• University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
King’s College London Featured Masters Courses
Coventry University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Northumbria University Featured Masters Courses
"computer" AND "sciences"…×
0 miles

Masters Degrees (Computer Sciences)

  • "computer" AND "sciences" ×
  • clear all
Showing 1 to 15 of 1,064
Order by 
The M.S. program in Computer Engineering aims to provide advanced education and a cutting edge research experience in computer engineering. Read more
The M.S. program in Computer Engineering aims to provide advanced education and a cutting edge research experience in computer engineering. The focus of the program is excellence in research. Graduates of the program can join industry or continue their research careers in Ph.D. in Computer Engineering programs.

Current faculty projects and research interests:

• Advanced Design Technologies
• Artificial Intelligence
• Computational Systems Biology
• Cryptography, Security, Privacy
• Intelligent User Interfaces
• Multicore Software Engineering
• Multimedia, vision, and Graphics
• Networked and Distributed systems
• Parallel and Multicore Computing

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Science. Informatique at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Science: Informatique at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc in Computer Science: Informatique is a Dual Degree scheme between Swansea University and Université Grenoble Alpes for computer science.

The MSc in Computer Science: Informatique Grenoble dual degree scheme is a two year programme that provides students with an opportunity to study in both Swansea, UK and Grenoble, France. One year of the Computer Science: Informatique programme students study at Swansea University and the second year of the programme students study at Université Grenoble Alpes. Upon successful completion of the programme, students will receive an M.Sc. in Advanced Computer Science from Swansea University and a Master from Université Grenoble Alpes.

Key Features of Computer Science: Informatique MSc

- We are top in the UK for career prospects [Guardian University Guide 2018]
- 5th in the UK overall [Guardian University Guide 2018]7th in the UK for student satisfaction with 98% [National Student Survey 2016]
- We are in the UK Top 10 for teaching quality [Times & Sunday Times University Guide 2017]
- 12th in the UK overall and Top in Wales [Times & Sunday Times University Guide 2017]
- 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
- UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
- Our Project Fair allows students to present their work to local industry
- Strong links with industry
- £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)
- Top University in Wales [Times & Sunday Times University Guide 2017]

Modules of Computer Science: Informatique MSc

Modules on the MSc in Computer Science: Informatique may include:

Critical Systems; IT-Security: Theory and Practice; Visual Analytics; Data Science Research Methods and Seminars; Big Data and Data Mining; Data Visualization; Human Computer Interaction; Big Data and Machine Learning; Web Application Development; High Performance Computing in C/C++; Software Testing; Graphics Processor Programming; Embedded System Design; Mathematical Skills for Data Scientists; Logic in Computer Science; Computer Vision and Pattern Recognition; High-Performance Computing in C/C++; Hardware and Devices; Modelling and Verification Techniques; Operating Systems and Architectures.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of our expansion, we are building the Computational Foundry on our Bay Campus for computer and mathematical sciences. This development is exciting news for Swansea Mathematics who are part of the vibrant and growing community of world-class research leaders drawn from computer and mathematical sciences.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Computer Science Graduates were in professional level work or study [DLHE 14/15].

Some example job titles include:

Software Engineer: Motorola Solutions
Change Coordinator: Logica
Software Developer/Engineer: NS Technology
Workflow Developer: Irwin Mitchell
IT Developer: Crimsan Consultants
Consultant: Crimsan Consultants
Programmer: Evil Twin Artworks
Web Developer & Web Support: VSI Thinking
Software Developer: Wireless Innovations
Associate Business Application Analyst: CDC Software
Software Developer: OpenBet Technologies
Technical Support Consultant: Alterian
Programming: Rock It
Software Developer: BMJ Group

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc in Computer Science course is for you if you are a graduate from one of a wide range of disciplines and are looking to change direction or because of the needs of your chosen career, require a solid foundation in Computer Science.

As the use of computers and computer based systems continues to grow in all aspects of life, at home and at work, it is apparent that there will be for years to come a need for many people who can combine a knowledge of Computer Science, the discipline that underlies Information Technology, and degree level knowledge in a wide variety of other disciplines.

Over the duration of the MSc Computer Science course you will study a variety of modules taught by academic staff that are part of internationally renowned research groups. The course is also regularly updated to ensure that it keeps pace with the rapid developments in Computer Science.

Key Features of Computer Science MSc

• We are top in the UK for career prospects*
• We are 3rd in the UK for teaching quality**
• 5th in the UK overall*
• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]
• 7th in the UK overall and Top in Wales*
• High employability prospects - we are 8th in the UK for graduate prospects*
• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
• Our Project Fair allows students to present their work to local industry
• Strong links with industry
• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017
**Times & Sunday Times University Guide 2016

Modules of Computer Science MSc

Modules for the MSc in Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15].

Student Profile

“I chose the MSc Computer Science as a conversion from my previous War and Society degree, primarily employment opportunities. The course was by no means easy for me coming from an arts background, and the first few weeks I felt a little over my head, but thanks to the truly stimulating content from the syllabus and the high quality of the teaching within the department I soon caught up and began to thrive on the course. My project revolved around a comparative study of the Haskell Web-Framework Yesod and ASP.NET. During the completion of this I picked up many of the skills that I now use on an everyday basis in my role at Kinspeed (A Sheffield based Software House). Since starting work I have been able to apply many of the skills I obtained during my time at Swansea and have no doubt that choosing to study the MSc Computer Science at Swansea was one of the better decisions of my life.”

