• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
King’s College London Featured Masters Courses
University of Bradford Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Northumbria University Featured Masters Courses
"computer" AND "modelling…×
0 miles

Masters Degrees (Computer Modelling)

  • "computer" AND "modelling" ×
  • clear all
Showing 1 to 15 of 630
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling in Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling in Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

This MRes in Computer Modelling in Engineering programme consists of two streams: students may choose to specialise in either structures or fluids. The taught modules provide a good grounding in computer modelling and in the finite element method, in particular.

Key Features of MRes in Computer Modelling in Engineering

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

This Computer Modelling in Engineering course is suitable for those who are interested in gaining a solid understanding of computer modelling, specialising in either structures or fluids, and taking the skills gained through this course to develop their career in industry or research.

If you would like to qualify as a Chartered Engineer, this course is accredited with providing the additional educational components for the further learning needed to qualify as a Chartered Engineer, as set out by UK and European engineering professional institutions.

Modules

Modules on the Computer Modelling in Engineering programme typically include:

• Finite Element and Computational Analysis
• Numerical Methods for Partial Differential Equations
• Solid Mechanics
• Advanced Fluid Mechanics
• Dynamics and Transient Analysis
• Communication Skills for Research Engineers
• MRes Research Project

Accreditation

The MRes Computer Modelling in Engineering course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MRes Computer Modelling in Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MRes Computer Modelling in Engineering degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

The Civil and Computational Engineering Centre has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Examples of recent collaborators and sponsoring agencies include: ABB, Audi, BAE Systems, British Gas, Cinpress, DERA, Dti, EADS, EPSRC, European Union, HEFCW, HSE, Hyder, Mobil, NASA, Quinshield, Rolls-Royce, South West Water, Sumitomo Shell, Unilever, US Army, WDA.

Student Quotes

“I was attracted to the MRes course at Swansea as the subject matter was just what I was looking for.

I previously worked as a Cardiovascular Research Assistant at the Murdoch Children’s Research Institute in Melbourne. My employer, the Head of the Cardiology Department, encouraged me to develop skills in modelling as this has a lot of potential to help answer some current questions and controversies in the field. I was looking for a Master’s level course that could provide me with computational modelling skills that I could apply to blood flow problems, particularly those arising from congenital heart disease.

The College of Engineering at Swansea is certainly a good choice. In the computational modelling area, it is one of the leading centres in the world (they wrote the textbook, literally). A lot of people I knew in Swansea initially came to study for a couple of years, but then ended up never leaving. I can see how that could happen.”

Jonathan Mynard, MRes Computer Modelling in Engineering, then PhD at the University of Melbourne, currently post-doctoral fellow at the Biomedical Simulation Laboratory, University of Toronto, Canada

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling in Engineering course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation
Solid Mechanics
Finite Element Computational Analysis
Advanced Fluid Mechanics
Computational Plasticity
Fluid-Structure Interaction
Nonlinear Continuum Mechanics
Computational Fluid Dynamics
Dynamics and Transient Analysis
Computational Case Study
Communication Skills for Research Engineers
Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
The work-based approach of the MSc Professional Engineering enables you, as a working engineer, to obtain your degree without the need for a career break or long absences from your organisation. Read more
The work-based approach of the MSc Professional Engineering enables you, as a working engineer, to obtain your degree without the need for a career break or long absences from your organisation. This degree will capitalise on your company-specific knowledge and experience, and we will help you to identify self-study requirements to provide additional learning, knowledge of application and demonstration of skill-sets leading to professional engineering institution membership and, provided you can demonstrate the UK-SPEC standards, registration for Chartered Engineer status.

If you would like to become professionally-qualified but are unable to commit to full-time study, you might like to explore the opportunities provided by engineering gateways. This site provides information on pathways to professional qualification for working engineers who do not have the full exemplifying academic qualifications.

Students may also be eligible for the MSc bursary scheme in aerospace engineering. To find out if you could be eligible visit the Royal Academy of Engineering website. Nominated company employee applicants must be working in the UK in the aerospace sector on the first day of the MSc programme.

