• University of Oxford Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
University of Reading Featured Masters Courses
Coventry University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Surrey Featured Masters Courses
"computer" AND "software"…×
0 miles

Masters Degrees (Computer Software)

We have 1,283 Masters Degrees (Computer Software)

  • "computer" AND "software" ×
  • clear all
Showing 1 to 15 of 1,283
Order by 
Software development is one of the most rapidly evolving industries in the world, presenting an ever-greater number of creative opportunities and exciting challenges. Read more

Overview

Software development is one of the most rapidly evolving industries in the world, presenting an ever-greater number of creative opportunities and exciting challenges. Software developers therefore need a special set of skills to keep pace with technology and innovation. Our course gives you the knowledge and confidence to do just that. We focus on large-scale development of advanced software, teaching you how to make use of the latest frameworks, methodologies and technology to produce professional-quality applications. Crucially, you will also learn how to be an effective member of a development team. With close links to software giants like Microsoft, Sony, and IBM, we work hard to ensure that our course is always up to date and that our graduates leave with the cutting-edge skills highly sought-after by industry. Therefore, this MSc is appropriate not just for fresh Computer Science graduates, but also for those with existing commercial experience who wish to update their skills and knowledge.

The course begins in September each year and lasts twelve months. There are two trimesters of taught modules, followed by an individual dissertation project during the third trimester. An optional extra trimester – either immediately before or after the dissertation – gives you significant industrial experience through a module based in our software development unit, working with commercial clients and software. This is unique to Hull.

The Department of Computer Science creates an excellent experience for students, with a supportive student community. We have an international reputation for our research activities, with a strong record of industrial and public grant funding. We are also affiliated with Microsoft’s DreamSpark programme, which allows you to access the latest Microsoft operating systems and development software for home use. Once registered with the department, you can download the software free of charge.

Industrial Experience

There is the option to take an Industrial Experience variant, with the opportunity to extend the period of study by a trimester, to gain experience of working alongside commercial software developers within a commercial software development facility on site (SEED), promoting real-world applications of the advanced concepts met in the course.

Study

The MSc Computer Science (Software Engineering) programme is designed to support students with various levels of computing and programming practice experience. There is suitable content on professional skills and the importance of ethics for practising computer scientists. Material on software engineering, referencing and unfair means supports the transition into the postgraduate environment.
As a route into research, the programme supports the development of postgraduate technical skills, alongside critical research, analysis and planning activities.
In lectures you’ll benefit from a range of techniques, from interpreting complex ideas through interactive discussions, to live programming or other problem-solving demonstrations.

Core modules

• Oriented Design and Development Using C++
• Component-based Architecture
• Maintaining Large Software Systems
• Development Project
• Distributed Applications
• Trustworthy Computing
Optional modules
• Computer Science Software Development Practice – pass/fail module
• Dissertation (There is the option of taking this module either in trimester 3 or trimester 4, depending on whether you take the Industrial Experience module.)

Teaching and learning

We place a strong emphasis on practical laboratory sessions. This will significantly develop your core computer science skills, and enhance your employability through exposure to commercial projects.
As teamwork plays a key role in commercial software development and has great value as an employable skill, group work is used in a number of modules.

Assessment

Practical coursework is the main form of assessment, and you will design, build and test software solutions to a variety of problems. This is complemented by written coursework.
The largest assessment is the dissertation, which is based on the work done in the third trimester and documented in a report of up to 20,000 words.

Careers

The MSc Computer Science (Software Engineering) is designed to open up pathways to postgraduate research, as well as careers in a wide range of areas within your discipline. The industrial placement option will enable you to practise your skills and knowledge of computer science ‘in situ’, giving you a useful insight and advantage when it comes to starting your career.
We have a range of inspirational extra-curricular activities including the Three Thing Game, Imagine Cup Worldwide Software Development Challenge, Really Useful Seminars and Global Game Jam. They are designed to boost your CV and employability, and taking part costs very little.

Our graduates gain a wide range of roles including: Applications Developer, Business Systems Analyst, Computer Analyst, Computer Programmer, Computer Operations Manager, Data Management Analyst, Database Assistant, Developer Support Engineer, Games Programmer, Games Programmer (Engine design), Information Manager, IT Design, IT Systems Manager, IT Technician, IT user Support, Mobile Developer, Operations Director, Software Designer, Software Developer, Software Engineer, Solutions Developer, Systems Engineer, Technical Sales, Technical Specialist, Web Developer.

Read less
The MSc in Software Development provides a year of intensive education in software engineering and is ideal for graduates of disciplines other than computing. Read more

Software Development (conversion)

The MSc in Software Development provides a year of intensive education in software engineering and is ideal for graduates of disciplines other than computing.

This course is designed to develop the technical, analytical and professional skills required to take on software development roles within the IT industry.

Software development skills, such as programming, are essential to the technological evolution and advancement of most sectors within the economy. As a result, there is a very strong demand for software professionals.

Aims

The programme aims to:
◦provide a solid understanding of software engineering principles and techniques
◦develop the ability to analyse software problems, create and evaluate software designs and develop and appropriately test software solutions
◦foster critical analysis and evaluative skills pertaining to software engineering

What way is Software Development being taught

The programme is separated into three parts; a foundational element covering the basics of software development and programming; an advanced element where you can tailor your area of specialism; and finally a substantial individual project.

Foundational Element
Most foundational modules are studied in the first semester and cover introductory programming using the Java programming language alongside the foundations of software engineering and databases. Coverage of more advanced algorithmic and object-oriented programming continues into the second semester. The foundation modules are intended to provide students with an essential grounding in software engineering in a manner that is consistent with Level M requirements.

Advanced Element
The second semester provides a number of advanced software engineering modules which permit specialism within key areas of software development. The advanced modules currently encompass aspects such as Requirements Engineering, Software Quality, Software Design Principles and Patterns, and Software Testing and Verification. Alongside these there is an opportunity to take an introductory module in Capital Markets which would help to prime students for software development roles within the financial sector.