Chris Swires

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Advanced Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Advanced Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

On the MSc in Advanced Computer Science course you will be thoroughly prepared for a career in IT or related industries. The Advanced Computer Science course is for you if you are a Computer Science graduate or if you have gained experience of computing and programming in a different first degree. Willingness to work hard and an ability to problem solve are equally important for this MSc in Advanced Computer Science. The MSc in Advanced Computer Science course will develop the skills and knowledge you have gained from your first degree by broadening and deepening your knowledge of Computer Science through a variety of advanced modules and material. The MSc in Advanced Computer Science is accredited by the British Computer Society.

Key Features of Advanced Computer Science MSc

• We are top in the UK for career prospects*
• We are 3rd in the UK for teaching quality**
• 5th in the UK overall*
• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]
• 7th in the UK overall and Top in Wales*
• High employability prospects - we are 8th in the UK for graduate prospects*
• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
• Our Project Fair allows students to present their work to local industry
• Strong links with industry
• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017
**Times & Sunday Times University Guide 2016

Modules of Advanced Computer Science MSc

Modules for the MSc in Advanced Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Student Profile

Francesca Madeddu, originally from Italy, completed an outstanding Master’s thesis (which earned her a distinction) investigating interaction with augmented reality on mobile devices. More specifically, she investigated how to interact with virtual Egyptian artefacts placed in real scenes. The final game was deployed at Swansea's Egypt Centre last year and was evaluated by volunteers working at the museum. A Master’s thesis does not often lead to a publication. However, part of Francesca's research was written up as an extended abstract and presented at Computer Graphics and Visual Computing (CGVC), a Eurographics UK conference for visual computing last year. An exceptional achievement!

Read less
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you. The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning. Read more
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you.

The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning.

PROGRAMME OVERVIEW

This degree provides in-depth training for students interested in a career in industry or in research-oriented institutions focused on image and video analysis, and deep learning.

State-of-the-art computer-vision and machine-learning approaches for image and video analysis are covered in the course, as well as low-level image processing methods.

Students also have the chance to substantially expand their programming skills through projects they undertake.

PROGRAMME STRUCTURE

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and a standard project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Signal Processing A
-Object Oriented Design and C++
-Image Processing and Vision
-Space Robotics and Autonomy
-Satellite Remote Sensing
-Computer Vision and Pattern Recognition
-AI and AI Programming
-Advanced Signal Processing
-Image and Video Compression
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department of Electronic Engineering are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas.
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin computer vision, machine learning as well as how they can be related to robotics
-Be able to analyse problems within the field computer vision and more broadly in electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within computer vision, machine learning
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway
This programme in Computer Vision, Robotics and Machine Learning aims to provide a high-quality advanced training in aspects of computer vision for extracting information from image and video content or enhancing its visual quality using machine learning codes.

Computer vision technology uses sophisticated signal processing and data analysis methods to support access to visual information, whether it is for business, security, personal use or entertainment. The core modules cover the fundamentals of how to represent image and video information digitally, including processing, filtering and feature extraction techniques.

An important aspect of the programme is the software implementation of such processes. Students will be able to tailor their learning experience through selection of elective modules to suit their career aspirations.

Key to the programme is cross-linking between core methods and systems for image and video analysis applications. The programme has strong links to current research in the Department of Electronic Engineering’s Centre for Vision, Speech and Signal Processing.

PROGRAMME LEARNING OUTCOMES

The Department's taught postgraduate programmes are designed to enhance the student's technical knowledge in the topics within the field that he/she has chosen to study, and to contribute to the Specific Learning Outcomes set down by the Institution of Engineering and Technology (IET) (which is the Professional Engineering body for electronic and electrical engineering) and to the General Learning Outcomes applicable to all university graduates.

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods

Time and resource management
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Relevant part of: Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

FACILITIES, EQUIPMENT AND SUPPORT

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab. The Faculty’s student common room is also covered by the University’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices.

Specialist experimental and research facilities, for computationally demanding projects or those requiring specialist equipment, are provided by the Centre for Vision, Speech and Signal Processing (CVSSP).

CAREER PROSPECTS

Computer vision specialists are be valuable in all industries that require intelligent processing and interpretation of image and video. This includes industries in directly related fields such as:
-Multimedia indexing and retrieval (Google, Microsoft, Apple)
-Motion capture (Foundry)
-Media production (BBC, Foundry)
-Medical Imaging (Siemens)
-Security and Defence (BAE, EADS, Qinetiq)
-Robotics (SSTL)

Studying for Msc degree in Computer Vision offers variety, challenge and stimulation. It is not just the introduction to a rewarding career, but also offers an intellectually demanding and exciting opportunity to break through boundaries in research.

Many of the most remarkable advancements in the past 60 years have only been possible through the curiosity and ingenuity of engineers. Our graduates have a consistently strong record of gaining employment with leading companies.

Employers value the skills and experience that enable our graduates to make a positive contribution in their jobs from day one.