You will normally study on a part-time basis for three years: two years to complete the work-based learning modules and a further year to complete an individual project. You’ll need to achieve a total of 180 credit points for a Master's degree and you’ll be expected to take 60 credit points of study in each academic year. You must complete your studies within five years. The programme is based upon the requirements of the UK Standard for Professional Engineering Competence (UK-SPEC), which is the standard for recognition of professional engineers in the UK. It includes eight 15-credit point modules plus a 60-credit point project which you undertake once you have completed the other modules. Students may start this course in Semester A (September), Semester B (January) or Semester C (June).

Teaching methods

This programme is work-based. The structure reflects the requirements of the UK Standard for Professional Engineering Competence (UK-SPEC). When you enrol on the programme you will agree and prepare a tailored individual learning contract, assisted by our academic staff and your company. The contract will take into account your present and future work-based activities and any constraints in terms of learning opportunities.

Throughout the three year programme the University will provide a nominated programme specialist who will liaise with you. Additional academic staff will also support you when you are undertaking modules relating to their area of expertise.

Why choose this course?

-This Master's degree provides the opportunity for graduates working in engineering and computing/IT professions to study, as part of working towards professional body institution membership and Chartered Engineer status
-This MSc programme offers the convenience of work-based 'learning whilst earning'
-Candidates receive the benefits of continuing professional development (CPD)
-A flexible way of meeting employer and employee aspirations without the disruption of losing engineers from the workplace

Careers

You will be in employment in mechanical, aerospace, automotive, electrical, electronic, manufacturing or production engineering or computing, information technology/systems.

Structure

Year 1
Core Modules
-Professional Development Audit

Optional
-Design Processes and Methodologies
-Management, Business Practices & Risk Management
-Mathematical and Computer Modelling WB
-Scientific Principles and Technologies
-Technology Practice, Developments and Design Innovation WB

Year 2
Optional
-Design Processes and Methodologies
-Individual Project Work Based
-Management, Business Practices & Risk Management
-Mathematical and Computer Modelling Techniques
-Mathematical and Computer Modelling WB
-Scientific Principles and Technologies
-Technology Practice, Developments and Design Innovation WB

Year 3
-Individual Project Work Based

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Science. Informatique at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Science: Informatique at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc in Computer Science: Informatique is a Dual Degree scheme between Swansea University and Université Grenoble Alpes for computer science.

The MSc in Computer Science: Informatique Grenoble dual degree scheme is a two year programme that provides students with an opportunity to study in both Swansea, UK and Grenoble, France. One year of the Computer Science: Informatique programme students study at Swansea University and the second year of the programme students study at Université Grenoble Alpes. Upon successful completion of the programme, students will receive an M.Sc. in Advanced Computer Science from Swansea University and a Master from Université Grenoble Alpes.

Key Features of Computer Science: Informatique MSc

- We are top in the UK for career prospects [Guardian University Guide 2018]
- 5th in the UK overall [Guardian University Guide 2018]7th in the UK for student satisfaction with 98% [National Student Survey 2016]
- We are in the UK Top 10 for teaching quality [Times & Sunday Times University Guide 2017]
- 12th in the UK overall and Top in Wales [Times & Sunday Times University Guide 2017]
- 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
- UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
- Our Project Fair allows students to present their work to local industry
- Strong links with industry
- £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)
- Top University in Wales [Times & Sunday Times University Guide 2017]

Modules of Computer Science: Informatique MSc

Modules on the MSc in Computer Science: Informatique may include:

Critical Systems; IT-Security: Theory and Practice; Visual Analytics; Data Science Research Methods and Seminars; Big Data and Data Mining; Data Visualization; Human Computer Interaction; Big Data and Machine Learning; Web Application Development; High Performance Computing in C/C++; Software Testing; Graphics Processor Programming; Embedded System Design; Mathematical Skills for Data Scientists; Logic in Computer Science; Computer Vision and Pattern Recognition; High-Performance Computing in C/C++; Hardware and Devices; Modelling and Verification Techniques; Operating Systems and Architectures.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of our expansion, we are building the Computational Foundry on our Bay Campus for computer and mathematical sciences. This development is exciting news for Swansea Mathematics who are part of the vibrant and growing community of world-class research leaders drawn from computer and mathematical sciences.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Computer Science Graduates were in professional level work or study [DLHE 14/15].