The combination of lectures, laboratory work, tutorials and group-based projects employed throughout the foundational and advanced elements equips students with the skills needed to both design and implement complex software systems.

Project Element
Three month summer projects are taken individually with supervision from a member of the School's teaching staff. The projects permit students to combine and apply the skills gained within individual modules towards the creation of a significant software artefact. Projects can be selected by students from a list put forward by the local software industry and the School. Where appropriate an industrial co-supervisor will be assigned.

Modules

Semester 1
Programming I
Databases
Software Engineering

Semester 2
Programming II
Web and Mobile Applications
Software Testing and Verification
Software Design Principles and Patterns

Assessment

The MSc in Software Development is, by its nature, an intensive and practical programme of study. Students build strong software development skills by putting theory into practice and this is reflected within the assessment. A mixture of individual and group based projects, assignments and practical examinations provide the primary means of assessment within modules, with written examinations also employed for some modules. The summer project is assessed through a written dissertation alongside the presentation and demonstration of the created software artefact.

Career Opportunities

The School has strong links with the local, national and international software companies situated around the University. Students have ample opportunity to meet and engage with employers through hosted careers fairs, guest lectures and industrial facing demonstrations. Where possible, MSc dissertations will be set and co-supervised by an industrial partner and may involve an on-site placement.

Employment opportunities in software engineering are excellent as evidenced through the consistent and continued growth of the software sector. A career within the profession is not only well remunerated but also rewarding, with software professionals able to select between a range of career progression paths. Given the diversity of career paths, the communicative, business-related, client-facing, analytical and evaluative skills gained from a primary degree are strongly valued by IT employers and will help augment the employment opportunities of graduates from this MSc.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Science. Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Science: Informatique at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in Computer Science: Informatique is a Dual Degree scheme between Swansea University and Université Grenoble Alpes for computer science.

The MSc in Computer Science: Informatique Grenoble dual degree scheme is a two year programme that provides students with an opportunity to study in both Swansea, UK and Grenoble, France. One year of the Computer Science: Informatique programme students study at Swansea University and the second year of the programme students study at Université Grenoble Alpes. Upon successful completion of the programme, students will receive an M.Sc. in Advanced Computer Science from Swansea University and a Master from Université Grenoble Alpes.

Key Features of Computer Science: Informatique MSc

- We are top in the UK for career prospects [Guardian University Guide 2018]

- 5th in the UK overall [Guardian University Guide 2018]7th in the UK for student satisfaction with 98% [National Student Survey 2016]

- We are in the UK Top 10 for teaching quality [Times & Sunday Times University Guide 2017]

- 12th in the UK overall and Top in Wales [Times & Sunday Times University Guide 2017]

- 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]

- UK TOP 20 for Research Excellence [Research Excellence Framework 2014]

- Our Project Fair allows students to present their work to local industry

- Strong links with industry

- £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

- Top University in Wales [Times & Sunday Times University Guide 2017]

Modules of Computer Science: Informatique MSc

Modules on the MSc in Computer Science: Informatique may include:

Critical Systems; IT-Security: Theory and Practice; Visual Analytics; Data Science Research Methods and Seminars; Big Data and Data Mining; Data Visualization; Human Computer Interaction; Big Data and Machine Learning; Web Application Development; High Performance Computing in C/C++; Software Testing; Graphics Processor Programming; Embedded System Design; Mathematical Skills for Data Scientists; Logic in Computer Science; Computer Vision and Pattern Recognition; High-Performance Computing in C/C++; Hardware and Devices; Modelling and Verification Techniques; Operating Systems and Architectures.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of our expansion, we are building the Computational Foundry on our Bay Campus for computer and mathematical sciences. This development is exciting news for Swansea Mathematics who are part of the vibrant and growing community of world-class research leaders drawn from computer and mathematical sciences.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Computer Science Graduates were in professional level work or study [DLHE 14/15].

Some example job titles include:

Software Engineer: Motorola Solutions

Change Coordinator: Logica

Software Developer/Engineer: NS Technology

Workflow Developer: Irwin Mitchell

IT Developer: Crimsan Consultants

Consultant: Crimsan Consultants

Programmer: Evil Twin Artworks

Web Developer & Web Support: VSI Thinking

Software Developer: Wireless Innovations

Associate Business Application Analyst: CDC Software

Software Developer: OpenBet Technologies

Technical Support Consultant: Alterian

Programming: Rock It

Software Developer: BMJ Group

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).



Read less
This two-year master’s programme Computer Science offers stimulating, significant and innovative research at an internationally renowned institute and combines theoretical, experimental and applied approaches. Read more

This two-year master’s programme Computer Science offers stimulating, significant and innovative research at an internationally renowned institute and combines theoretical, experimental and applied approaches.

What does this master’s programme entail?

The two-year master’s programme in Computer Science offers six specialisations which combine excellent theoretical teaching with possibilities for applied work with industrial relevance. This is achieved by intensive collaboration with companies at the Leiden Centre of Data Science. Course themes include topics such as Evolutionary Algorithms, Neural Networks, Databases and Data Mining, Swarm-Based Computation, Bayesian Networks, Multimedia Systems, Embedded Systems and Software, Advanced Compilers and Architectures, Bio-Modeling and Petri Nets.

Read more about our Computer Science programme.

Why study Computer Science at Leiden University?

  • Interdisciplinary research opportunities as well as industrial applications provide you with exciting possibilities. The industrial application areas and interdisciplinary activities include, among others: Bioinformatics and Life Sciences, Medicine, Pharma, Physics, Engineering Applications, Logistics Applications, Energy and Utility related Applications and Financial Applications.
  • You will benefit from our diverse collaborations and the possibilities for internships and projects with our partners such as BMW, ING and Strukton.
  • You have ample of opportunities to assemble your own study path: an individually tailored programme will be designed for each student.

