• Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Northampton Featured Masters Courses
London Metropolitan University Featured Masters Courses
Birmingham City University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
University of Warwick Featured Masters Courses
University of Bath Featured Masters Courses
"computer" AND "graphics"…×
0 miles

Masters Degrees (Computer Graphics)

We have 159 Masters Degrees (Computer Graphics)

  • "computer" AND "graphics" ×
  • clear all
Showing 1 to 15 of 159
Order by 
The fields of graphics, vision and imaging increasingly rely on one another. Read more

The fields of graphics, vision and imaging increasingly rely on one another. This unique and timely MSc provides training in computer graphics, geometry processing, virtual reality, machine vision and imaging technology from world-leading experts, enabling students to specialise in any of these areas and gain a grounding in the others.

About this degree

Graduates will understand the basic mathematical principles underlying the development and application of new techniques in computer graphics and computer vision and will be aware of the range of algorithms and approaches available, and be able to design, develop and evaluate algorithms and methods for new problems, emerging technologies and applications.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research project (60 credits).

Core modules

  • Computer Graphics (15 credits)
  • Image Processing (15 credits)
  • Mathematical Methods, Algorithmics and Implementations (15 credits)
  • Research Methods and Reading (15 credits)

Optional modules

Students must choose a minimum of 15 and a maximum of 30 credits from Group One options. Students must choose a minimum of 30 and a maximum of 45 credits from Group Two options.

Group One Options (15 to 30 credits)

  • Machine Vision (15 credits)
  • Virtual Environments (15 credits)

Group Two Options (30 to 45 credits)

  • Acquisition and Processing of 3D Geometry (15 credits)
  • Computational Modelling for Biomedical Imaging (15 credits)
  • Computational Photography and Capture (15 credits)
  • Geometry of Images (15 credits)
  • Graphical Models (15 credits)
  • Information Processing in Medical Imaging (15 credits)
  • Introduction to Machine Learning (15 credits)
  • Inverse Problems in Imaging (15 credits)
  • Numerical Optimisation (15 credits)
  • Robotic Sensing, Manipulation and Interaction (15 credits)
  • Robotic Vision and Navigation (15 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

Dissertation/report

All students undertake an independent research project related to a problem of industrial interest or on a topic near the leading edge of research, which culminates in a 60–80 page dissertation.

Teaching and learning

The programme is delivered through a combination of lectures and tutorials. Lectures are often supported by laboratory work with help from demonstrators. Student performance is assessed by unseen written examinations, coursework and a substantial individual project.

Further information on modules and degree structure is available on the department website: Computer Graphics, Vision and Imaging MSc

Careers

Graduates are ready for employment in a wide range of high-technology companies and will be able to contribute to maintaining and enhancing the UK's position in these important and expanding areas. The MSc provides graduates with the up-to-date technical skills required to support a wealth of research and development opportunities in broad areas of computer science and engineering, such as multimedia applications, medicine, architecture, film animation and computer games. Our market research shows that the leading companies in these areas demand the deep technical knowledge that this programme provides. Graduates have found positions at global companies such as Disney, Sony and Siemens. Others have gone on to PhD programmes at leading universities worldwide.

Recent career destinations for this degree

  • Business Analyst, Adobe
  • Software Engineer, FactSet Research Systems
  • MRes in Engineering, Imperial College London
  • Software Engineer, Sengtian Software
  • PhD in Computer Graphics, UCL

Employability

UCL received the highest percentage (96%) for quality of research in Computer Science and Informatics in the UK's most recent Research Excellence Framework (REF2014).

Our graduates have some of the highest employment rates of any university in the UK. This degree programme also provides a foundation for further PhD study or industrial research.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Computer Science contains some of the world's leading researchers in computer graphics, geometry processing, computer vision and virtual environments.

Research activities include geometric acquisition and 3D fabrication, real-time photo-realistic rendering, mixed and augmented reality, face recognition, content-based image-database search, video-texture modelling, depth perception in stereo vision, colour imaging for industrial inspection, mapping brain function and connectivity and tracking for SLAM (simultaneous localisation and mapping).

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Computer Science

96% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Institute of Perception, Action and Behaviour (IPAB) focuses on how to link computational perception, representation, transformation and generation processes to external worlds, in theory and in practice. Read more

The Institute of Perception, Action and Behaviour (IPAB) focuses on how to link computational perception, representation, transformation and generation processes to external worlds, in theory and in practice.

This covers domains such as visual perception, dynamic control of robot systems, active sensing and decision making, biomimetic robotics, computer-based generation of external phenomena, such as images, music or actions, and agent-based interaction within computer games and animation.