Some example job titles include:

Software Engineer: Motorola Solutions
Change Coordinator: Logica
Software Developer/Engineer: NS Technology
Workflow Developer: Irwin Mitchell
IT Developer: Crimsan Consultants
Consultant: Crimsan Consultants
Programmer: Evil Twin Artworks
Web Developer & Web Support: VSI Thinking
Software Developer: Wireless Innovations
Associate Business Application Analyst: CDC Software
Software Developer: OpenBet Technologies
Technical Support Consultant: Alterian
Programming: Rock It
Software Developer: BMJ Group

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc in Computer Science course is for you if you are a graduate from one of a wide range of disciplines and are looking to change direction or because of the needs of your chosen career, require a solid foundation in Computer Science.

As the use of computers and computer based systems continues to grow in all aspects of life, at home and at work, it is apparent that there will be for years to come a need for many people who can combine a knowledge of Computer Science, the discipline that underlies Information Technology, and degree level knowledge in a wide variety of other disciplines.

Over the duration of the MSc Computer Science course you will study a variety of modules taught by academic staff that are part of internationally renowned research groups. The course is also regularly updated to ensure that it keeps pace with the rapid developments in Computer Science.

Key Features of Computer Science MSc

• We are top in the UK for career prospects*
• We are 3rd in the UK for teaching quality**
• 5th in the UK overall*
• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]
• 7th in the UK overall and Top in Wales*
• High employability prospects - we are 8th in the UK for graduate prospects*
• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
• Our Project Fair allows students to present their work to local industry
• Strong links with industry
• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017
**Times & Sunday Times University Guide 2016

Modules of Computer Science MSc

Modules for the MSc in Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15].

Student Profile

“I chose the MSc Computer Science as a conversion from my previous War and Society degree, primarily employment opportunities. The course was by no means easy for me coming from an arts background, and the first few weeks I felt a little over my head, but thanks to the truly stimulating content from the syllabus and the high quality of the teaching within the department I soon caught up and began to thrive on the course. My project revolved around a comparative study of the Haskell Web-Framework Yesod and ASP.NET. During the completion of this I picked up many of the skills that I now use on an everyday basis in my role at Kinspeed (A Sheffield based Software House). Since starting work I have been able to apply many of the skills I obtained during my time at Swansea and have no doubt that choosing to study the MSc Computer Science at Swansea was one of the better decisions of my life.”

Chris Swires

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Advanced Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Advanced Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

On the MSc in Advanced Computer Science course you will be thoroughly prepared for a career in IT or related industries. The Advanced Computer Science course is for you if you are a Computer Science graduate or if you have gained experience of computing and programming in a different first degree. Willingness to work hard and an ability to problem solve are equally important for this MSc in Advanced Computer Science. The MSc in Advanced Computer Science course will develop the skills and knowledge you have gained from your first degree by broadening and deepening your knowledge of Computer Science through a variety of advanced modules and material. The MSc in Advanced Computer Science is accredited by the British Computer Society.

Key Features of Advanced Computer Science MSc

• We are top in the UK for career prospects*
• We are 3rd in the UK for teaching quality**
• 5th in the UK overall*
• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]
• 7th in the UK overall and Top in Wales*
• High employability prospects - we are 8th in the UK for graduate prospects*
• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
• Our Project Fair allows students to present their work to local industry
• Strong links with industry
• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017
**Times & Sunday Times University Guide 2016

Modules of Advanced Computer Science MSc

Modules for the MSc in Advanced Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Student Profile

Francesca Madeddu, originally from Italy, completed an outstanding Master’s thesis (which earned her a distinction) investigating interaction with augmented reality on mobile devices. More specifically, she investigated how to interact with virtual Egyptian artefacts placed in real scenes. The final game was deployed at Swansea's Egypt Centre last year and was evaluated by volunteers working at the museum. A Master’s thesis does not often lead to a publication. However, part of Francesca's research was written up as an extended abstract and presented at Computer Graphics and Visual Computing (CGVC), a Eurographics UK conference for visual computing last year. An exceptional achievement!

Read less
Take advantage of one of our 100 Master’s Scholarships to study Theoretical Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Theoretical Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Computer Science is at the cutting edge of modern technology, is developing rapidly, and Swansea Computer Science graduates enjoy excellent employment prospects.

Computer Science now plays a part in almost every aspect of our lives - science, engineering, the media, entertainment, travel, commerce and industry, public services and the home.