Find more reasons to choose Computer Science at Leiden University.

Computer Science: the right master’s programme for you?

The programme is open for students with an internationally recognized bachelor’s degree in computer science or equivalent. You will be trained as an independent researcher, equipped with the necessary skills to advance your career as a computer scientist.

Read more about the entry requirements for Computer Science.

Specialisations



Read less
This industry-focused course is for Computer Science graduates and experienced professional programmers interested in developing high-quality, complex software systems. Read more
This industry-focused course is for Computer Science graduates and experienced professional programmers interested in developing high-quality, complex software systems.

Who is it for?

This industry-focused course is for Computer Science graduates and experienced professional programmers interested in developing high-quality, complex software systems and aiming at a high-quality career in the industry, e.g. software houses, consultancies, and major software users across different sectors.

Students will have a keen interest in designing complex software systems, coding them in a programming language using the latest technologies (SOA, cloud, etc.), and ensuring that they are of high quality and that they actually meet the needs of their stakeholders.

Objectives

You will develop skills in analysing requirements and designing appropriate software solutions; designing and creating complex software systems to solve real-world problems, evaluating and using advanced software engineering environments, design methods and programming languages, and evaluating and responding to recent trends in interoperability and software development.

The course focuses on advanced engineering concepts and methods, as well as design issues for the systematic development of high-quality complex software systems. These are explored using industrial strength technologies, like the C++ and Java programming languages and the UML modelling language.

The course covers significant trends in systems development, including service-oriented architecture, cloud computing, and big data. The course is delivered by acknowledged experts and draws on City's world-class research in Systems and Software Engineering, which has one of the largest groups of academics working in this area in London, covering almost all aspects - from requirements, to designing reliable systems for the nuclear industry.

Placements

Postgraduate students on a Computing and Information Systems course are offered the opportunity to complete up to six months of professional experience as part of their degree.

Our longstanding internship scheme gives students the chance to apply the knowledge and skills gained from their taught modules within a real business environment. An internship also provides students with professional development opportunities that enhance their technical skills and business knowledge.

Internships delivered by City, University of London offer an exceptional opportunity to help students stand out in the competitive IT industry job market. The structure of the course extends the period for dissertation submission to January, allowing students to work full-time for up to six months. Students will be supported by our outstanding Professional Liaison Unit (PLU) should they wish to consider undertaking this route.

Teaching and learning

Software Engineering MSc is available full-time (12 months) as well as part-time (up to 28 months).

Students successfully completing eight taught modules and the dissertation for their individual project will be awarded 180 credits and a Master's level qualification. Alternatively, students who do not complete the dissertation but have successfully completed eight taught modules will be awarded 120 credits and a postgraduate diploma. Successful completion of four taught modules (60 credits) will lead to the award of a postgraduate certificate.

Assessment

Each module is assessed through a combination of coursework and examination.

Modules

You will develop skills in analysing requirements and designing appropriate software solutions; designing and creating complex software systems to solve real-world problems, evaluating and using advanced software engineering environments, design methods and programming languages and evaluating and responding to recent trends in interoperability and software development.

The focus of the course is on advanced engineering concepts and methods, as well as design issues for the systematic development of high-quality complex software systems. These are explored using industrial strength technologies, such as the C++ and Java object-oriented programming languages and the UML modelling language.

The course covers significant trends in systems development, including service-oriented architecture, mobile and pervasive computing, cloud computing, big data, and XML-enabled interoperable services. The course is delivered by acknowledged experts and draws on City's world-class research in Systems and Software Engineering. City has one of the largest groups of academics working in the area in London, working on almost all aspects of the area - from requirements, to designing reliable systems for the nuclear industry.

Core modules - there are five core modules:
-Advanced Database Technologies (15 credits)
-Research Methods and Professional Issues (15 credits)
-Service Oriented Architectures (15 credits)
-Software Systems Design (15 credits)
-Advanced Programming: Concurrency (15 credits)

Elective modules - you will be required to take three elective modules, choosing from the following:
-Advanced Algorithms and Data Structures (15 credits)
-Big Data (15 credits)
-Programming in C++ (15 credits)
-Business Engineering with ERP Solutions (15 credits)
-Mobile and Pervasive Computing (15 credits)
-Data Visualization (15 credits)
-Cloud Computing (15 credits)

Career prospects

The MSc in Software Engineering aims to meet the significant demand for graduates with a good knowledge of computing. This demand arises from consultancies, software houses, major software users such as banks, large manufacturers, retailers, and the public services, defence, aerospace and telecommunications companies.

Typical entrants to the course have a degree in an engineering or scientific discipline, and wish to either move into the software engineering field or to the development of software for their current field. Entrants must have previous exposure to computing, especially to programming (particularly in Java or C#) and relational databases (from either academic or professional experience).

From this base, the course provides solid technical coverage of advanced software development, including such widely used languages as C++, Java, UML and XML for which demand is particularly high. The course is therefore quite demanding; its success in providing advanced academic education along these lines is evident from the fact that recent graduates of the course are currently employed in a wide spectrum of organisations.

Of course, the employment value of a master's degree is not just short term. Although on-the-job training and experience as well as technology specific skills are valuable, they can be rather narrow and difficult to validate, and to transfer. The structure of this course ensures that there is a strong balance between the development of particular skills and a solid education in the enduring principles and concepts that underlie complex software system development.

SAP Certification - in parallel to your degree you will be able to register for a SAP TERP10 Certification course at a substantial discount, thus obtaining an additional, much sought-after qualification

Read less
Applicants to this programme are numerate and logically-minded, and it is likely that they will have previously studied software engineering, programming, computer science, maths or physics. Read more
Applicants to this programme are numerate and logically-minded, and it is likely that they will have previously studied software engineering, programming, computer science, maths or physics. Such students will seek more specialised, technical programming and software engineering skills. They would learn in-depth, a range of programming concepts, languages and software development techniques to develop sophisticated and complex programs. Graduates will seek positions as software developers, systems engineers, software testers, programmers, etc.