Our graduates are employed by companies across the electronics, information technology and communications industries. Recent employers include:
-BAE Systems
-BT
-Philips
-Hewlett Packard
-Logica
-Lucent Technologies
-BBC
-Motorola
-NEC Technologies
-Nokia
-Nortel Networks
-Red Hat

INDUSTRIAL COLLABORATIONS

We draw on our industry experience to inform and enrich our teaching, bringing theoretical subjects to life. Our industrial collaborations include:
-Research and technology transfer projects with industrial partners such as the BBC, Foundry, LionHead and BAE
-A number of our academics offer MSc projects in collaboration with our industrial partners

RESEARCH PERSPECTIVES

This course gives an excellent preparation for continuing onto PhD studies in computer vision related domains.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This programme is suitable for both newcomers to computer security and computer forensics and practitioners who wish to further their skills. Read more
This programme is suitable for both newcomers to computer security and computer forensics and practitioners who wish to further their skills. It covers relevant skills, software and hardware technologies, and the more theoretical studies that underpin everyday practice. It ensures that students have a basic understanding of the legal and regulatory requirements and the international standards pertaining to computer security in different nations.

Students gain knowledge of computer crime, police and forensic methods, and the legal requirements for collecting evidence.

At the end of the programme, students are able to administer and configure business-critical distributed applications. They also gain an understanding of the threats to business networks and servers.

The programme includes hands-on training in current forensic tools as used by the police. Students can therefore contribute quickly to the well-being of corporate IT and informational assets.

Though our short course centre opportunity may also be provided to study for the following professional qualifications: Certified Ethical Hacker (EC-Council); EnCase Computer Forensics, Penetration Testing and Vulnerability Assessment.

The availability of some courses is subject to satisfying constraints that may come into effect in the year of entry. In addition, some options are negotiable, indicating that a course selection will need to be approved prior to the student undertaking the requested option.

Visit the website http://www2.gre.ac.uk/study/courses/pg/netsyst/cfsm

Computing - Networking and Systems

Programmes for computer science or computer engineering graduates who wish to develop a specialism in computer systems and advanced software engineering or computer networks.

We offer specialist programmes with an emphasis on all aspects of networking some with extra content on wireless and mobile aspects. There are computer security and computer forensics programmes suitable for the practitioner who wishes to further their skills.

Some programmes concentrate on technical security, security policy management and legal compliance issues which can be excellent preparation for specialist professional exams with CISA (Certified Information Systems Auditor) and CISSP (Certified Information Systems Security Professional).

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)
Cyber Security (15 credits)
Audit and Security (15 credits)
System Administration and Security (15 credits)
Computer Crime and Forensics (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 15 credits from this list of options.

Requirements Analysis & Methods (15 credits)
Database Architectures and Administration (15 credits)
Software Tools and Techniques (15 credits)

Students are required to choose 15 credits from this list of options.

Project Management (15 credits)
Network Architectures and Services (15 credits)
Penetration Testing (15 credits)
Mobile and Network Technologies (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 30 credits from this list of options.

Cyber Security (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)

Students are required to choose 30 credits from this list of options.

Audit and Security (15 credits)
System Administration and Security (15 credits)
Computer Crime and Forensics (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)

Students are required to choose 15 credits from this list of options.

Cyber Security (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)

Students are required to choose 15 credits from this list of options.

Audit and Security (15 credits)
System Administration and Security (15 credits)
Computer Crime and Forensics (15 credits)

Students are required to choose 15 credits from this list of options.

Requirements Analysis & Methods (15 credits)
Database Architectures and Administration (15 credits)
Software Tools and Techniques (15 credits)

Students are required to choose 15 credits from this list of options.

Project Management (15 credits)
Network Architectures and Services (15 credits)
Penetration Testing (15 credits)
Mobile and Network Technologies (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, coursework and a project.

Professional recognition

This programme is accredited by the British Computer Society (BCS). On successful graduation from this degree, the student will have fulfilled the academic requirement for registration as a Chartered IT Professional (CITP) and partially fulfilled the education requirement for registration as a Chartered Engineer (CEng) or Chartered Scientist (CSci). For a full Chartered status there are additional requirements, including work experience. The programme also has accreditation from the European Quality Assurance Network for Informatics Education (EQANIE).

Career options

Upon successful completion of this programme, students will be proficient in computer security and systems security and are in a position to follow careers in system development and administration where knowledge of security and forensics will be an asset or work in a range of specialist roles including: forensics investigators, security consultants or network management specialists.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643958

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
For professionals with an engineering background in computing or a related discipline such as electronic or electrical engineering, this masters course will equip you will the skills you need to move into computer and network engineering. Read more
For professionals with an engineering background in computing or a related discipline such as electronic or electrical engineering, this masters course will equip you will the skills you need to move into computer and network engineering. You learn about the hardware and software aspects of computer network technologies and examine their design, specification and integration in a range of applications.

Ideal for you if you are a professional with a background in computer engineering, communication systems or electronic/electrical engineering, and provides you with the skills and knowledge needed to move into computer networking. It is particularly useful for people working in companies that rely on constant innovation in electronics, computer engineering and communications.

Computer networks currently provide the infrastructure for most, businesses, educational institutions, retailers, manufacturers and public services. Many companies rely increasingly on computer and network engineering, which is now a global discipline.

This course is hardware and software based, and examines the design, specification, and integration of current and next generation computer and communications network technologies.

This course provides an opportunity for you to
-Increase the depth of your technical knowledge.
-Develop your computer hardware and software skills.
-Gain a thorough working knowledge of computer engineering.
-Study the latest technologies used in modern day computer networking systems and their applications.
-Gain the skills needed to design, develop and maintain computer network systems.