Supported by the dynamic research culture of IPAB, you can develop robots that learn their own motor control, mimic animal behaviours, or produce autonomous and coordinated team actions. Or you can work with systems that interpret real images and video, or generate complex behaviour in animated characters.

We aim to link strong theoretical perspectives with practical hands-on construction, and provide the hardware and software support to realise this vision.

Training and support

You carry out your research within a research group under the guidance of a supervisor. You will be expected to attend seminars and meetings of relevant research groups and may also attend lectures that are relevant to your research topic. Periodic reviews of your progress will be conducted to assist with research planning.

A programme of transferable skills courses facilitates broader professional development in a wide range of topics, from writing and presentation skills to entrepreneurship and career strategies.

The School of Informatics holds a Silver Athena SWAN award, in recognition of our commitment to advance the representation of women in science, mathematics, engineering and technology. The School is deploying a range of strategies to help female staff and students of all stages in their careers and we seek regular feedback from our research community on our performance.

Facilities

Our robotics labs contain a range of mobile platforms, robot manipulators, humanoid robots, and custom-built sensor and actuation systems that attract continuous interest from funders, industry and members of the public.

Recent developments include the UK's only NASA Valkyrie robot platform, application of robotic hardware to prosthetics and assisted living, and a team that competes in the international robot soccer league.

Our new Edinburgh Centre for Robotics (ECR) brings collaboration with Heriot-Watt University to expand the range of facilities and applications we can explore, and to fund research training.

The machine vision lab has facilities for 3D range data capture, motion capture and high-resolution and high-speed video, and the high performance computing needed for graphics is well supported, including hardware partnerships with companies such as NVIDIA.

Career opportunities

While many of our graduates go on to highly successful academic careers, others find their niche in commercial research labs, putting their knowledge and skills to use in an industry setting.

Several of our recent graduates have set up or joined spin-out robotics companies. Our graphics researchers have strong connections to the media and games industries.



Read less
Degree. Master of Science (two years) with a major in Computer Science and Engineering. This programme is aimed at students with a bachelor’s degree in Computer Science. Read more

Degree: Master of Science (two years) with a major in Computer Science and Engineering.

This programme is aimed at students with a bachelor’s degree in Computer Science. You will learn to master the theoretical foundations in the field and how to integrate them with other technologies.

Computer science is one of the most dynamic and expansive fields of science. In addition to having a deep understanding of the theoretical and technical foundations, professionals in this field must be able to apply the technology to challenging problems, and integrate it with other technologies. Applicants should have an adequate background in computer science and good programming skills.

The first three semesters include not only core courses in theoretical computer science and programming, but also elective courses such as artificial intelligence, databases and data mining, the design and programming of computer games, information security, advanced computer graphics, and human-computer interaction. Most courses feature lectures in theory and techniques, which are applied in practical laboratory work. Some courses also feature projects and seminars.

Five specialisations

The programme offers five specialisations:

  • Visualisation and Computer Graphics
  • Artificial Intelligence and Data Mining
  • Computer Networks, Distributed Systems and Security
  • Embedded Systems
  • Programming and Software Methods.

It is not mandatory to follow a specialisation – you may also tailor your own combination of courses, with full freedom of choice. All specialisations are offered in Linköping, except Visualisation and Computer Graphics, which is given at Campus Norrköping.

Major computer science centre

In the final semester you write a thesis, either on your own or with a fellow student. The work may be carried out in collaboration with a company, or as a research project with the university.

Linköping University is home to one of the most important centres of computer science and engineering in Northern Europe, renowned for top-quality research and education. Science Park Mjärdevi, an incubator with 300 knowledge-intensive companies where many of our alumni are employed, is adjacent to the campus.



Read less
This MSc programme focuses on the development of sophisticated computer graphics applications and on the development of tools commonly used in the creation of content for these applications. Read more
This MSc programme focuses on the development of sophisticated computer graphics applications and on the development of tools commonly used in the creation of content for these applications. It provides students with opportunity to develop important skills necessary for employment in this sector. They will use their expertise to, for example, develop interactive graphical scenes and deploy up to date techniques to implement real-time and offline visual effects.

Course Overview

This programme will equip students with skills at a high academic level and also crucially enable them to practically implement their knowledge because of the ‘hands-on’ emphasis of the programme.

The main themes of the programme are:
-Current and emerging algorithms and techniques used in film visual effects and games programming
-Approaches used to generate off-line visual effects
-Approaches used to generate real-time interactive games

The first theme develops in the student the necessary skills required to implement algorithms and techniques used to generate realistic scenes. These concepts will be explored in detail.

The second theme addresses the need for students to identify, evaluate and implement suitable methods to solve specific problems related to creating off-line visual effects.

The third theme recognises the need to solve these problems using approaches optimised for real-time computer games development and develops in the student the requisite skills.

