhD programme.

RESEARCH

Process integration and systems analysis for sustainability of resources and energy efficiency are carried out within our well-established Centre for Process and Information Systems Engineering (PRISE).

CAREER PROSPECTS

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision support systems alongside their main technical and/or scientific expertise.

Graduates of these programmes will be well prepared to help technology-intensive organisations make important decisions in respect of vast amounts of information, by adopting, combining, implementing and executing the right technologies.

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aims are achieved through a balanced, multi-disciplinary curriculum with a core of information systems engineering modules and decision-making and process systems engineering modules as well as a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

The programme draws on the stimulus of recent research activities in the Faculty of Engineering and Physical Sciences. The programme provides the students with the basis for developing their own approach to learning and personal development.

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The sources, technologies, systems, performance, and applications in information and process engineering
-Approaches to the assessment of information and process technologies
-Decision making in complex systems
-Optimisation and operations research
-Technical systems modelling
-Databases and data protection
-Representation of design processes
-Systematic approaches to observing organisational data security processes
-Understanding research issues
-Literature studies and research planning
-Experimental planning
-Communication of research outcomes
-Design of decision-support systems
-Development of databases, ontologies and agent-based architectures
-Information technology and security
-Process modelling and simulation

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available information and process and their interaction
-Design and select appropriate collection and storage, and optimise and evaluate system design
-Apply generic systems engineering methods such as conceptual design and optimization to facilitate the assessment and development of information, information security and process technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organizing and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our Computer Science MPhil and PhD programme gives you an opportunity to make a unique contribution to computer science research. Read more
Our Computer Science MPhil and PhD programme gives you an opportunity to make a unique contribution to computer science research. Your research will be supported by an experienced computer scientist within a research group and with the support of a team of advisers.

Research supervision is available under our six research areas, reflecting our strengths, capabilities and critical mass.

Advanced Model-Based Engineering and Reasoning (AMBER)

The AMBER group aims to equip systems and software engineering practitioners with effective methods and tools for developing the most demanding computer systems. We do this by means of models with well-founded semantics. Such model-based engineering can help to detect optimal, or defective, designs long before commitment is made to implementations on real hardware.

Digital Interaction Group (DIG)

The Digital Interaction Group (DIG) is the leading academic research centre for human-computer interaction (HCI) and ubiquitous computing (Ubicomp) research outside of the USA. The group conducts research across a wide range of fundamental topics in HCI and Ubicomp, including:
-Interaction design methods, eg experience-centred and participatory design methods
-Interaction techniques and technologies
-Mobile and social computing
-Wearable computing
-Media computing
-Context-aware interaction
-Computational behaviour analysis

Applied research is conducted in partnership with the DIG’s many collaborators in domains including technology-enhanced learning, digital health, creative industries and sustainability. The group also hosts Newcastle University's cross-disciplinary EPSRC Centre for Doctoral Training in Digital Civics, which focusses on the use of digital technologies for innovation and delivery of community driven services. Each year the Centre awards 11 fully-funded four-year doctoral training studentships to Home/EU students.

Interdisciplinary Computing and Complex BioSystems (ICOS)

ICOS carries out research at the interface of computing science and complex biological systems. We seek to create the next generation of algorithms that provide innovative solutions to problems arising in natural or synthetic systems. We do this by leveraging our interdisciplinary expertise in machine intelligence, complex systems and computational biology and pursue collaborative activities with relevant stakeholders.

Scalable Computing

The Scalable Systems Group creates the enabling technology we need to deliver tomorrow's large-scale services. This includes work on:
-Scalable cloud computing
-Big data analytics
-Distributed algorithms
-Stochastic modelling
-Performance analysis
-Data provenance
-Concurrency
-Real-time simulation
-Video game technologies
-Green computing

Secure and Resilient Systems

The Secure and Resilient Systems group investigates fundamental concepts, development techniques, models, architectures and mechanisms that directly contribute to creating dependable and secure information systems, networks and infrastructures. We aim to target real-world challenges to the dependability and security of the next generation information systems, cyber-physical systems and critical infrastructures.