You may wish to expand your current knowledge and expertise if you already have computer networking skills or possibly move into a new area of engineering and have the necessary entry requirements for this course.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-computer-and-network-engineering

Professional recognition

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Full time – 12 to 18 months.
Part time – typically 3 years, maximum 6 years.
Starts September and January.

Modules
The course is based around two main themes, communication and networks, and computer engineering. You study eight modules plus a major project.
-Communications and network modules
At least three from: communication engineering, communication media, communication networks, network applications.
-Computer engineering modules
At least three from: microprocessor engineering, object-oriented methods, operating systems, software engineering.
-Option modules
Up to two from: applicable artificial intelligence, digital signal processing, embedded systems.
-Project (equivalent to four modules)
You undertake a major project under the supervision of a tutor.

Assessment: by final examination, coursework and project reports.

Read less
This programme is designed for graduates with a good first degree in computer science, information systems or other computing-related subjects, with some knowledge of computer networks from study at undergraduate level. Read more
This programme is designed for graduates with a good first degree in computer science, information systems or other computing-related subjects, with some knowledge of computer networks from study at undergraduate level. It is suitable for both new graduates wishing to specialise in networking and computer security and IT professionals who wish to further their skills and move into this area. It covers relevant skills, software and hardware technologies, and the more theoretical studies that underpin everyday practice. In addition, it ensures that students have a basic understanding of the international standards and legal and regulatory requirements that pertain to computer security in different nations.

The programme also provides hands-on training in current industry-standard tools for implementing security (such as access control, authentication, encryption and key management). Graduates are therefore able to contribute quickly to the well-being of corporate IT and informational assets.

The programme also provides hands-on training in current industry-standard tools for implementing security (such as access control, authentication, encryption and key management). Graduates are therefore able to contribute quickly to the well-being of corporate IT and informational assets.

Though our short course centre opportunity may also be provided to study for the following professional qualifications: CISCO Certified Network Associate; Penetration Testing and Vulnerability Assessment.

Visit the website http://www2.gre.ac.uk/study/courses/pg/netsyst/ncss

Computing - Networking and Systems

Programmes for computer science or computer engineering graduates who wish to develop a specialism in computer systems and advanced software engineering or computer networks.

We offer specialist programmes with an emphasis on all aspects of networking some with extra content on wireless and mobile aspects. There are computer security and computer forensics programmes suitable for the practitioner who wishes to further their skills.

Some programmes concentrate on technical security, security policy management and legal compliance issues which can be excellent preparation for specialist professional exams with CISA (Certified Information Systems Auditor) and CISSP (Certified Information Systems Security Professional).

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)
Cyber Security (15 credits)
Audit and Security (15 credits)
System Administration and Security (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)
Network Architectures and Services (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 15 credits from this list of options.

Mobile Application Development (15 credits)
Web and Intranet Content Management (15 credits)
Software Tools and Techniques (15 credits)

Students are required to choose 15 credits from this list of options.

Enterprise Web Programming (15 credits)
Computer Crime and Forensics (15 credits)
Penetration Testing (15 credits)
Mobile and Network Technologies (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 30 credits from this list of options.

Cyber Security (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)

Students are required to choose 30 credits from this list of options.

Audit and Security (15 credits)
System Administration and Security (15 credits)
Network Architectures and Services (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)

Students are required to choose 15 credits from this list of options.

Cyber Security (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)

Students are required to choose 15 credits from this list of options.

Audit and Security (15 credits)
System Administration and Security (15 credits)
Network Architectures and Services (15 credits)

Students are required to choose 15 credits from this list of options.

Mobile Application Development (15 credits)
Web and Intranet Content Management (15 credits)
Software Tools and Techniques (15 credits)

Students are required to choose 15 credits from this list of options.

Enterprise Web Programming (15 credits)
Computer Crime and Forensics (15 credits)
Penetration Testing (15 credits)
Mobile and Network Technologies (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, coursework and a project.

Professional recognition

This programme is accredited by the British Computer Society (BCS). On successful graduation from this degree, the student will have fulfilled the academic requirement for registration as a Chartered IT Professional (CITP) and partially fulfilled the education requirement for registration as a Chartered Engineer (CEng) or Chartered Scientist (CSci). For a full Chartered status there are additional requirements, including work experience. Please contact the BCS for further information. The programme also has accreditation from the European Quality Assurance Network for Informatics Education (EQANIE).

Career options

Upon successful completion of this programme, students are proficient in network, computer and systems security and are in a position to follow careers in these areas.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643954

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling in Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling in Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

This MRes in Computer Modelling in Engineering programme consists of two streams: students may choose to specialise in either structures or fluids. The taught modules provide a good grounding in computer modelling and in the finite element method, in particular.

Key Features of MRes in Computer Modelling in Engineering

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

This Computer Modelling in Engineering course is suitable for those who are interested in gaining a solid understanding of computer modelling, specialising in either structures or fluids, and taking the skills gained through this course to develop their career in industry or research.

If you would like to qualify as a Chartered Engineer, this course is accredited with providing the additional educational components for the further learning needed to qualify as a Chartered Engineer, as set out by UK and European engineering professional institutions.