Modules

-Animation Systems Development (20 credits)
-Artificial Intelligence for Games & VFX (20 credits)
-GPU Shader Development (20 credits)
-Leadership and Management (20 credits)
-Research Methods and Data Analysis (20 credits)
-Visual Simulation (20 credits)
-Major Project (60 credits)

Key Features

Applicants for this programme will have an interest in computer graphics and Computer Generated Imagery (CGI). The main themes of the programme are current and emerging algorithms and techniques used in film visual effects and games programming, approaches used to generate off-line visual effects and approaches used to generate real-time interactive games. This also includes the development/enhancement of tools used in the CGI and animation industry. Graduates will be concerned with the discipline of developing software and applications using high level programming languages. They will also be experienced in creating custom animated scenes using the powerful scripting languages of industry standard applications such as Maya and Houdini software. Graduates will have an advanced understanding of computer graphics, GPU shader development, and visual simulation methods making use of modern artificial intelligence and simulation techniques. Graduated are likely to find employment either within the film VFX industry, computer games or traditional software engineering sectors.

Assessment

An Honours Degree (2.2 or above) or advanced qualification in Computer Science or cognate discipline from a UK University or recognised overseas institution, or industrial experience in Computer Networking and an Honours Degree.

Where English is not your first language, we ask that you hold an Academic IELTS test with a score of at least 6.0 (no element less than 5.5) or TOEFL with a minimum score of 550 (213 for computer based test).

Career Opportunities

It is expected that graduates would seek positions such as:
-Software Engineers
-Senior Software Engineers
-App Developers
-CGI Special Effects Programmers
-Games Programmers
-Lead Programmers
-Render Manager
-VFX Programmer
-VFX Technical Directors

Read less
Who is it for?. This MSc is aimed at students with a passion for computer games and a strong interest in programming. It is designed to develop your career in the games industry. Read more

Who is it for?

This MSc is aimed at students with a passion for computer games and a strong interest in programming. It is designed to develop your career in the games industry. The course will help you build on your undergraduate degree (which should be in a numerate subject with substantial computing content) or help you update your skills after a time in industry as a computing professional.

Objectives

The Computer Games Technology MSc will help you to develop:

  • Strong technical skills suitable for professional programming roles in the game industry.
  • Specialist knowledge in computer graphics, AI, physics and audio.
  • The ability to design and build game engines from scratch in industry standard languages, including C++.
  • Knowledge of the games development process, including the pitch, design, and use of a game engine to build a demo.
  • Experience of the planning, management and execution of a major games technology project.

Accreditation

This course is accredited by TIGA, a non-profit UK trade association representing the UK's games industry. This course is also accredited by the BCS, The Chartered Institute for IT, as fulfilling the academic requirement for registration as Chartered IT Professional (CITP) and partially fulfilling the requirements for Chartered Engineer (CEng) or Chartered Scientist (CSci), subject to re-accreditation in 2017.

Internships

As a postgraduate student on a Computing and Information Systems course, you will have the opportunity to complete up to six months of professional experience as part of your degree.

Our longstanding internship scheme gives you the chance to apply the knowledge and skills gained from your taught modules within a real business environment. An internship also provides you with professional development opportunities that enhance your technical skills and business knowledge.

Internships delivered by City, University of London offer an exceptional opportunity to help you stand out in the competitive IT industry job market. The structure of the course extends the period for dissertation submission to January, allowing you to work full-time for up to six months. You will be supported by our outstanding Professional Liaison Unit (PLU) should you wish to consider undertaking this route.

Teaching and learning

The teaching and learning methods we use mean that your specialist knowledge and autonomy increase as you progress through each module. Active researchers guide your progress in the areas of Games Development, Computer Graphics, Artificial Intelligence and Audio, which culminates with an individual project. This is an original piece of research conducted with academic supervision, but largely independently and, where appropriate, in collaboration with industrial partners.

Taught modules

Taught modules are delivered through a series of 20 hours of lectures and 10 hours of tutorials/laboratory sessions. Lectures are normally used to:

  • Present and exemplify the concepts underpinning a particular subject
  • Highlight the most significant aspects of the syllabus
  • Indicate additional topics and resources for private study.

Tutorials help you develop the skills to apply the concepts we have covered in the lectures. We normally achieve this through practical problem-solving contexts.

Laboratory sessions

Laboratory sessions give you the opportunity to apply concepts and techniques using state-of-the-art software, environments and development tools. In addition, City's online learning environment, Moodle, contains resources for each of the modules - from lecture notes and lab materials, to coursework feedback, model answers, and an interactive discussion forum.