Teaching Innovation Group

The Teaching Innovation Group focusses on encouraging, fostering and pursuing innovation in teaching computing science. Through this group, your research will focus on pedagogy and you will apply your research to maximising the impact of innovative teaching practices, programmes and curricula in the School. Examples of innovation work within the group include:
-Teacher training and the national Computing at School initiative
-Outreach activities including visits to schools and hosting visits by schools
-Participation in national fora for teaching innovation
-Market research for new degree programmes
-Review of existing degree programmes
-Developing employability skills
-Maintaining links with industry
-Establishing teaching requirements for the move to Science Central

Research Excellence

Our research excellence in the School of Computing Science has been widely recognised through awards of large research grants. Recent examples include:
-Engineering and Physical Sciences Research Council (EPSRC), Centre for Doctoral Training in Cloud Computing for Big Data Doctoral Training Centre
-Engineering and Physical Sciences Research Council (EPSRC), Centre for Doctoral Training in Digital Civics
-Wellcome Trust and Engineering and Physical Sciences Research Council (EPSRC) Research Grant: a £10m project to look at novel treatment for epilepsy, confirming our track record in Systems Neuroscience and Neuroinformatics.

Accreditation

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Read less
Are you excited by the impact of technology on our everyday lives and are keen to forge a successful career in the field? From day one, you will be immersed in an exciting, innovative environment where you will develop broad knowledge and skills in the main areas of computing and information technology which will be directly relatable to your future career. Read more
Are you excited by the impact of technology on our everyday lives and are keen to forge a successful career in the field? From day one, you will be immersed in an exciting, innovative environment where you will develop broad knowledge and skills in the main areas of computing and information technology which will be directly relatable to your future career.

You will take core modules covering areas of computing in programming, databases, systems analysis and design, and computer networks and web development. Designed in consultation with partners from industry, you will develop the most up-to-date computing knowledge, desired by employers across the industry.

This course fully meets the educational requirements for BCS Chartered IT Professional registration.

This course has several available starts and study options - for more information, please view the relevant web-page:
16 months full time - https://www.northumbria.ac.uk/study-at-northumbria/courses/computing-and-information-technology-dtfcin6/

Part time study - https://www.northumbria.ac.uk/study-at-northumbria/courses/computing-and-information-technology-dtpcin6/

3 years distance learning - https://www.northumbria.ac.uk/study-at-northumbria/courses/computing-and-information-technology-dtdciy6/

Learn From The Best

You will be taught by a range of academic staff who bring a wealth of professional experience. They are experts in specialist areas such as Strategic Management, Computer Science and Web Based Information Retrieval.

In a dynamic learning environment with an expert team of staff, you will be taught theoretical and practical research skills such as information literacy, as well as problem solving skills, self-directed learning and communication skills.

Teaching And Assessment

On this course, you will have the opportunity to independently research topics to deepen your learning and understanding, while learning the skills to communicate your research and investigations.

Assessment methods will include reports, presentations, individual, group and project work, alongside regular feedback on your summative assessment.

Module Overview
KC7013 - Database Modelling (Core, 20 Credits)
KF7010 - Programme Design & Implementation (Core, 20 Credits)
KF7011 - Systems Analysis & Design with UML (Core, 20 Credits)
KF7013 - Website Development and Deployment (Core, 20 Credits)
KF7023 - Computer Networks & Operating Systems (Core, 20 Credits)
KF7028 - Research Methods and Project Management (Core, 20 Credits)
KF7029 - MSc Computer Science & Digital Technologies Project (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our state-of-the-art facilities including our dedicated computing suite, Pandon Basement.

Pandon Basement houses specialist facilities and studios with industry-standard software.

You will also have access to dedicated computing areas, which can be used during free periods and into the evenings and weekends.

When you want to get hands-on with technology our range of specialist facilities will support you.

You will also have access to the University’s award winning library (online and on campus). The library achieved the second highest score in the UK in the Times Higher Student Satisfaction Survey 2015.

Research-Rich Learning

You will be immersed in a research-rich environment supported by our rapidly expanding Computer Science and Information Science Research Groups.

Northumbria’s BCS-accredited MSc has been designed to ensure you learn the most up-to-date computing knowledge required by employers across the industry. We offer research-informed teaching, industry-standard software and a strong community of like-minded students.”

You will be taught by staff with a strong academic background in areas such as Web Programming who promote innovative and excellent learning and teaching practice.

You will develop an understanding of important research methods and approaches which could be directly applicable to the demands of your future career.

Give Your Career An Edge

Industry practice has strongly influenced the design of the programme to give you the computing knowledge to work within a variety of roles in the sector.