Modules

Modules on the Computer Modelling in Engineering programme typically include:

• Finite Element and Computational Analysis
• Numerical Methods for Partial Differential Equations
• Solid Mechanics
• Advanced Fluid Mechanics
• Dynamics and Transient Analysis
• Communication Skills for Research Engineers
• MRes Research Project

Accreditation

The MRes Computer Modelling in Engineering course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MRes Computer Modelling in Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MRes Computer Modelling in Engineering degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

The Civil and Computational Engineering Centre has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Examples of recent collaborators and sponsoring agencies include: ABB, Audi, BAE Systems, British Gas, Cinpress, DERA, Dti, EADS, EPSRC, European Union, HEFCW, HSE, Hyder, Mobil, NASA, Quinshield, Rolls-Royce, South West Water, Sumitomo Shell, Unilever, US Army, WDA.

Student Quotes

“I was attracted to the MRes course at Swansea as the subject matter was just what I was looking for.

I previously worked as a Cardiovascular Research Assistant at the Murdoch Children’s Research Institute in Melbourne. My employer, the Head of the Cardiology Department, encouraged me to develop skills in modelling as this has a lot of potential to help answer some current questions and controversies in the field. I was looking for a Master’s level course that could provide me with computational modelling skills that I could apply to blood flow problems, particularly those arising from congenital heart disease.

The College of Engineering at Swansea is certainly a good choice. In the computational modelling area, it is one of the leading centres in the world (they wrote the textbook, literally). A lot of people I knew in Swansea initially came to study for a couple of years, but then ended up never leaving. I can see how that could happen.”

Jonathan Mynard, MRes Computer Modelling in Engineering, then PhD at the University of Melbourne, currently post-doctoral fellow at the Biomedical Simulation Laboratory, University of Toronto, Canada

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling in Engineering course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
The MSc in Computer Science is for graduates from a different discipline interested in a career in computer science. Computing underpins much of our professional and personal lives. Read more
The MSc in Computer Science is for graduates from a different discipline interested in a career in computer science.

Why study computer science with us?

Computing underpins much of our professional and personal lives. There is a growing need for individuals trained in one discipline who are also skilled in computer science.

If you are a graduate with a non-computing first degree then our MSc will:

- provide you with a sound foundation in practical and theoretical aspects of computer science
- help you change career, with skills desirable to a huge number of industries
- enhance your employability with transferable skills
- prepare you for PhD study

No prior background in computer science is necessary.

What will I learn?

Semester one offers a broad overview of computer science through a series of core units.

Semester two focusses on advanced and emerging areas of computer science. You will have the opportunity to specialise in one or more areas of the discipline.

The final semester is for your dissertation. You will:

- demonstrate the knowledge, skills and reflective insights you have have gained
- apply them to the investigation and/or development of new software systems.

Visit the Department of Computer Science (http://www.bath.ac.uk/comp-sci/) for further information on the department.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/msc-computer-science/index.html

Programme structure

The programme covers three semesters.

In the first semester we immerse students in the practical and theoretical foundations of the discipline.

In the second semester we build upon these foundations allowing students to specialise in one or more areas of the discipline.

The third semester is dedicated to a dissertation. Students combine their acquired knowledge to produce a novel software element or conduct novel research and critique their achievements. Please visit our research pages for a an overview of our research (http://www.bath.ac.uk/comp-sci/research/).

Career opportunities

Opportunities are extensive and we expect our graduates to move into computing careers in the leading:
- computer companies
- IT consultancy firms
- banks
- companies
- agencies
- educational establishments

About the department

The new Department of Computer Science began life in August 2001, emerging from the Computing Group of the Department of Mathematical Sciences. It is a research-led department with a strong record in interdisciplinary research and postgraduate teaching.

MSc
Our Masters programmes are designed to give you a wide range of knowledge so that you can build a career in the fast-moving industry of computing. The programmes are taught by recognised experts in each field, offering you, the student, a cutting-edge experience and a qualification which is both academic and commercially relevant. You will be exposed to the latest science and technology in your chosen specialist area, to complement previously-gained knowledge and skills from your undergraduate degree.

MPhil/PhD
The Department supports a strategic range of computer science research at PhD level and beyond. Our main research interests include Human Computer Interaction, Visual Computing, Mathematical Foundations, and Intelligent Systems. Research is pursued both in fundamental theoretical development and a range of application areas.

EngD in Digital Media
The Engineering Doctorate (EngD) in Digital Media is an alternative to the traditional PhD for students who want a career in industry. A four-year programme combines PhD-level research projects with taught courses, and students spend about 75% of their time working directly with a company.

Facilities and equipment
LAN and WAN, state-of-the-art HCI laboratory, audio laboratory.

International and industrial links
The Department has active collaborations with academics in leading universities in Europe, Australasia, the USA and Japan. Strong links with industry, e.g. HP labs, Airbus, Qinetiq, Westland, Toshiba and Vodafone.

Careers information
High employment records for undergraduate and postgraduate students. Good links with employers

Find out more about the department here - http://www.bath.ac.uk/comp-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
The Master of Computer Science is a two-year (120 ECTS) advanced study in computer science organized by the Vrije Universiteit Brussel, a Flemish university located in Brussels, Belgium. Read more
The Master of Computer Science is a two-year (120 ECTS) advanced study in computer science organized by the Vrije Universiteit Brussel, a Flemish university located in Brussels, Belgium. This English-speaking programme is designed for students with a solid, basic academic background in computer science (Bachelor in Computer Science). The objectives of the programme are to provide a deeper understanding and knowledge of various specializations of computer science and to prepare the student for an active role in computer science research and development. The following specializations are offered: Artificial Intelligence, Multimedia, Software Engineering and Web & Information Systems.