Course Overview

The main themes of the programme are:
-Current and emerging Software Engineering principles and practices
-Current and emerging programming practices
-Large scale software project management

This programme will equip students with those skills at a high academic level and also crucially enable them to practically implement their knowledge because of the ‘hands-on’ emphasis of the programme.

The Current and emerging Software Engineering principles and practices includes aspects of generic programming.

The Current and emerging programming practices theme covers advanced topics in modules such as Generic Programming and aspects of Scientific Computing and Virtualisation

The Large scale project management theme will concentrate on management and systems analysis skills to be developed by the students both of which are in great demand by employers.

Modules

Part 1
-Agile Software Development (20 credits)
-Generic Programming (20 credits)
-Leadership and Management (20 credits)
-Managing Information Systems and Projects (20 credits)
-Research Methods and Data Analysis (20 credits)
-Scientific Computing & Virtualisation (20 credits)

Part 2
-Major Project (60 credits)

Key Features

Software Engineering as a subject evolved from a desire to incorporate engineering practices including, analysis, design, testing and project management to the process of creating computer programs. As a discipline, software engineering is as broad as the software created, with applications as diverse as plant control (real-time critical systems) to commercial trading software (database driven software) to image processing applications for mobile phones (computer graphics based mobile applications).

Assessment

The School of Applied Computing aims to produce graduates that help shape the future of computing and information systems development. The course content is contemporary and shaped for employability through close links with local and national employers.

Students are assessed through a combination of worksheets, practicals, presentations, projects and examinations. Module assessment is often by assignment, or assignment and examination. The final mark for some modules may include one or more pieces of course work set and completed during the module. Project work is assessed by written report and presentation.

Students are encouraged to use our links with Software Alliance Wales and Go Wales to work on commercial schemes for their Major Project module. Go Wales provides the opportunity of paid work placements with local businesses.

Career Opportunities

Graduates from this programme will be skilled and knowledgeable in the technical aspects of software development, and are likely to find employment either within specialist software organisations, or within organisations which commit resources to developing highly technical software systems. They are likely to have to work as a member of a team, conceiving, designing, developing and implementing complex software systems. Graduates from this programme would expect to be initially employed as software engineers. Those employed by SMEs are likely to work in smaller teams or perhaps as sole developers. Students finding employment with larger companies are most likely to work in larger teams building a variety of large-scale applications.

It is expected that graduates would seek positions such as:
-Software Engineers
-Senior software Engineers
-Software Developers
-Application Developers
-System Engineers
-Software Technical Lead
-System Analyst
-Version control manager
-Project lead/manager

Read less
Modern devices often rely on data that is distributed across multiple computers, whether closely located or more distant. Read more

Overview

Modern devices often rely on data that is distributed across multiple computers, whether closely located or more distant. Developing software for such systems offers many benefits, but it also poses new challenges to be overcome, particularly in guaranteeing the security and robustness of the communication between devices.

The MSc at Hull is designed to enable you to overcome those challenges. It prepares you to exploit the extraordinary potential of distributed systems, both in terms of storage capacity and processing power, whilst being aware of the unique constraints and security problems they introduce. You will have access to cutting-edge equipment and facilities, and you will finish with a much greater understanding of how software development needs to adapt to the unique environment of a distributed system. These skills and knowledge are highly sought-after in an industry that is increasingly adopting new distributed technology, such as cloud-based solutions.

The course begins in September each year and lasts twelve months. There are two trimesters of taught modules, followed by an individual dissertation project during the third trimester. There is an option to take an extra trimester – either immediately before or after the dissertation – gaining industrial experience through a module based in SEED, our software development unit working with commercial clients and software. This is unique to Hull.

The Department of Computer Science creates an excellent experience for students, with a supportive student community. We have an international reputation for our research activities, with a strong record of industrial and public grant funding. We are also affiliated with Microsoft’s DreamSpark programme, which allows you to access the latest Microsoft operating systems and development software for home use. Once registered with the department, you can download the software free of charge.

Industrial Experience

There is the option to take an Industrial Experience variant, with the opportunity to extend the period of study by a trimester, to gain experience of working alongside commercial software developers within a commercial software development facility on site (SEED), promoting real-world applications of the advanced concepts met in the course.

Study

The MSc Computer Science (Security and Distributed Computing) programme supports students with various levels of computing and programming practice experience, with material that supports the transition into the postgraduate environment. There is also suitable content on professional skills and the importance of ethics for practising computer scientists.
As a route into research, the programme supports the development of postgraduate technical skills, alongside critical research, analysis and planning activities.
In lectures you’ll benefit from a range of techniques, from interpreting complex ideas through interactive discussions, to live programming or other problem-solving demonstrations.
Core modules
• Oriented Design and Development Using C++
• Component-based Architecture
• Network Security
• Development Project
• Distributed Applications
• Trustworthy Computing
Optional modules
• Computer Science Software Development Practice (pass/fail module)
• Dissertation (There is the option of taking this module either in trimester 3 or trimester 4, depending on whether you take the Industrial Experience module.)
• The Industrial Experience optional 60-credit single trimester module allows students to gain significant commercial experience.

Teaching and learning

We place a strong emphasis on practical laboratory sessions. This will significantly develop your core computer science skills, and enhance your employability through exposure to commercial projects.
As teamwork plays a key role in commercial software development and has great value as an employable skill, group work is used in a number of modules.

Assessment

Practical coursework is the main form of assessment, and you will design, build and test software solutions to a variety of problems. This is complemented by written coursework.
The largest assessment is the dissertation, which is based on the work done in the third trimester (or fourth, depending on your option choices) and documented in a report of up to 20,000 words.