The MSc by Research Theoretical Computer Science enables students to pursue a one year individual programme of research. The
Theoretical Computer Science programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the Theoretical Computer Science MSc by Research programme, you will be fully integrated into one of our established computer science research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features of Theoretical Computer Science

The Department of Computer Science is amongst the top 25 in the UK, with a growing reputation in research both nationally and internationally in computer science. It is home to world class researchers, excellent teaching programmes and fine laboratory facilities.

All postgraduate Computer Science programmes will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Links with Industry

Each spring, Computer Science students prepare and present a poster about their project at a project fair – usually together with a system or software demonstration. The Department of Computer Science also strongly encourages students to create CVs and business cards to take along to the fair, as businesses and employers visit to view the range of projects and make contact with the graduating students.

Read less
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you. The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning. Read more
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you.

The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning.

PROGRAMME OVERVIEW

This degree provides in-depth training for students interested in a career in industry or in research-oriented institutions focused on image and video analysis, and deep learning.

State-of-the-art computer-vision and machine-learning approaches for image and video analysis are covered in the course, as well as low-level image processing methods.

Students also have the chance to substantially expand their programming skills through projects they undertake.

PROGRAMME STRUCTURE

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and a standard project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Signal Processing A
-Object Oriented Design and C++
-Image Processing and Vision
-Space Robotics and Autonomy
-Satellite Remote Sensing
-Computer Vision and Pattern Recognition
-AI and AI Programming
-Advanced Signal Processing
-Image and Video Compression
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department of Electronic Engineering are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas.
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin computer vision, machine learning as well as how they can be related to robotics
-Be able to analyse problems within the field computer vision and more broadly in electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within computer vision, machine learning
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway
This programme in Computer Vision, Robotics and Machine Learning aims to provide a high-quality advanced training in aspects of computer vision for extracting information from image and video content or enhancing its visual quality using machine learning codes.

Computer vision technology uses sophisticated signal processing and data analysis methods to support access to visual information, whether it is for business, security, personal use or entertainment. The core modules cover the fundamentals of how to represent image and video information digitally, including processing, filtering and feature extraction techniques.

An important aspect of the programme is the software implementation of such processes. Students will be able to tailor their learning experience through selection of elective modules to suit their career aspirations.

Key to the programme is cross-linking between core methods and systems for image and video analysis applications. The programme has strong links to current research in the Department of Electronic Engineering’s Centre for Vision, Speech and Signal Processing.

PROGRAMME LEARNING OUTCOMES

The Department's taught postgraduate programmes are designed to enhance the student's technical knowledge in the topics within the field that he/she has chosen to study, and to contribute to the Specific Learning Outcomes set down by the Institution of Engineering and Technology (IET) (which is the Professional Engineering body for electronic and electrical engineering) and to the General Learning Outcomes applicable to all university graduates.

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods

Time and resource management
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Relevant part of: Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

FACILITIES, EQUIPMENT AND SUPPORT

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab. The Faculty’s student common room is also covered by the University’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices.

Specialist experimental and research facilities, for computationally demanding projects or those requiring specialist equipment, are provided by the Centre for Vision, Speech and Signal Processing (CVSSP).

CAREER PROSPECTS

Computer vision specialists are be valuable in all industries that require intelligent processing and interpretation of image and video. This includes industries in directly related fields such as:
-Multimedia indexing and retrieval (Google, Microsoft, Apple)
-Motion capture (Foundry)
-Media production (BBC, Foundry)
-Medical Imaging (Siemens)
-Security and Defence (BAE, EADS, Qinetiq)
-Robotics (SSTL)

Studying for Msc degree in Computer Vision offers variety, challenge and stimulation. It is not just the introduction to a rewarding career, but also offers an intellectually demanding and exciting opportunity to break through boundaries in research.

Many of the most remarkable advancements in the past 60 years have only been possible through the curiosity and ingenuity of engineers. Our graduates have a consistently strong record of gaining employment with leading companies.

Employers value the skills and experience that enable our graduates to make a positive contribution in their jobs from day one.