Coursework and assessment

We expect you to study independently and complete coursework for each module. This should amount to approximately 120 hours per module if you are studying full time. Modules are assessed through written examination and coursework, where you will need to answer theoretical and practical questions to demonstrate that you can analyse and apply computer games technology methods.

Individual project

The individual project is a substantial task. It is your opportunity to develop an autonomous research-related topic under the supervision of an academic member of staff. This is the moment when you can apply your learning to solve a real-world problem, designing and implementing a solution and evaluating the result. At the end of the project you submit a substantial MSc project report, which becomes the mode of assessment for this part of the programme.

Modules

The programme is composed of eight taught modules - seven core modules and one elective module - plus a final project.

The modules provide you with a firm grounding in computer games technology, including mathematics, programming, and game engines and architecture along with specialist topics in computer graphics, physics, AI, and audio.

The project component gives you an opportunity to carry out an extended piece of work under the supervision of one of our specialist academic and research staff, at the cutting edge of games technology, in an industrial or academic context.

Career prospects

This MSc will equip you with advanced knowledge and skills in a range of topics in games technology in preparation for a career in computer games development.

Alumni of the course are working in companies including:

  • Rockstar
  • Sony Computer Entertainment
  • Electronic Arts
  • Codemasters
  • Start-ups and independent studios.

City has a dedicated incubation space, called City Launch Lab that is specially designed for student entrepreneurs from City, University of London who want to get their idea off the ground.



Read less
Description. This course aims at providing computer science graduates with the knowledge and skills to specialise in advanced computer graphics principles and practice, as well as gaining exposure to research activities in this field. Read more
Description

This course aims at providing computer science graduates with the knowledge and skills to specialise in advanced computer graphics principles and practice, as well as gaining exposure to research activities in this field. Students completing this course will have a firm grasp of the current practices and directions in computer graphics techniques and be able to apply them to scientific visualization, virtual environments, and computer animation.

Modules are:

* Computer Animation
* Java Programming
* Project Foundations
* Introduction to Computer Graphics
* Virtual Environments & Human Perception
* Scientific Visualization
* Computing Shape
* Sample Based Geometric Modelling
* MSc Project & Dissertation

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Advanced Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Advanced Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

On the MSc in Advanced Computer Science course you will be thoroughly prepared for a career in IT or related industries. The Advanced Computer Science course is for you if you are a Computer Science graduate or if you have gained experience of computing and programming in a different first degree. Willingness to work hard and an ability to problem solve are equally important for this MSc in Advanced Computer Science. The MSc in Advanced Computer Science course will develop the skills and knowledge you have gained from your first degree by broadening and deepening your knowledge of Computer Science through a variety of advanced modules and material. The MSc in Advanced Computer Science is accredited by the British Computer Society.

Key Features of Advanced Computer Science MSc

• We are top in the UK for career prospects*

• We are 3rd in the UK for teaching quality**

• 5th in the UK overall*

• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]

• 7th in the UK overall and Top in Wales*

• High employability prospects - we are 8th in the UK for graduate prospects*

• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]

• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]

• Our Project Fair allows students to present their work to local industry

• Strong links with industry

• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017

**Times & Sunday Times University Guide 2016

Modules of Advanced Computer Science MSc

Modules for the MSc in Advanced Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Student Profile

Francesca Madeddu, originally from Italy, completed an outstanding Master’s thesis (which earned her a distinction) investigating interaction with augmented reality on mobile devices. More specifically, she investigated how to interact with virtual Egyptian artefacts placed in real scenes. The final game was deployed at Swansea's Egypt Centre last year and was evaluated by volunteers working at the museum. A Master’s thesis does not often lead to a publication. However, part of Francesca's research was written up as an extended abstract and presented at Computer Graphics and Visual Computing (CGVC), a Eurographics UK conference for visual computing last year. An exceptional achievement!



Read less
By studying this Masters, you’ll be well placed to join one of the most performance-driven applications of computer science – the multi-billion pound global games industry. Read more

By studying this Masters, you’ll be well placed to join one of the most performance-driven applications of computer science – the multi-billion pound global games industry. As a graduate, you will work at the top-end of the games industry and will develop computer graphics on high-performance platforms, or write engines for the next generation of games.

Developed in collaboration with a prestigious steering group, this course will build on your computer science knowledge to specialise in computer graphics, where programmers must push computing resources to the limit, using deep understanding of architecture and high-performance programming to generate new levels of graphical realism and visual effects on cutting-edge hardware platforms.

You’ll gain proficiency in low-level programming, a thorough understanding of multi-core and many-core programming techniques, game engine and tool development techniques, and fundamental insight into graphics and the practical techniques used in games.