Careers

The MSc Computer Science (Security and Distributed Computing) is designed to open up pathways to postgraduate research, as well as careers in a wide range of areas within your discipline. The industrial placement option will enable you to practise your skills and knowledge of computer science ‘in situ’, giving you a useful insight and advantage when it comes to starting your career.
We have a range of inspirational extra-curricular activities including the Three Thing Game, Imagine Cup Worldwide Software Development Challenge, Really Useful Seminars and Global Game Jam. They are designed to boost your CV and employability, and taking part costs very little.

Our graduates typically gain roles including: Applications Developer, Business Systems Analyst, Computer Analyst, Computer Programmer, Computer Operations Manager, Data Management Analyst, Database Assistant, Developer Support Engineer, Games Programmer, Games Programmer (Engine design), Information Manager, IT Design, IT Systems Manager, IT Technician, IT user Support, Mobile Developer, Operations Director, Software Designer, Software Developer, Software Engineer, Solutions Developer, Systems Engineer, Technical Sales, Technical Specialist, Web Developer.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in Computer Science course is for you if you are a graduate from one of a wide range of disciplines and are looking to change direction or because of the needs of your chosen career, require a solid foundation in Computer Science.

As the use of computers and computer based systems continues to grow in all aspects of life, at home and at work, it is apparent that there will be for years to come a need for many people who can combine a knowledge of Computer Science, the discipline that underlies Information Technology, and degree level knowledge in a wide variety of other disciplines.

Over the duration of the MSc Computer Science course you will study a variety of modules taught by academic staff that are part of internationally renowned research groups. The course is also regularly updated to ensure that it keeps pace with the rapid developments in Computer Science.

Key Features of Computer Science MSc

• We are top in the UK for career prospects*

• We are 3rd in the UK for teaching quality**

• 5th in the UK overall*

• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]

• 7th in the UK overall and Top in Wales*

• High employability prospects - we are 8th in the UK for graduate prospects*

• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]

• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]

• Our Project Fair allows students to present their work to local industry

• Strong links with industry

• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017

**Times & Sunday Times University Guide 2016

Modules of Computer Science MSc

Modules for the MSc in Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15].

Student Profile

“I chose the MSc Computer Science as a conversion from my previous War and Society degree, primarily employment opportunities. The course was by no means easy for me coming from an arts background, and the first few weeks I felt a little over my head, but thanks to the truly stimulating content from the syllabus and the high quality of the teaching within the department I soon caught up and began to thrive on the course. My project revolved around a comparative study of the Haskell Web-Framework Yesod and ASP.NET. During the completion of this I picked up many of the skills that I now use on an everyday basis in my role at Kinspeed (A Sheffield based Software House). Since starting work I have been able to apply many of the skills I obtained during my time at Swansea and have no doubt that choosing to study the MSc Computer Science at Swansea was one of the better decisions of my life.”

Chris Swires

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).



Read less
Computer science has an ever-greater influence on our lives, and the technological breakthroughs of today shape the way we live tomorrow. Read more

Overview

Computer science has an ever-greater influence on our lives, and the technological breakthroughs of today shape the way we live tomorrow. Opportunities continue to grow for highly skilled practitioners, and the taught Masters course allows you to make great advancements on your existing skills and knowledge. By the end of the programme you will be equipped to thrive in one of the fastest moving industries in the world.

Industrial Placement Trimester

There is the option to take an Industrial Experience variant, with the opportunity to extend the period of study by a trimester, to gain experience of working alongside commercial software developers within a commercial software development facility on site (SEED), promoting real-world applications of the advanced concepts met in the course.

You will learn specialist computer science techniques and fundamental theories, but you’ll also have the opportunity to put this knowledge into practice by developing applications and working with real software. We cover a range of topics, including real time graphics and computational science, and you can choose from options including artificial intelligence, robotics and visualisation – built upon a solid foundation of good programming skills.

The course begins each September each year and lasts twelve months. There are two trimesters of taught modules, followed by an individual dissertation project during the third trimester. There is an option to take an extra trimester – either immediately before or after the dissertation – gaining industrial experience through a module based in SEED, our software development unit working with commercial clients and software. This is unique to Hull.

The Department of Computer Science creates an excellent experience for students, with a supportive student community. We have an international reputation for our research activities, with a strong record of industrial and public grant funding. We are also affiliated with Microsoft’s DreamSpark programme, which allows you to access the latest Microsoft operating systems and development software for home use. Once registered with the department, you can download the software free of charge.

Study

The MSc programme is designed to support students with various levels of computing and programming practice experience. However, this programme is particularly suited to those with significant experience of writing code. There is a focus on the transition to postgraduate study, with suitable content on professional skills and the importance of ethics for practising computer scientists.
In lectures you’ll benefit from a range of techniques, from interpreting complex ideas through interactive discussions, to live programming or other problem-solving demonstrations.

Core modules

• C++ Programming and Design
• Real Time Graphics
• Advanced Computational Science
• Development Project

Optional modules

• Game Development Architecture
• Simulation and Concurrency
• Visualization
• Advanced Rendering and Artificial Intelligence for Games
• Trustworthy Computing
• Dissertation (There is the option of taking this module either in trimester 3 or trimester 4, depending on whether you take the Industrial Experience module.)
• The Industrial Experience optional 60-credit single trimester module allows students to gain significant commercial experience.

Teaching and learning

We place a strong emphasis on practical laboratory sessions. This will significantly develop your core computer science skills, and enhance your employability through exposure to commercial projects.
As teamwork plays a key role in commercial software development and has great value as an employable skill, group work is used in a number of modules.

Assessment

Practical coursework is the main form of assessment, and you will design, build and test software solutions to a variety of problems.
Written coursework is used to assess your descriptive and critical skills, as well as verify the methodology used to complete your practical coursework. The largest assessment is the dissertation, which is based on the work done in the third trimester (or fourth, depending on your option choices) and documented in a report of up to 20,000 words.