Our graduates are employed by companies across the electronics, information technology and communications industries. Recent employers include:
-BAE Systems
-BT
-Philips
-Hewlett Packard
-Logica
-Lucent Technologies
-BBC
-Motorola
-NEC Technologies
-Nokia
-Nortel Networks
-Red Hat

INDUSTRIAL COLLABORATIONS

We draw on our industry experience to inform and enrich our teaching, bringing theoretical subjects to life. Our industrial collaborations include:
-Research and technology transfer projects with industrial partners such as the BBC, Foundry, LionHead and BAE
-A number of our academics offer MSc projects in collaboration with our industrial partners

RESEARCH PERSPECTIVES

This course gives an excellent preparation for continuing onto PhD studies in computer vision related domains.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
* Subject to validation, 2017 entry. Liverpool Hope’s MSc Computer Science is a research-informed, academically rigorous course and is designed to provide a flexible, purposeful and challenging set of coherent courses to meet scientific, industrial and employment challenges in this fast-evolving technological area. Read more
* Subject to validation, 2017 entry

Liverpool Hope’s MSc Computer Science is a research-informed, academically rigorous course and is designed to provide a flexible, purposeful and challenging set of coherent courses to meet scientific, industrial and employment challenges in this fast-evolving technological area. Graduates will have developed scientific and analytical skills which are highly valued in the computing, engineering, IT and business industries.

The course offers a mix of compulsory and elective courses, and a research dissertation, so you can focus your skill base and your potential career direction.

The course has been designed with employability in mind, whether it is within IT industry or as a function of other sectors, scientific computing and technical skills are in great demand and therefore highly valued. There are opportunities for placements and enterprise development.

Curriculum

The MSc Computer Science combines academic and practical course, consisting of eight taught courses (four compulsory and four elective) and a dissertation (final research project).

The Compulsory courses are:

· Computational Modelling and Simulation

· Algorithms

· Innovations in Computer Science

· Research Methods for Computer Science

· Dissertation for MSc Computer Science

Elective courses include:

· Embedded Systems and Robotics

· Cloud Computing and Web Services

· Mobile and Ubiquitous Computing

· Human Computer Interaction

· E-Business

Course Descriptions

· Computational Modelling and Simulation (compulsory – 15 credits): This course develops understanding and knowledge of the principles, techniques and design of computational modelling and their applications.

· Algorithms (compulsory - 15 credits): This course gives a firm grounding in the philosophy and evolution of algorithmic design and analysis for computer science, engineering and information systems.

· Innovations in Computer Science (compulsory - 15 credits): You will examine the particular research interests of Computer Science Department.

· Research Methods for Computer Science (compulsory - 15 credits): The course will expose you to the established techniques of research and enquiry that are used to extend, create and interpret knowledge in computer science

· Embedded Systems and Robotics (elective - 15 credits): This course will examine the Robotics Operating System and robotic programming languages, such as Urbi.

· Cloud Computing and Web Services (elective - 15 credits): You will study the concepts behind the idea of cloud computing and web services and gain practical knowledge of Azure, the .Net framework and C#.

· Mobile and Ubiquitous Computing (elective - 15 credits): You will examine mobile phone OSs (Android) and Windows Phone 7. You will learn how to develop software for these devices using JavaFX and C#/Silverlight.

· Human Computer Interaction (elective - 15 credits): Human computer interaction (HCI) is the study of interaction between people and computers and is the most multi-disciplinary module available in the MSc Computer Science.

·
* E-Business (elective - 15 credits): E-business encompasses, and is more than, e-commerce. You will examine e-commerce technology, such as the internet and web-based technologies.

· Dissertation for MSc Computer Science (compulsory - 60 credits): This module will allow the students to develop a Masters level research project with the support of an academic supervisor.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

As an MSc by Research Computer Science student you will be guided by internationally leading researchers in the field of computer science and will carry out a large individual research project. Computer Science is at the cutting edge of modern technology, and is developing rapidly and Swansea Computer Science graduates enjoy excellent employment prospects.

Computer Science now plays a part in almost every aspect of our lives - science, engineering, the media, entertainment, travel, commerce and industry, public services and the home.

The MSc by Research Computer Science degree enables you to pursue a one year individual programme of research in the field of computer science and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

The MSc by Research programmes including Computer Science MSc by Research all have a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in biosciences or cognate discipline and are looking to pursue a wholly research-based programme of study.

As a student of the MSc by Research Computer Science programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Links with Industry

Each spring, Computer Science students prepare and present a poster about their project at a project fair – usually together with a system or software demonstration. We also strongly encourage students to create CVs and business cards to take along to the fair, as businesses and employers visit to view the range of projects and make contact with the graduating students.