Designed to meet the needs of industry

You can be sure that what you learn will be the technical skills required by industry as this course has been developed in collaboration with a prestigious steering group from industry comprising:

Members of our steering group will contribute to the delivery of the course ensuring that you learn the latest industry developments. You’ll also have the opportunity to engage directly with the games industry, through:

  • co-curricula industry lectures
  • visits to games development companies
  • attending UK games events.

We are also a member of Game Republic, which is an industry-led professional games network that supports and promotes the Yorkshire and Northern England games sector. We hope that students of this course will take part in the Game Republic student showcase.

Specialist facilities

You will use workstations with high-end GPUs to act as DirectX12 and Vulkan games development platforms and have access to other specialist hardware including the latest Virtual Reality headsets for experimenting on. For learning games engine design and exploring new rendering techniques, students will be working with the source code of a leading game engine, Epic’s “Unreal Engine 4”.



Read less
The accredited Master of Science program in Computer Science is a two-year program that has been designed for international and German graduate students. Read more

The accredited Master of Science program in Computer Science is a two-year program that has been designed for international and German graduate students. The curriculum is very flexible. Students can compile their individual study plans based on their background and interests. It is also a very practical program. In addition to lectures and tutorials, students will complete two seminars, one or two projects and the master thesis.

In the beginning students will choose one or two key courses. Key courses are courses which introduce the students to the research areas represented at the Department of Computer Science. The following key courses are offered:

• Algorithm Theory

• Pattern Recognition

• Databases and Information Systems

• Software Engineering

• Artificial Intelligence

• Computer Architecture

After that, students can specialize in one of the following three areas:

• Cyber-Physical Systems

• Information Systems

• Cognitive Technical Systems

Here are some examples of subjects offered in the three specialization areas:

Cyber-Physical Systems:

• Cyber-Physical Systems – Discrete Models

• Cyber-Physical Systems – Hybrid Control

• Real Time Operation Systems and Reliability

• Verification of Embedded Systems

• Test and Reliability

• Decision Procedures

• Software Design, Modeling and Analysis in UML

• Formal Methods for Java

• Concurrency: Theory and Practice

• Compiler Construction

• Distributed Systems

• Constraint Satisfaction Problems

• Modal Logic

• Peer-to-Peer Networks

• Program Analysis

• Model Driven Engineering

Information Systems:

• Information Retrieval Data Models and Query Languages

• Peer-to-Peer Networks

• Distributed Storage

• Software Design, Modeling and Analysis in UML

• Security in Large-Scale Distributed Enterprises

• Machine Learning

• Efficient Route Planning

• Bioinformatics I

• Bioinformatics II

• Game Theory

• Knowledge Representation

• Distributed Systems

Cognitive Technical Systems:

• Computer Vision I

• Computer Vision II

• Statistical Pattern Recognition

• Mobile Robotics II

• Simulation in Computer Graphics

• Advanced Computer Graphics

• AI Planning

• Game Theory

• Knowledge Representation

• Constraint Satisfaction Problems

• Modal Logic

• Reinforcement Learning

• Machine Learning

• Mobile Robotics I

We believe that it is important for computer science students to get a basic knowledge in a field in which they might work after graduation. Therefore, our students have the opportunity to complete several courses and/or a project in one of the following application areas:

  • Bioinformatics
  • Microsystems Engineering
  • Neuroscience
  • Economics

In the last semester, students work on their master’s thesis. They are expected to tackle an actual research question in close cooperation with a professor and his/her staff.



Read less
This course takes an immersive approach to learning both the principles and practices of computer systems with much of the material based around examples and practical exercises. Read more
This course takes an immersive approach to learning both the principles and practices of computer systems with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in computer systems and will be able to design and build for example, distributed systems for the Web using Internet, Intranet and other technologies.

Programme Objectives
To provide the foundations for understanding of core ideas, methods and technologies in computer science.
To provide the technical skills and background material so that the postgraduate will be able to conduct a near state-of-the-art research or development project;
To provide the graduate with a range of specialist and transferable skills;
To provide the educational base for further professional development and lifelong learning.
Course Topics
Data networks and communications, project foundations and management tools, broadband communication systems, technologies for Internet systems, agent technologies and Artificial Intelligence, introduction to distributed systems and mobile systems, project and dissertation.

Taught Modules:

Java programming: This module provides students with an in-depth understanding of current and emerging Java programming concepts and programming variations. The module teaches the basic and advanced structures of Java and makes use of the object-oriented approach to software implementation. It also gives an in-depth understanding of advanced Java concepts in the area of user interfaces and will enable students to apply the theoretical knowledge of the Java language onto a test-case software development scenario.

Introduction to distributed systems: This module will introduce key ideas in distributed Systems and its role and application in operating systems and middleware. On completion of this module students will have an understanding of the key issues for distributed systems at OS level or as middleware, they will understand core concepts of concurrency, be able to program multithreaded and distributed applications and understand the issues and use of algorithms for transactional systems.