Learning independently, working collaboratively on projects, evaluating and reflecting upon practitioner experience, are all essential skills of the computing profession. Your modules will enable you to do all of this and more as you develop the qualities needed for a career in computing.

This programme will prepare you to meet the educational requirements for BCS, the Chartered Institute for IT, Chartered IT Professional (CITP) registration.

Your Future

Upon graduating from this course, you will have an in-depth knowledge and critical understanding of the main areas of Computing and Information Technology, including the key areas of systems analysis, systems development, operating systems, networking, databases and the internet .

We place a real emphasis on developing the transferable skills that will open doors to a range of careers. These include communication, analytical and problem solving skills, technical skills and the ability to work independently and as part of a team.

Graduates are expected to work in a number of career opportunities across a wide range of computer areas including software engineering, systems analysis and design, computer networks, database development and management, software testing and project management.

Read less
The evolution of wireless communication systems and networks in recent years has been accelerating at an extraordinary pace and become an essential part of modern lifestyle requirements. Read more

About the course

The evolution of wireless communication systems and networks in recent years has been accelerating at an extraordinary pace and become an essential part of modern lifestyle requirements.

The effects of this trend has seen a growing overlap between the network and communication industries, from component fabrication to system integration, and the development of integrated systems that transmit and process all types of data and information.

This distinctive course, developed with the support of industry, aims to develop a detailed technical knowledge of current practice in wireless systems and networks. You will study the fundamentals of wireless communication systems and the latest innovations in this field.

You will study the fundamentals of wireless communication systems and the latest industry innovations and needs. The MSc programme incorporates theory and practice and covers all aspects of a modern communication system ranging from RF components, digital signal processing, network technologies and wireless security and examines new wireless standards.

This course is accredited by the Institution of Engineering and Technology (IET).

Aims

The sharp increase in the use of smartphones, machine to machine communication systems (M2m), sensor netowrks, digital broadcasting networks and smart grid systems have brought tremendous technological growth in this field.

It has become a global phenomenon that presently outstrips the ability of commercial organisations to recruit personnel equipped with the necessary blend of technical and managerial skills who can initiate and manage the introduction of the new emerging technologies in networks and wireless systems.

By studying Wireless Communications Systems at Brunel, you will be equipped with the advanced technical and professional skills you need for a successful career either in industry or leading edge research in wireless communication systems.

Course Content

Typical Modules:

Advanced Digital Communications
Network Design and Management
DSP for Communications
Wireless Network Technologies
Communications Network Security
Research Methods
Radio and Optical Communication Systems
Project Management
Project & Dissertation

Teaching

The course blends lectures, workshops, seminars, self-study, and individual and group project work. You’ll develop communication and teamwork skills valued by industry through carefully designed lab exercises, group assignments, and your dissertation project.

In lectures, key concepts and ideas are introduced, definitions are stated, techniques are explained, and immediate student queries discussed.

Seminars provide the students with the opportunity to discuss at greater length issues arising from lectures.

Workshops sessions are used to foster practical engagement with the taught material.

The dissertation project plays a more significant role in supporting literature review in a technically complex area and to plan, execute and evaluate a significant investigation into a current problem area related to wireless communication systems.

Assessment

Taught modules are assessed by final examinations or by a mix of examination and laboratory work. Project management is assessed by course work. Generally, students start working on their dissertations in January and submit by the end of September.

Special Features

The course is taught by academics who are experts in their fields and have strong collaborative links with industry and other international research organisations. Some well-known textbooks in this area are authored by members of the course team.

The course is fully supported with computing and modern, well-equipped RF laboratories. As a student you will enjoy working on the latest and advanced equipment.

Electronic and Computer Engineering at Brunel supports a wide range of research groups, each with a complement of academics and research staff and students:

- Media Communications
- Wireless Networks and Communications
- Power Systems
- Electronic Systems
- Sensors and Instrumentation.

Our portfolio of research contracts totals £7.5 million, and we’ve strong links with industry.

Prizes
Rohde and Schwartz best in RF Prize
Criteria for award: Best overall PG student on MSc Wireless Communications Systems with a relevant RF dissertation
Composition of prize: RF books and Certificate

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc in Wireless Communications Systems is fully accredited by the Institution of Engineering and Technology (IET).