Read less
This innovative course is for people who wish to understand the ways new and renewable energy can be harnessed in buildings, who wish to gain the ability to undertake the simulation and modelling tasks which are essential for credible building performance analysis, and acquire the ability to work creatively within a multidisciplinary design team. Read more

About the course

This innovative course is for people who wish to understand the ways new and renewable energy can be harnessed in buildings, who wish to gain the ability to undertake the simulation and modelling tasks which are essential for credible building performance analysis, and acquire the ability to work creatively within a multidisciplinary design team.

The need for sustainable approaches to building design is universally acknowledged. As the effects of climate change are felt, the drive towards more energy efficient buildings is intensifying. Sustainable buildings need not be technologically complex but a high level of sophistication in design procedures and performance analysis is required.

The course has an interdisciplinary approach that gives a broad insight into energy and sustainability issues, and in-depth knowledge of the computer modelling techniques that are used in the design of modern sustainable buildings.

The course has been approved by both the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute for completing the educational requirements for chartered engineer registration.

Reasons to Study;

• Flexible study options
the course is designed to be flexible and fit around you with on campus, part-time or full-time or distance learning options, and multiple exit awards from a full master’s to a single module

• Accredited by CIBSE and the Energy Institute
ensuring you will benefit from the highest quality teaching, and graduate with a recognised qualification

• Interdisciplinary teaching
develop a broad insight in to energy and sustainability issues, with in-depth knowledge of computer modelling techniques for the design of modern sustainable buildings

• Excellent graduate career prospects
graduates of the programme have gone on to work for the European Commission, Mott MacDonald, WSP Group, WYG, and Arup; as well as a variety of other energy and environmental consultancies, central and local government and multinational organisations

• Academic and research expertise
With more than 30-year’s research experience, our Institute of Energy and Sustainable Development (IESD) research and teaching staff provide students with a unique opportunity to learn from scientists actively involved in furthering knowledge and sharing expertise

Course Structure

Modules

The MSc has been designed to offer flexibility, with attended or distance learning study available and a range of possible awards from a full MSc to a single module. Modules studied:

• Sustainable Development
• Energy in Buildings
• Sustainable Energy
• Resource-Efficient Design
• Energy and Thermal Performance
• Ventilation and Daylight Modelling
• Energy Analysis Techniques
• Research Methods
• Design Project

Teaching and Assessment

Full-time students attend for two days each week and receive formal lectures from experienced researchers and teaching staff, complemented by informal seminars and group discussions. Part-time students attend one day per week. You will also be expected to undertake self-directed study. All teaching material is fully documented and available on the web-based virtual learning environment (VLE) before timetabled events take place.

Distance learning students follow a structured study plan provided on the VLE, supported by discussion forums with other students, and email and telephone conversations with the module leader. Our course has been commended in an academic quality review for its “innovative and sophisticated forms of e-based learning and teaching”.

All assessment is by coursework. Each taught module has two items of coursework. The first is a smaller assignment for which feedback is given while the module is being studied. A second, major assignment is due at a later date after the material has been assimilated.

As well as the eight taught modules, students complete either an individual dissertation or a team-based design project, and all students get to attend the annual MSc conference, where final year students present.

Contact and learning hours

You will normally attend two - four hours of timetabled taught sessions each week for each module undertaken during term time; for full time study this would be 12 hours per week during term time. You can also expect to typically undertake a further hours of six hours independent study and assignments as required per week.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Human Computer Interaction at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Human Computer Interaction at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Computer Science is at the cutting edge of modern technology, and is developing rapidly and Swansea Computer Science graduates enjoy excellent employment prospects.

Computer Science now plays a part in almost every aspect of our lives - science, engineering, the media, entertainment, travel, commerce and industry, public services and the home.

The MSc by Research Human Computer Interaction enables students to pursue a one year individual programme of research. The Human Computer Interaction programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

Students of the MSc by Research Human Computer Interaction programme will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

The Department of Computer Science is amongst the top 25 in the UK, with a growing reputation in research both nationally and internationally. It is home to world class researchers, excellent teaching programmes and fine laboratory facilities.