Careers

The MSc Advanced Computer Science programme is designed to open up pathways to postgraduate research, as well as a wide range of careers. The computational science module introduces concepts and ideas which will help prepare you for postgraduate study; the industrial placement option, meanwhile, will enable you to practise your skills and knowledge of computer science ‘in situ’, giving you a useful insight and advantage when it comes to starting your career.
We have a range of inspirational extra-curricular activities including the Three Thing Game, Imagine Cup Worldwide Software Development Challenge, Really Useful Seminars and Global Game Jam. They are designed to boost your CV and employability, and taking part costs very little.

Our MSc graduates typically gain roles including: Applications Developer, Business Systems Analyst, Computer Analyst, Computer Programmer, Computer Operations Manager, Data Management Analyst, Database Assistant, Developer Support Engineer, Games Programmer, Games Programmer (Engine design), Information Manager, IT Design, IT Systems Manager, IT Technician, IT user Support, Mobile Developer, Operations Director, Software Designer, Software Developer, Software Engineer, Solutions Developer, Systems Engineer, Technical Sales, Technical Specialist, Web Developer.

Read less
Computer science has an ever-greater influence on our lives, and the technological breakthroughs of today shape the way we live tomorrow. Read more

Overview

Computer science has an ever-greater influence on our lives, and the technological breakthroughs of today shape the way we live tomorrow. Opportunities continue to grow for highly skilled practitioners, and the taught Masters course allows you to make great advancements on your existing skills and knowledge. By the end of the programme you will be equipped to thrive in one of the fastest moving industries in the world.

Industrial Placement Trimester

This degree comprises of 4 trimesters - including Industrial Experience to benefit from working alongside commercial software developers within a commercial software development facility on site (SEED), promoting real-world applications of the advanced concepts met in the course.

You will learn specialist computer science techniques and fundamental theories, but you’ll also have the opportunity to put this knowledge into practice by developing applications and working with real software. We cover a range of topics, including real time graphics and computational science, and you can choose from options including artificial intelligence, robotics and visualisation – built upon a solid foundation of good programming skills.

The course begins each September each year and lasts twelve months. There are two trimesters of taught modules, followed by
industrial experience through a module based in SEED, our software development unit working with commercial clients and software. This is unique to Hull. The degree ends with an individual dissertation project during the fourth trimester.

The Department of Computer Science creates an excellent experience for students, with a supportive student community. We have an international reputation for our research activities, with a strong record of industrial and public grant funding. We are also affiliated with Microsoft’s DreamSpark programme, which allows you to access the latest Microsoft operating systems and development software for home use. Once registered with the department, you can download the software free of charge.

Study

The MSc programme is designed to support students with various levels of computing and programming practice experience. However, this programme is particularly suited to those with significant experience of writing code. There is a focus on the transition to postgraduate study, with suitable content on professional skills and the importance of ethics for practising computer scientists.
In lectures you’ll benefit from a range of techniques, from interpreting complex ideas through interactive discussions, to live programming or other problem-solving demonstrations.

Core modules

• C++ Programming and Design
• Real Time Graphics
• Advanced Computational Science
• The Industrial Experience single trimester module allows students to gain significant commercial experience
.• Development Project

Optional modules

• Game Development Architecture
• Simulation and Concurrency
• Visualization
• Advanced Rendering and Artificial Intelligence for Games
• Trustworthy Computing
For details see https://www.courses.hull.ac.uk/programmes/1617/081671.html

Teaching and learning

We place a strong emphasis on practical laboratory sessions. This will significantly develop your core computer science skills, and enhance your employability through exposure to commercial projects.
As teamwork plays a key role in commercial software development and has great value as an employable skill, group work is used in a number of modules.

Assessment

Practical coursework is the main form of assessment, and you will design, build and test software solutions to a variety of problems.
Written coursework is used to assess your descriptive and critical skills, as well as verify the methodology used to complete your practical coursework. The largest assessment is the dissertation, which is based on the work done in the third trimester (or fourth, depending on your option choices) and documented in a report of up to 20,000 words.

Careers

The MSc Advanced Computer Science programme is designed to open up pathways to postgraduate research, as well as a wide range of careers. The computational science module introduces concepts and ideas which will help prepare you for postgraduate study; the industrial placement option, meanwhile, will enable you to practise your skills and knowledge of computer science ‘in situ’, giving you a useful insight and advantage when it comes to starting your career.
We have a range of inspirational extra-curricular activities including the Three Thing Game, Imagine Cup Worldwide Software Development Challenge, Really Useful Seminars and Global Game Jam. They are designed to boost your CV and employability, and taking part costs very little.

Our MSc graduates typically gain roles including: Applications Developer, Business Systems Analyst, Computer Analyst, Computer Programmer, Computer Operations Manager, Data Management Analyst, Database Assistant, Developer Support Engineer, Games Programmer, Games Programmer (Engine design), Information Manager, IT Design, IT Systems Manager, IT Technician, IT user Support, Mobile Developer, Operations Director, Software Designer, Software Developer, Software Engineer, Solutions Developer, Systems Engineer, Technical Sales, Technical Specialist, Web Developer.

Read less
Our Software Systems Engineering (SSE) MSc provides an ideal foundation for PhD study. The UCL SSE group is regularly ranked in the top three groups in the world (Microsoft Academic Search), you will be taught by those who are setting the international agenda, and our research has been repeatedly rated as world-class. Read more
Our Software Systems Engineering (SSE) MSc provides an ideal foundation for PhD study. The UCL SSE group is regularly ranked in the top three groups in the world (Microsoft Academic Search), you will be taught by those who are setting the international agenda, and our research has been repeatedly rated as world-class. Fully-funded PhD scholarships are available for high-performing students.