Read less
Our Masters in Information Systems addresses recent advances in IT, the internet, web technologies, and business applications, to explore how information systems can increase productivity, improve decision-making and lead to a significant competitive advantage. Read more
Our Masters in Information Systems addresses recent advances in IT, the internet, web technologies, and business applications, to explore how information systems can increase productivity, improve decision-making and lead to a significant competitive advantage.

PROGRAMME OVERVIEW

This programme aims to prepare students for a successful career in the IT sector, even if they do not have a prior degree in computer science. It enables students who have studied computer science previously to expand their knowledge and acquire further skills across a broader range of computer science topics.

Taught modules address mobile and cloud computing, big data and database systems, and the importance of information security, in relation to the foundational information systems principles.

This programme will equip you with professional skills that will allow you to work as an IT consultant/manager, system architect/analyst, or software developer in any industry field that heavily relies on software and information technology.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time over three academic years. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Dissertation
-Information Systems Development
-HTML5 and CSS3 for Mobile Applications
-Information Security Management
-Information and Network Security
-Practical Business Analytics
-Database Systems
-Project Management and Business Strategy
-Cloud Computing
-Information Security for Business and Government

EDUCATIONAL AIMS OF THE PROGRAMME

The aims of the programme are to:
-Prepare students for a range of computing related careers
-Enable students to understand, design and apply information systems and software development technologies
-Enable students to develop interest and basic skills for doing research in computer science
-Enable students to realise their full potential for learning and communication
-Enable students to appreciate rapid innovation and creativity in computer science

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The principles of information systems and software development
-The principles and applications of contents technologies
-The practice of information systems and software development
-The professional issues involved in the exploitation of computing
-The areas of emergent and innovative computing technologies
-The key research issues in information and software systems

Intellectual / cognitive skills
-Understand and articulate the requirements of the users of software systems / applications
-Succinctly present, to a range of audience, knowledge relevant to the building, testing and deployment of a system
-Research and develop solutions through the application of systems analysis / software engineering methods

Professional practical skills
-Specify, design and develop software systems and applications
-Critically evaluate software systems and tools
-Work as a member of a development team
-Communicate with potential and actual users and to understand their needs
-Retrieve Information
-Analyse data and present information in appropriate ways
-Plan, research, manage and implement a major project

Key / transferable skills
-Research and information retrieval skills
-Numeracy in both understanding and presenting cases involving a quantitative dimension
-Time management and organisational skills
-Self-learning skills
-Effective use of specialist IT facilities
-Continuing professional development

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
If you want to move into the computing and information systems field, or if computing plays an increasing part in your role, this postgraduate qualification is ideal personal development. Read more
If you want to move into the computing and information systems field, or if computing plays an increasing part in your role, this postgraduate qualification is ideal personal development. It is designed for people who have little or no previous experience or specific qualifications in computing or information technology, though you should have some related experience or skills that you wish to build upon.

We place emphasis on the effective use, design and development of software for information systems. You will become skilled in programming and learn how to design and implement information systems.

Our graduates have relevant, up-to-date knowledge, along with the professional and technical skills needed to develop, manage and employ information systems applications in a range of organisations. To enhance your employability, the skills and knowledge gained on this course are directly relevant to industry.

See the website http://courses.southwales.ac.uk/courses/251-msc-computing-and-information-systems

What you will study

You will study the following modules:
- Principles of Computing
- Security Management
- Network Security
- Professional Skills Development
- Advanced Research Methods
- Project Management
- ICT Systems Development
- MSc Project: the development and evaluation of a significant application or task of your choice, related to the course

Learning and teaching methods

The course is delivered in four major blocks that offer an intensive but focused learning pattern, with two entry opportunities for applicants every year – February and September. Full-time students will typically spend 12 hours in classes each week. If you choose to study part-time, this is reduced to around six hours each week. You will also need to work independently on reading, coursework assignments and other computer related activities. .

Work Experience and Employment Prospects

Graduates have a very strong record in gaining employment. You could develop a career as an analyst programmer, database developer, network administrator or in ICT management. To enhance your employability, the skills and knowledge you gain on the course are directly relevant to industry. This MSc is also suitable if you are interested in continued professional development.

Assessment methods

Several modules are assessed entirely through coursework and some involve coursework and an examination. You will also work on a significant research project and major project of your own choice where strong independent thinking, critical analysis and project management skills will be important.

Facilities

We have a full range of high-specification computer labs and an ongoing investment programme to ensure that our facilities stay at the forefront of computing developments.

Read less

Show 10 15 30 per page



Cookie Policy    X