All postgraduate Computer Science programmes will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Read less
The fields of graphics, vision and imaging increasingly rely on one another. Read more
The fields of graphics, vision and imaging increasingly rely on one another. This unique and timely MSc provides training in computer graphics, geometry processing, virtual reality, machine vision and imaging technology from world-leading experts, enabling students to specialise in any of these areas and gain a grounding in the others.

Degree information

Graduates will understand the basic mathematical principles underlying the development and application of new techniques in computer graphics and computer vision and will be aware of the range of algorithms and approaches available, and be able to design, develop and evaluate algorithms and methods for new problems, emerging technologies and applications.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research project (60 credits).

Core modules
-Mathematical Methods, Algorithmics and Implementation
-Image Processing
-Computer Graphics
-Research Methods

Optional modules
-Machine Vision
-Graphical Models
-Virtual Environments
-Geometry of Images
-Advanced Modelling, Rendering and Animation
-Inverse Problems in Imaging
-Computation Modelling for Biomedical Imaging
-Computational Photography and Capture
-Acquisition and Processing of 3D Geometry

Dissertation/report
All students undertake an independent research project related to a problem of industrial interest or on a topic near the leading edge of research, which culminates in a 60–80 page dissertation.

Teaching and learning
The programme is delivered through a combination of lectures and tutorials. Lectures are often supported by laboratory work with help from demonstrators. Student performance is assessed by unseen written examinations, coursework and a substantial individual project.

Careers

Graduates are ready for employment in a wide range of high-technology companies and will be able to contribute to maintaining and enhancing the UK's position in these important and expanding areas. The MSc provides graduates with the up-to-date technical skills required to support a wealth of research and development opportunities in broad areas of computer science and engineering, such as multimedia applications, medicine, architecture, film animation and computer games. Our market research shows that the leading companies in these areas demand the deep technical knowledge that this programme provides. Graduates have found positions at global companies such as Disney, Sony and Siemens. Others have gone on to PhD programmes at MIT, Princeton University, and Eth Zurich.

Top career destinations for this degree:
-Senior Post-Doctoral Research Associate, University of Oxford
-Software Engineer, Sengtian Software
-Graduate Software Engineer, ARM
-IT Officer, Nalys
-MSc in Computer Games and Entertainment, Goldsmiths, University of London

Employability
UCL Computer Science was one of the top-rated departments in the country, according to the UK Government's most recent research assessment exercise, and our graduates have some of the highest employment rates of any university in the UK. This degree programme also provides a foundation for further PhD study or industrial research.

Why study this degree at UCL?

UCL Computer Science contains some of the world's leading researchers in computer graphics, geometry processing, computer vision and virtual environments.

Research activities include geometric acquisition and 3D fabrication, real-time photo-realistic rendering, mixed and augmented reality, face recognition, content-based image-database search, video-texture modelling, depth perception in stereo vision, colour imaging for industrial inspection, mapping brain function and connectivity and tracking for SLAM (simultaneous localisation and mapping).

Read less
One of a range of degrees from the taught Masters Programme at the School of Computer Science our course is especially designed for graduates of numerate subjects other than computer science. Read more
One of a range of degrees from the taught Masters Programme at the School of Computer Science our course is especially designed for graduates of numerate subjects other than computer science. It is mostly taught separately from the other courses. It intensively covers a broad range of the key principles and techniques of computer science.

About the course

There is an emphasis on software development, in particular when applied to solving problems in other disciplines. Depending on the modules chosen, it can lead to a career in areas such as systems development, IT management, or the deployment of advanced applications in specific disciplines.

Why choose this course?

-This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies
-A flexible course, part of our postgraduate master's programme in Computer Science, with two different routes
-Our course is especially designed for graduates of numerate subjects other than computer science
-Taught by a highly-regarded and long-established computer science department with strong links to business
-Half the research outputs in Computer Science at the University of Hertfordshire have been rated as world-leading or internationally excellent in the Research Excellence Framework (REF) 2014

Careers

Our masters programme is designed to give Computer Science graduates the specialist, up-to-date skills and knowledge sought after by employers, whether in business, industry, government or research. This particular course will prepare you for a career such as a software engineer, developer or project manager.

Teaching methods

Classes consist of lectures, small group seminars, and practical work in our well-equipped laboratories. We use modern, industry-standard software wherever possible. There are specialist facilities for networking and multimedia and a project laboratory especially for masters students. In addition to scheduled classes, you will be expected a significant amount of time in self-study, taking advantage of the extensive and up-to-date facilities. These include the Learning Resource Centres, open 24x7, with 1,500 computer workstations and wifi access, Studynet our versatile online study environment usable on and off campus, and open access to our labs.