Degree information

Students are trained in the principles and techniques of engineering large, complex software systems and gain the opportunity to apply these techniques in a realistic group project setting. The programme analyses current practice in software systems engineering, looking at the most significant trends, problems and results in complex software systems.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a group project (60 credits).

Core modules
-Requirements Engineering and Software Architecture
-Software Abstractions and Systems Integration
-Validation and Verification
-Tools and Environments
-Professional Practice

Optional modules
-People and Security
-Networked Systems
-Language Based Security
-Distributed Systems and Security
-Supervised Learning
-Research Seminar in Software Engineering

Dissertation/report
Most students participate in a group industrial project, generally in close collaboration with one of our industsrial partners.

Other students undertake either an individual or small-group research project, under the supervision of academics in UCL Software Systems Engineering group.

Teaching and learning
The programme is delivered through a combination of lectures, written and laboratory exercises, and group project supervision. Student performance is assessed through written exercises with modelling notations, laboratory exercises with tools and environments, unseen examination papers, and a significant, comprehensive group project.

Careers

This professionally oriented programme provides an ideal foundation for graduates who wish to pursue a career as a software architect or leader of software development organisations. It also provides an excellent introduction for those who want to pursue research in software systems engineering.

Graduates from UCL are keenly sought by the world's leading organisations, and many progress in their careers to secure senior and influential positions. UCL Computer Science (UCL-CS) graduates are particularly valued as a result of the department's strong international reputation, strong links with industry, and ideal location close to the City of London.

Graduates have found positions at global companies such as Barclays and RBS.

Top career destinations for this degree:
-IT Consultant, OnTrack
-Software Analyst and Designer, Nok Technology
-Software Engineer, Accenture
-Software Engineer, Orange
-Security Science, UCL

Employability
There is, throughout the world, a strong demand for software engineers with solid foundations covering not only the programming aspects of software development, but also aspects related to requirements engineering, software architectures, system integration, and testing. Many surveys rank software engineering positions as among the best jobs in the world.

Following graduation, our students are generally hired as software engineers or software architects, sometimes by companies they have engaged with in the context of their MSc project.

Why study this degree at UCL?

UCL Computer Science is recognised as a world-leader in teaching and research, and was one of the top-rated departments in the country according to the UK government's recent research assessment exercise.

Our Master's programmes have some of the highest employment rates and starting salaries, with graduates entering a wide variety of industries from entertainment to finance.

We take an experimental approach to our subject and place a high value on our extensive range of industrial collaborations. In the recent past, students have worked on projects and coursework in collaboration with Microsoft, IBM, JP Morgan, Citigroup and BNP Paribas.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Advanced Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Advanced Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

On the MSc in Advanced Computer Science course you will be thoroughly prepared for a career in IT or related industries. The Advanced Computer Science course is for you if you are a Computer Science graduate or if you have gained experience of computing and programming in a different first degree. Willingness to work hard and an ability to problem solve are equally important for this MSc in Advanced Computer Science. The MSc in Advanced Computer Science course will develop the skills and knowledge you have gained from your first degree by broadening and deepening your knowledge of Computer Science through a variety of advanced modules and material. The MSc in Advanced Computer Science is accredited by the British Computer Society.

Key Features of Advanced Computer Science MSc

• We are top in the UK for career prospects*

• We are 3rd in the UK for teaching quality**

• 5th in the UK overall*

• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]

• 7th in the UK overall and Top in Wales*

• High employability prospects - we are 8th in the UK for graduate prospects*

• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]

• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]

• Our Project Fair allows students to present their work to local industry

• Strong links with industry

• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017

**Times & Sunday Times University Guide 2016

Modules of Advanced Computer Science MSc

Modules for the MSc in Advanced Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Student Profile

Francesca Madeddu, originally from Italy, completed an outstanding Master’s thesis (which earned her a distinction) investigating interaction with augmented reality on mobile devices. More specifically, she investigated how to interact with virtual Egyptian artefacts placed in real scenes. The final game was deployed at Swansea's Egypt Centre last year and was evaluated by volunteers working at the museum. A Master’s thesis does not often lead to a publication. However, part of Francesca's research was written up as an extended abstract and presented at Computer Graphics and Visual Computing (CGVC), a Eurographics UK conference for visual computing last year. An exceptional achievement!



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Theoretical Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Theoretical Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Computer Science is at the cutting edge of modern technology, is developing rapidly, and Swansea Computer Science graduates enjoy excellent employment prospects.

Computer Science now plays a part in almost every aspect of our lives - science, engineering, the media, entertainment, travel, commerce and industry, public services and the home.

The MSc by Research Theoretical Computer Science enables students to pursue a one year individual programme of research. The

Theoretical Computer Science programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the Theoretical Computer Science MSc by Research programme, you will be fully integrated into one of our established computer science research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features of Theoretical Computer Science

The Department of Computer Science is amongst the top 25 in the UK, with a growing reputation in research both nationally and internationally in computer science. It is home to world class researchers, excellent teaching programmes and fine laboratory facilities.

All postgraduate Computer Science programmes will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Links with Industry

Each spring, Computer Science students prepare and present a poster about their project at a project fair – usually together with a system or software demonstration. The Department of Computer Science also strongly encourages students to create CVs and business cards to take along to the fair, as businesses and employers visit to view the range of projects and make contact with the graduating students.



Read less
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Read more
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Computer engineering encompasses the principles, methods, and modern tools for the design and implementation of computing systems.

Our MSc Computer Engineering is the first in the UK and provides a balanced perspective of both hardware and software elements of computing systems, and their relative design trade-offs and applications. It will build on your knowledge in mathematics, science, and engineering to ensure you have a sound foundation in the areas needed for a career in this field.