Course outline

All students study a core programme of 30 credits; do a research training of 6 credits and a master thesis of 24 credits. Students should choose one out of four specializations: Artificial Intelligence, Multimedia, Software Engineering, or Web & Information Systems. 30 credits should be spent to mandatory and optional courses within the chosen specialization. The 24 remaining optional courses can be taken within the specialization or from another specialization. Finally, 6 credits can be chosen completely freely form any of the VUB courses. This brings the total to 120 ECTS credits. The master thesis as well as the research training needs to be related to the chosen specialization.

Specializations offered

 Artificial Intelligence
The focus in this specialization is on building intelligent software artifacts. The theories of complex dynamic systems and self-organization are emphasized starting from the theory of complex dynamic systems as developed in related fields such as mathematics, physics, and biology. Students will be exposed to current research in the areas of adaptive systems, multi-agent systems, and the origins of language.

 Multimedia
Students in this specialization will conduct in-depth exploration of techniques for signal processing and communication of multimedia content. The program is designed to build thorough technological and scientific knowledge of various multimedia domains such as digital television, telephony and video phony, computer animation, computer games, and the Internet. Students will gain experience with complex ICT architectures for the processing, distribution, and consumption of multimedia content.

 Software Engineering
In this specialization, students gain the skills needed to build complex software applications and software intensive systems. Students are also taught scientifically sound methods, as well as the newest techniques and tools for the developing of software. The curriculum also includes research topics in programming languages and integrated development environments.

 Web & Information Systems
This specialization is geared towards information system development and application development in the context of the Web. Students will learn about data and semantic representation techniques and acquire thorough technological and scientific knowledge related to the newest technological developments for the Web. Students can participate is research in the area of ontologies, new media systems (multimedia, Virtual Reality, games, social systems), and the "Internet of Things".

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation
Solid Mechanics
Finite Element Computational Analysis
Advanced Fluid Mechanics
Computational Plasticity
Fluid-Structure Interaction
Nonlinear Continuum Mechanics
Computational Fluid Dynamics
Dynamics and Transient Analysis
Computational Case Study
Communication Skills for Research Engineers
Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
Our groundbreaking MSc has been developed in response to a pressing need to offer a high quality postgraduate programme serving the industries of computer games and entertainment, with an emphasis on programming, maths and graphics, business, IP, entrepreneurship, team management, 3D animation, AI and physics in games- http://www.gold.ac.uk/pg/msc-computer-games-entertainment/. Read more
Our groundbreaking MSc has been developed in response to a pressing need to offer a high quality postgraduate programme serving the industries of computer games and entertainment, with an emphasis on programming, maths and graphics, business, IP, entrepreneurship, team management, 3D animation, AI and physics in games- http://www.gold.ac.uk/pg/msc-computer-games-entertainment/

The computer games and entertainment business is a fast growing multi-billion dollar worldwide business, with games platforms ranging from Playstation 4, Xbox One, Nintendo Wii U, mobile and handhelds including iPhone, iPad and Android phones, PC-based, and massively multiplayer online games (MMOG) involving tens of thousands of people.

With ongoing strong demand for graduate computer games programmers from the UK and abroad, this MSc will produce graduates who are well positioned to get a job in this exciting worldwide industry. Potential employers include EA, Ubisoft, Sony, Activision, Microsoft, Cinesite, Framestore, and many more.

The programme is delivered by a mix of professionals from the industry and from the research world. We work closely with industry leaders to offer internships at studios including Sega and Sony.

In a wider sense, the influence of computer games programming is spreading to other digital media industries outside games, including gamification and the medical sector, games based learning, new forms of social networking and the interactive visualisation of scientific and live financial business data. Computer games are starting to fundamentally change the way people interact with computerised systems.

Partnership: Sony‌‌

‌Our MSc in Computer Games & Entertainment is part of the PlayStation®First Academic Partnership Programme offered by Sony Computer Entertainment Europe (SCEE) uk.playstation.com. Our course provides students with unique access to PlayStation® professional development hardware (dev kits) and software (SDK) to equip students with industry relevant game development skills across PlayStation®3 and PlayStation® Vita. http://www.worldwidestudios.net/london

Placement: Supermassive Games

"Following two years of successful placements at Supermassive Games, which resulted in full time jobs, we are looking forward to inviting Goldsmiths students to take part in our internship assessment day again this year."
Jonathan Amor, Director of Technology, Supermassive Games

Placement: Reflections - a Ubisoft studio

"We are delighted to announce that Reflections, a Ubisoft studio, will be taking on two Goldsmiths MSc Computer Games and Entertainment Programming students for Internship."
Dr Chris Jenner, Expert Programmer

Placement: Rebellion

"Having now placed four interns from Goldsmiths here at Rebellion, two of which have gone on to become permanent members of staff, we are very much looking forward to future applications from talented and creative Goldsmiths MSc Computer Games students”
Jason Kingsley OBE, CEO and Creative Director of Rebellion

Rebellion is one of Europe’s largest independent game developer-publishers, with their own state of the art cross-platform games engine and toolset. Rebellion’s latest number one hit was Sniper Elite 3, and they also publish the legendary 2000AD comic featuring Judge Dredd.