Work Placement

This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies.

This offers you the opportunity to work for one year in a highly professional and stimulating environment. You will be a full time employee in a company earning a salary and will learn new skills that can't be taught at University. During the placement, you will be able to gain further insight into industrial practice that you can take forward into your individual project.

We will provide excellent academic and personal support during both your academic and placement periods together with comprehensive careers guidance from our very experienced dedicated Careers and Placements Service.

Although the responsibility for finding a placement is with you, our Careers and Placements Service maintains a wide variety of employers who offer placement opportunities and organise special training sessions to help you secure a placement, from job application to the interview. Optional one-to-one consultations are also available.

In order to qualify for the placement period you must maintain an overall average pass mark of not less than 60% across all modules studied in semester ‘A’.

Structure

Year 1
Core Modules
-Computer Architectures
-Computer Science Masters Project
-Operating Systems and Networks
-Preparation for Placement
-Professional Issues
-Professional Work Placement for MSc Computer Science
-Programming and Program Design
-Software Development Exercise
-Systems Modelling

Year 2
Core Modules
-Computer Science Masters Project

Read less
Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. Read more

About Computer Science

Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. in Computer Science are specialists in at least one field of computer science who have wide-ranging science-based methodological expertise.
Graduates are able to define, autonomously and comprehensively, computer science problems and their applications, structure them and build abstract models. Moreover, they are able to define and implement solutions that are at the state of the art of technology and science.

Features

– A broad, international and relevant selection of courses
– As a student, you will work on cutting-edge research projects
– Individual guidance in small learning groups
– Excellent enterprise relations maintained by the chairs and institutes
– Numerous partnerships with universities throughout the world, including a double degree programme with the Institut national des sciences appliquées de Lyon (INSA)

Syllabus

The programme offers the following five focus modules:
1) Algorithms and Mathematical Modelling
2) Programming and Software Systems
3) Information and Communication Systems
4) Intelligent Technical Systems
5) IT Security and Reliability
1) Algorithms and Mathematical Modelling: This module teaches you about determinstic and stochastic algorithms, their implementation, evaluation and optimisation. You will acquire advanced knowledge of computer-based mathematical methods – particularly in the areas of algorithmic algebra and computational stochastics – as well as developing an in-depth expertise in mathematical modelling and complexity analysis of discrete and continuous problems.
2) Programming and Software Systems: This module imparts modern methods for constructing large-scale software systems, as well as creating and using software authoring, analysis and optimisation tools. In this module you will consolidate your knowledge of the various programming paradigms and languages, the structure of language processing systems, and learn to deal with parallelism in program procedures.
3) Information and Communication Systems: In this module you will study the interactions of the classic computer science areas of information systems and computer networks. This focus area represents an answer to the problem of increasing volume and complexity of worldwide information distribution and networks, and for the growing requirements on quality and performance of computer communication. Additionally, you will learn to transfer database results to multimedia data.
4) Intelligent Technical Systems: In this module you are acquainted with digital image and signal processing, embedded systems and applications of intelligent technical systems in industrial and assistance systems, which are necessary for production automation and process control, traffic control, medical and building technology. You will learn to develop complex applications using computer systems and deal with topics such as image reconstruction, camera calibration, sensor data fusion and optical measurement technology.
5) IT Security and Reliability: This module group is concerned with security and reliability of IT systems, e.g. in hardware circuitry and communication protocols, as well as complex, networked application systems. To ensure the secure operation of these systems you will learn design methodology, secure architectures and technical implementation of the underlying components.

Language requirements

Unless English is your native language or the language of your secondary or undergraduate education, you should provide an English language certificate at level B2 CEFR, e.g. TOEFL with a minimum score of 567 PBT, 87 iBT or ITP 543 (silver); IELTS starting from 5.5; or an equivalent language certificate.

To facilitate daily life in Germany, it would be beneficial for you to have German language skills at level A1 CEFR (beginner’s level). If you do not have any German skills when starting out on the programme, you will complete a compulsory beginner’s German course during your first year of study.

Read less

Show 10 15 30 per page



Cookie Policy    X