Data networks and communications: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to understand in detail the process required to provide an end-to-end connection.

Technologies for Internet Systems: In this module, students will be introduced to state of the art technologies and tools for Internet Systems and in particular e-commerce systems.

Agent Technologies: This module provides an in-depth understanding of technologies from Artificial Intelligence research such as machine learning, data mining, information retrieval, natural language processing, and evolutionary programming. It will look at the application of agent-oriented technologies for Artificial Life, for building Web search engines, for use in computer games and in film (such as the MASSIVE software developed for the Lord of the Rings movies), and for robotics. It will also provide an introduction to agent-oriented programming using the NetLogo programming language.

Foundations of computer graphics: This module will teach techniques, algorithms and representations for modelling computer graphics and enable students to code 2D and 3D objects and animations.

Database systems: Students completing this module will gain an in depth understanding of DBMS/Distributed DBMS architecture, functionality, recovery and data storage techniques. Students will also have a full understanding of how queries are processed and the importance of database maintenance. This module is designed to enable students to perform research into one or two areas of databases; for example, object oriented databases and deductive databases.

Project foundations and management tools: This module prepares students for their MSc research project, including reference search and survey preparation and familiarisation with project management tools.

MSc Research project: After the successful completion of the taught component of the MSc programme, students will spend the remainder of the time undertaking a research project and producing an MSc Dissertation. During this process, students will conduct project work at state-of-the-art research level and to present this work as a written dissertation. Completing a project and dissertation at this level will train students in: problem solving; researching new topics; organizing knowledge; exercising elementary time and project management skills; reporting and writing skills.

Read less
You are expected to come from a technical background (Computer Science, Physics, Maths, Engineering) with an existing knowledge of programming and the course will build upon this, providing you with a combination of artistic sensibilities, problem-solving and technical skills, which can be applied to the role of technical director within the animation and games industries. Read more

You are expected to come from a technical background (Computer Science, Physics, Maths, Engineering) with an existing knowledge of programming and the course will build upon this, providing you with a combination of artistic sensibilities, problem-solving and technical skills, which can be applied to the role of technical director within the animation and games industries. Technical directors often have to work alongside computer animators and resolve technical problems either by configuring existing software tools or designing new tools.

During your year-long study, you will develop your programming and scripting skills, and become familiar with special techniques and tools associated with computer animation. These skills are assessed in a variety of projects you will undertake during the year. Emphasis is placed on the use of industry standard hardware and software in the development of these techniques. Typical examples include the development of C++ programs to test new algorithms, the writing of shaders to support rendering, and the developing of scripts and tools to create new effects. 

The academic aspects will provide you with a strong theoretical underpinning for the principal areas of study, including lecture series on computer graphics techniques, animation software development, principles of computer graphics, the fusion of art and technology, and personal research projects. You will also have the opportunity to collaborate with students on the other two Master’s courses in the Group Project. This format provides a realistic setting to discover what it’s like working with other creative people and working to a strict timescale.

The course attracts students from all over the world, giving it a strong interdisciplinary, international feel.



Read less
The computer science program is designed for students who have an undergraduate degree (or minor) in computer science, as well as those who have a strong background in a field in which computers are applied, such as engineering, science, or business. Read more

Program overview

The computer science program is designed for students who have an undergraduate degree (or minor) in computer science, as well as those who have a strong background in a field in which computers are applied, such as engineering, science, or business.

The degree is offered on a full- or part-time basis. Courses are generally offered in the afternoons and evenings to accommodate part-time students. Full-time students take three or four courses per semester and may be able to complete the course work in three semesters. Full-time students who are required to take additional bridge courses may be able to complete the course work in four semesters. Part-time students take one or two courses per semester and may be able to complete the course work in four to five semesters. The time required to complete a master's project is one semester, but can vary according to the student and the scope of the topic. Two semesters is typical.

Plan of study

The program consists of 30 credit hours of course work, which includes either a thesis or a project. Students complete one core course, three courses in a cluster, four electives, and a thesis. For those choosing to complete a project in place of a thesis, students complete one additional elective.

Clusters

Students select three cluster courses from the following areas (see website for individual area information):
-Computer graphics and visualization
-Data management
-Distributed systems
-Intelligent systems
-Languages and tools
-Security
-Theory

Electives

Electives provide breadth of experience in computer science and applications areas. Students who wish to include courses from departments outside of computer science need prior approval from the graduate program director. Refer to the course descriptions in the departments of computer science, engineering, mathematical sciences, and imaging science for possible elective courses.