Placement: The Creative Assembly (SEGA)

Following two continuous years of The Creative Assembly (SEGA) successfully taking Goldsmiths MSc Games Programming Students on placements we are pleased to announce that we have reserved a minimum of three placements for Goldsmiths MSc students starting the course in September 2013, on site during the period May to September 2014. Subject to interview/ portfolio process”. Martin Servantes Director of Operations & Finance

Leading UK Developer Creative Assembly is the developer of the hit game series Total War. They are currently working on a new cross-platform title based on the Alien IP. Based in Horsham.

Placement: Jagex Games Studio

"Jagex Games Studio in Cambridge is looking forward to receiving applications from Goldsmiths’ talented MSc Games and Entertainment students for their summer internships in 2014”.
Sue Stather, Graduate Recruitment Specialist, Jagex Games Studio (RuneScape and Transformers Universe MMO Development Studio)

Placement: Roll 7

Roll7 is a New Cross-based indie video games developer and has been offering placements to Goldsmiths MSc Games students for three years. Roll7 is just about to release its first console title OlliOll, exclusively for PSVita, and we are looking for another 1 or 2 Goldsmiths programming interns for 2014 to work on a Sony backed PS4/Vita cross-play title.

Contact the department

If you have specific questions about the degree, contact the Department of Computing.

Structure

Final Project & Dissertation
During this final project, you will undertake a project towards your dissertation, typically over the Spring-Summer period (May to September). We offer three options to our students:

Individual research project:

This is based on a research theme selected by you and agreed upon by the lecturing team. Recent examples include:
Building a cheap kinect-like gesture tracking system
AI (rule-based) platform for game level design
Software development for our mobile technology projects (iPhone based)
Assessment
Mainly based on coursework (involving programming), essays, final project and dissertation; some lecturers may also conduct exams/quizzes.

Attendance

The taught programme is organised into three terms (full-time). The Autumn term runs from early October to mid-December, the Winter/Spring term from mid-January to the end of March, and the Summer term runs, typically, from late April to mid-September. Taught modules are given during the Autumn and Winter/Spring terms, while the Final Project takes place during a Summer term (in the second year for part-time students).

This programme is focused on providing you with the skills and experience needed to secure a job in the computer games industry.

Skills

You'll develop excellent games programming skills. These skills are highly transferrable, as games programming is viewed by other industries as being very demanding and requiring a high level of technical ability.

Careers

The global computer games industry is valued at 60 billion USD and is predicted to continuously grow in years to come. It's a mature industry with companies such as EA, Ubisoft, and Blizzard Activision giving long-term career prospects, shares, and benefits. There is a big skills shortage in this growing sector.

Placements provided by our industry partners

Asylum Entertainment
Climax Studios
The Creative Assembly
Geomerics
IdeaWorks Game Studio (Now Marmalade Game Studio)
Playmob
Rebellion
Reflections - a Ubisoft studio
Roll7
SEGA Sports Interactive
Sony Computer Entertainment Europe

Alumni

See what some of our graduates have gone on to do on our alumni news page.

100% employment

All of the graduates from the 2012/13 MSc in Computer Games & Entertainment course have secured placements at UK computer games companies.

Funding

Please visit http://www.gold.ac.uk/pg/fees-funding/ for details.

Read less
Enhance your career prospects with this Masters in Advanced Computer Studies at Liverpool John Moores University. Carry out an extensive postgraduate research project and benefit from international academic collaborations on this course. Read more
Enhance your career prospects with this Masters in Advanced Computer Studies at Liverpool John Moores University. Carry out an extensive postgraduate research project and benefit from international academic collaborations on this course.

•Complete this masters degree in one year full time
•Delivered by academics active in research
•£6 million state-of-the-art laboratories and teaching facilities
•Flexible programme structure allows you to tailor your studies to enhance your career
•Opportunity to carry out a novel research project in an area of your choice
•Excellent career prospects in areas such as application development, project management, IT management and further study for PhD

Our Masters degree in Advanced Computer Studies offers you the opportunity to create a bespoke programme that meets your specific requirements by combining option modules from two specialised programmes offered by LJMU's School of Computing and Mathematical Sciences.

If you want to develop a combined expertise in Computer Forensics and Computer Security, or Software Engineering with Computer Science, or any combination of the above, you will find this course an excellent route towards your career goals.

This flexible course aims to provide you with a fuller , systematic understanding of current and developing computer systems and technologies in selected areas and help you to:

•explore the issues surrounding computer systems in Industrial contexts
•development expertise and interest in areas which are relevant to your work
•become an advanced autonomous learner
•develop a comprehensive understanding, critical awareness and ability to conduct evaluation of current research issues
•work with originality in applying analytical, creative, problem solving and research skills

Learning how to apply a range of tools and techniques and developing a clear understanding of how to effectively and creatively manage computer systems on this course will put you in an excellent career position when you graduate.

Please see guidance below on core and option modules for further information on what you will study
Level 7
Research Methods
Project Dissertation
Advanced Software Engineering Concepts
Real-time Systems
Software Engineering Development Workshop
Usability Engineering
Advanced Data Structures and Algorithms
Research Topics in Computer Science
Computation Theory
Information and Social Networks
Software Development with Java
Computer Forensics
Computer Systems Technology
Management of E-business
Computer Security
Database Design and Technology
Advanced topics in Network Security
Advanced topics in Computer Forensics
Network Forensics
Computer Networks
A major component of the course is the project module. This is an extensive piece of research work in an applications domain relevant to your academic or professional interests.