Laboratory experiences enable you to understand experimental design and simulation techniques. We are internationally leading in this and you will have access to unique computer engineering platforms including our:
-Intelligent Flat (iSpace)
-Robotics Arena
-Networked intelligent campus (iCampus)
-Advanced networking and multimedia labs

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Upon graduation, you can look for employment in:
-Heavy industries, designing advanced computer systems and control
-Hardware companies, designing and developing microprocessors, personal computers, and supercomputers
-Communication and mobile phone companies, designing advanced computer systems for communications systems
-Large computer and microelectronics companies, writing software and firmware for embedded microcontrollers, and designing VLSI chips, analog sensors, mixed signal circuit boards, and operating systems
-Embedded system companies, developing advanced computer systems, and mobile applications and phones
-Banks and businesses, designing intelligent distributed systems to serve their operations
-Computer games companies, designing advanced computer games
-Our recent graduates have progressed to a variety of senior positions in industry and academia.

Some of the companies and organisations where our former graduates are now employed include Electronic Data Systems, Pfizer Pharmaceuticals, Bank of Mexico, Visa International, Hyperknowledge (Cambridge), Hellenic Air Force, ICSS (Beijing), United Microelectronic Corporation (Taiwan) and within our University.

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Converged Networks and Services
-Digital Signal Processing
-High Level Logic Design
-Professional Practice and Research Methodology
-Programming Embedded Systems
-Advanced Embedded Systems Design (optional)
-Artificial Neural Networks (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Electronic System Design & Integration (optional)
-Intelligent Systems and Robotics (optional)
-Mobile Communications (optional)

Read less
Learning how to design high-level software that guarantees safety and correctness while still being in control of its complexity. Read more
Learning how to design high-level software that guarantees safety and correctness while still being in control of its complexity.

Software plays a role in almost every aspect of our daily lives and in every organisation anywhere in the world. It can often be a crucial key to their success. Well-structured software that is attuned to an organisation’s needs and future plans can be cost effective, improve efficiency, offer better services and be innovative. Many companies, in every branch out there, are therefore looking for highly skilled software specialists. Graduates of the Master’s specialisation in Software Science will have no trouble finding a job.

Producing software is not merely a technological enterprise but a deeply scientific and creative one as well. Modern cars drive on 20 million lines of code. How do we develop all this software and control its complexity? How do we ensure correctness of software on which the lives in a speeding car literally depend on? This specialisation goes far beyond basic code writing. It’s about analysing and testing code in order to improve it as well as simplify it.

Why study Software Science at Radboud University?

- Although not the only focus, our programme puts a lot of emphasis on embedded software and functional programming.
- We teach a unique range of software analysis techniques and application down to practical/commercial use in industry.
- This specialisation builds on the strong international reputation of the Institute for Computing and Information Sciences (iCIS) in areas such as model based and virtual product development, advanced programming, and domain specific languages. We also closely collaborate with the Embedded Systems Institute.
- Our approach is pragmatic as well as theoretical. As an academic, we don’t just expect you to understand and make use of the appropriate tools, but also to program and develop your own.
- For your Master’s research we have a large number of companies like Philips, ASML and NXP offering projects. There are always more projects than students.
- Thanks to free electives students can branch out to other Computing Science domain at Radboud University such as security, machine learning or more in-depth mathematical foundations of computer science.
- The job opportunities are excellent: some of our students get offered jobs before they’ve even graduated and almost all of our graduates have positions within six months after graduating.

See the website http://www.ru.nl/masters/softwarescience

Admission requirements for international students

1. A completed Bachelor's degree in Computing Science or related area
In order to get admission to this Master’s you will need a completed Bachelor’s degree in Computing Sciences or a related discipline.
2. A proficiency in English
In order to take part in the programme, you need to have fluency in English, both written and spoken. Non-native speakers of English without a Dutch Bachelor's degree or VWO diploma need one of the following:
- TOEFL score of >575 (paper based) or >232 (computer based) or >90 (internet based)
- IELTS score of >6.5
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

Writing good software is a highly creative process, which requires the ability to approach problems in entirely novel ways through computational thinking. Besides creativity, a professional software scientist also has fine problem-solving, analytical, programming, and communication skills. By combining software programming, model-checking techniques and human intellect, software scientists can make a real difference to help and improve the devices that govern such a large part of our lives.

The job perspective for our graduates is excellent. Industry desperately needs software science specialists at an academic level, and thus our graduates have no difficulty in find an interesting and challenging job. Several of our graduates decide to go for a PhD and stay at a university, but most of our students go for a career in industry. They then typically either find a job at a larger company as consultant or programmer, or they start up their own software company.

Examples of companies where our graduates end up include the big Dutch high-tech companies such as Océ, ASML, Vanderlande and Philips, ICT service providers such as Topicus and Info Support and companies started by Radboud graduates, like AIA and GX.

Our research in this field

The Master’s programme in Computing Sciences is offered in close collaboration with the research Institute for Computing and Information Sciences (iCIS). Research at iCIS is organised in three different research sections:
- Model Based System Development
- Digital Security
- Intelligent Systems

The Software Science specialisation builds on the strong international reputation of iCIS in areas such model based and virtual product development, advanced programming, and domain specific languages.

Research project and internship

For your research project, you may choose to do your internship at:
- A company
---- SME, such as as Océ, Vanderlande, Clarity or GX
---- multinational, such as the Philips, ASML, NXP, Logica or Reed Business Media
- A governmental institute, such as the (Dutch) Tax Authorities or the European Space Agency.
- Any department at Radboud University or another university with issues regarding software, like studying new techniques for loop bound analysis, the relation between classical logic and computational systems, or e-mail extension for iTasks.
- One of the iCIS departments, specialising on different aspects of Software Science.
- Abroad, under supervision of researchers from other universities that we collaborate with. For instance, exploring a new technique for automata learning at Uppsala University in Sweden, or verifying the correctness of Erlang refactoring transformations at the Eötvös Loránd University (ELTE) in Budapest, Hungary.

See the website http://www.ru.nl/masters/softwarescience

Read less

Show 10 15 30 per page



Cookie Policy    X