Master's thesis/project

Students may choose the thesis or project option as the capstone to the program. Students who choose the project option must register for the Project course (CSCI-788). Students participate in required in-class presentations that are critiqued. A summary project report and public presentation of the student's project (in poster form) occurs at the end of the semester.

Curriculum

Thesis/project options differ in course sequence, see the website for a particular option's modules and a particular cluster's modules.

Other admission requirements

-Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
-Submit scores from the Graduate Record Exam.
-Have a minimum grade point average of 3.0 (B), and complete a graduate application.
-International applicants, whose native language is not English, must submit scores from the Test of English as a Foreign Language. A minimum score of 570 (paper-based) or 88 (Internet-based) is required.
-Applicants must satisfy prerequisite requirements in mathematics (differential and integral calculus, probability and statistics, discrete mathematics, and computer science theory) and computing (experience with a modern high-level language [e.g., C++, Java], data structures, software design methodology, introductory computer architecture, operating systems, and programming language concepts).

Additional information

Bridge courses:
If an applicant lacks any prerequisites, bridge courses may be recommended to provide students with the required knowledge and skills needed for the program. If any bridge courses are indicated in a student's plan of study, the student may be admitted to the program on the condition that they successfully complete the recommended bridge courses with a grade of B (3.0) or better (courses with lower grades must be repeated). Generally, formal acceptance into the program is deferred until the applicant has made significant progress in this additional course work. Bridge program courses are not counted as part of the 30 credit hours required for the master's degree. During orientation, bridge exams are conducted. These exams are the equivalent to the finals of the bridge courses. Bridge courses will be waived if the exams are passed.

Faculty:
Faculty members in the department are actively engaged in research in the areas of artificial intelligence, computer networking, pattern recognition, computer vision, graphics, visualization, data management, theory, and distributed computing systems. There are many opportunities for graduate students to participate in these activities toward thesis or project work and independent study.

Facilities:
The computer science department provides extensive facilities that represent current technology, including:
-A graduate lab with more than 15 Mac’s and a graduate library.
-Specialized labs in graphics, computer vision, pattern recognition, security, database, and robotics.
-Six general purpose computing labs with more than 100 workstations running Linux, Windows, and OS X; plus campus-wide wireless access.

Maximum time limit:
University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
The programme aims at preparing engineers to develop and use information technology tools so as to satisfy the widest variety of applications. Read more

Mission and Goals

The programme aims at preparing engineers to develop and use information technology tools so as to satisfy the widest variety of applications. Compared to the Bachelor of Science, Master of Science students acquire greater ability to model and solve complex problems, integrating different advanced skills and technologies. The programme comprises three tracks: Communication and Society Engineering, Sound and Music Engineering, Data Engineering.

The teaching language is English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

Career Opportunities

The information technology engineer operates mainly in companies manufacturing and distributing information technology and robotics equipment and systems, companies providing products and services with a high information technology content, private organisations and public administration using information technology to plan, design, manage, decide, produce and administrate.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Computer_science_and_engineering_CO_01.pdf
The Master of Science programme in Computer Science and Engineering aims at training engineers able to develop and use information technology tools so as to satisfy the widest variety of applications. Four tracks are available, corresponding to four main cultural areas. The “Communication and Society Engineering” track focuses on the integration of computer science and communication skills, for designing, implementing, presenting and evaluating innovative multimedia applications. The methodologies for the management of data, such as data mining, pattern recognition, information retrieval, constitute the core of the “Data Engineering” track. The “ICT Engineering, Business and Innovation” track aims at building professional profiles that combine a solid computer science background with managerial capabilities, through a selection of computer science and management courses, integrated with a broad cross-disciplinary project, carried out in collaboration with companies and Management Engineering students and professors. Finally, the “Sound and Music Engineering” track (in collaboration with the “Giuseppe Verdi” Music Conservatory of Como) focuses on the concepts and processes that are behind generation, analysis, manipulation/ processing, transport, access, coding and rendering of audio and musical signals. The programme is taught in English.

Subjects

Key subjects available:
Multimedia Interactive Applications for Web and Mobile Devices, Computer Graphics and Applications, Advanced Software Engineering, Advanced Computer Architectures, Performance Evaluation of Computer Systems, Multimedia Information Retrieval, Multimedia Signal Processing, Sound Analysis, Synthesis and Processing, Electronics and Electroacoustic.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Computer games are expected to reach a global revenue of $111bn in 2015; yet over half of the UK’s video games employers reported a lack of suitably-skilled graduates in 2011. Read more
Computer games are expected to reach a global revenue of $111bn in 2015; yet over half of the UK’s video games employers reported a lack of suitably-skilled graduates in 2011. Both for entertainment and for more serious purposes such as virtual reality training, computer games, gamification and games intelligences are increasingly important in today’s world. This is your opportunity to turn your passion into a career.