Your project is expected to have a strong research component and in many cases may form the basis of further academic research.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
Channel your creativity and join a multi-skilled team to develop the next generation of video games. On our arts-based MA, you’ll join the vibrant games and technology community based here in Cambridge that includes Guerrilla, ARM, Frontier Developments, Jagex and Ninja Theory. Read more
Channel your creativity and join a multi-skilled team to develop the next generation of video games. On our arts-based MA, you’ll join the vibrant games and technology community based here in Cambridge that includes Guerrilla, ARM, Frontier Developments, Jagex and Ninja Theory.

Your course will have a new home in Compass House, which will extend our campus along East Road. You’ll have the latest technology at your fingertips and be able to collaborate with other students on innovative projects to hone your skills.

See the website http://www.anglia.ac.uk/study/postgraduate/computer-games-development-art

If you have a degree in an art and design or computer games-related subject, our course will allow you to specialise in games art at Master's level.

Based in the inspiring environment of our new Compass House Games Centre, you’ll learn all about best practice in the games industry. We’ll encourage you to work in design production teams, tackling a series of creative and technical challenges with programmers and industry professionals. You'll develop your design skills and learn how to create and publish successful games across a range of platforms.

Cambridge accounts for nearly 20% of the UK computer games industry, so it's a great place to study as we enjoy excellent links with the major games developers in the area. What's more, our Computer Games Centre offers studio space to local indie developers, who'll share their knowledge and experience with you.

We're partners with the Global Science & Technology Forum, allowing our students access to cutting-edge research materials.

While you're studying, we'll encourage you to take on work placements and collaborate on live projects with the games industry. You’ll also have the chance to enter games events, such as Brains Eden, which Anglia Ruskin hosts every year.

This course runs in parallel with our MSc Computer Games Development (Computing), reflecting the multidisciplinary nature of games creation.

See the website http://www.anglia.ac.uk/study/postgraduate/computer-games-development-art

Careers

Our MA gives you the chance to specialise in the design and technical implementation of computer games, whether you already have a games-related degree, or you're a recent graduate of a non-games-related degree who's looking to move into this area. Our course is also suitable if you work in another creative industry and are looking to move into games design and creation.

The skills you'll learn on this course are relevant to other forms of games - including board games and educational games - allowing you to consider a number of career options.

Interactive computer games is a relatively new medium; as the industry grows, you’ll find more and more opportunities to use the computing and creative skills you'll hone while studying here.

Modules & assessment

Core modules:
Process and Practice as Research
Games Development 1
Games Development 2
Digital Arts - Experimental Practice
Master's Project: Art and Design

Assessment

You’ll show your progress through a combination of written and practical work, carried out individually and as part of a team.

What you'll study

Cambridge School of Art has been inspiring creativity since 1858 when it was opened by John Ruskin.

Engaging with current debates surrounding contemporary practice and with the state-of-the-art facilities, Cambridge School of Art houses light, bright studios, industry-standard film and photographic facilities, and 150-year-old printing presses alongside dedicated Apple Mac suites. Our digital art gallery, the Ruskin Gallery, exhibits both traditional shows and multimedia presentations, from national and international touring exhibitions and our own students.

We are the only university in Cambridge offering art and design courses at higher education level. A tight-knit community of artists, academics and over 900 students, we collaborate across our University, the creative industries, and other sectors. Cambridge is a centre for employment in the creative industries and there are rich opportunities for collaboration with the city’s entertainment, technological, scientific, arts and heritage industries.

Our graduates have a history of winning national and international awards and an excellent employment record. They include Pink Floyd's Syd Barrett and Dave Gilmour, Spitting Image creators Peter Fluck and Roger Law, and illustrator Ronald Searle, the creator of St Trinian's.

We’re part of the Faculty of Arts, Law and Social Sciences, a hub of creative and cultural innovation whose groundbreaking research has real social impact.

Facilities

Based at the new Compass House Computer Games Centre, a three-minute walk from our main Cambridge campus, you’ll have 24-hour access to a hub space with group work naturally forming a part of your studies.

The centre includes a start-up lab for small games companies, supported by Games Eden, the Cambridge Computer Games industry network. This will give you excellent opportunities to work in an entrepreneurial games environment.

All students on our Computer Games courses – undergraduate and postgraduate – have access to industry-standard PCs running Maya, 3DS Max, ZBrush, Mudbox, Motion Builder, After Effects, Unity 3D, and UDK. You’ll be able to use motion capture equipment, 3D monitors, VR equipment, graphics tablets, a render farm, HD cameras and digital SLRs (for HDRI capture).

Links with industry

Cambridge is home to nearly 20% of the UK’s computer games industry, including Sony’s Guerrilla Studios, ARM, Jagex, Ninja Theory, Frontier, Geomerics and a host of smaller indie developers. Our Computer Games Art department is a member of TIGA, the Business & University Games Syndicate, and a partner of the Global Science & Technology Forum, giving you access to cutting-edge research materials.

Read less

Show 10 15 30 per page



Cookie Policy    X