At Essex we specialise in virtual worlds, machine learning, artificial intelligence and high-level games design and development. On our course, you develop both theoretical and practical knowledge of computer games. Our flexible approach allows you to fill gaps in your knowledge and brush up on a variety of languages, making sure you’re ready to bring your designs to life.

You explore topics including:
-Game design
-Game AI
-3D games development
-Mobile app programming
-Physics-based games

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

The University of Essex was the birthplace of the ‘virtual world’. Multi-User Dungeons (MUD) – multi-player, real-time virtual worlds – were created by our students, including Richard Bartle, who still teaches Computer Games here today. Richard was also included in Geek.com’s list of the most influential game developers of all time.

Our research staff also include Professor Victor Callaghan, who researches immersive reality, creative science and education technology; Dr Michael Gardner, who researches virtual reality systems and mixed-reality environments; and Dr Adrian Clark, who works on computer graphics and augmented reality.

More broadly, our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-Essex is one of three co-founding universities of the new Centre for Doctoral Training in Intelligent Games and Game Intelligence
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, C++, Perl, MySQL, Matlab, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Graduates of our School go on to work for giants in the field such as Intel and Panasonic, but the corporate route isn’t for everyone. Some of the most exciting and innovative work in the field is being developed by small start-up companies. Our optional business module focuses on developing your entrepreneurial spirit, teaching you how to apply your technical and creative skills to your own venture.

Our recent graduates have progressed to a variety of senior positions in industry and academia.

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Game Design
-Game Artificial Intelligence
-Physics-Based Games
-Mobile & Social Application Programming
-MSc Project and Dissertation
-Professional Practice and Research Methodology
-Group Project (Incorporating a Game Jam)
-Programming in Python (optional)
-Intelligent Systems and Robotics (optional)
-Machine Learning and Data Mining (optional)
-Text Analytics (optional)
-Virtual Worlds (optional)
-High-Level Games Development (optional)
-Natural Language Engineering (optional)
-Creating and Growing a New Business Venture (optional)

Read less
The M.Sc. programme Computer Science for Digital Media at the Bauhaus-Universität Weimar is an internationally oriented 2-years degree programme. Read more
The M.Sc. programme Computer Science for Digital Media at the Bauhaus-Universität Weimar is an internationally oriented 2-years degree programme. It aims at creative and innovative thinking graduates of Computer Science or related subjects with the desire of deepening their knowledge in applied Computer Science, with a focus on applications relevant to the media.

Programme Features

In accordance with the »Weimar Model«, research-oriented projects are a large and defining part of the Master’s programme. Additional elective modules allow students to select courses from other degree programmes such as Computational Engineering, Arts and Design, Architecture, as well as courses from the Computer Science for Digital Media course catalogue. Graded language courses up to 6 ECTS may also be included. The fourth and final semester is dedicated entirely to the Master’s thesis.

The degree programme offers students to focus on different fields. Core components of the programme and areas of specialisation include:
• Web Technologies
• Information Retrieval and Data Mining
• Big Data Analytics
• Intelligent Software Systems
• Computer Graphics and Visualization
• Computer Vision
• Virtual Reality, 3D Interfaces
• Human Computer Interfaces
• Usability
• Secure Protocols and Cryptographic Algorithms

Key skills and competences are acquired through a project-based teaching approach: on a semester basis, students work in teams to solve assigned research tasks in the labs of the faculty. This approach provides our graduates with soft- and hard- skills which are very welcome in research and development institutions. Within the recently built »Digital Bauhaus Lab«, the faculty of media has excellent research facilities equipped with the latest advanced hardware.

Visit the Computer Science for Digital Media on the Bauhaus-Universität Weimar website for more details on the programme.

Career Options

Our graduates find employment in the R&D departments of companies in the automotive, telecommunication, software, gaming and animation industry, as well as at academic institutions in Germany and overseas. A specialisation in Computer Science with focus on media opens the door for employment and research in innovative areas such as system development, algorithm development, data analysis, data mining, scientific visualisation, image processing, physical simulation, interface development and testing and security protocols development.

Application Process

Applicants who graduated outside of Europe should apply online on http://www.uni-assist.de/index_en.html. Applicants who graduated in Europe and do not require a visa can apply online at: https://movein-uni-weimar.moveonnet.eu/movein/portal/studyportal.php?_language=en

Please find further information for your application on http://www.uni-weimar.de/en/media/studies/computer-science-and-media-hci/application-master-csm/

We also maintain a FAQ page: http://www.uni-weimar.de/en/media/studies/computer-science-and-media-hci/faq-application-csm/

Studying in Weimar

The »Bauhaus « was the most influential design school in the 20th century and was founded in 1919 in Weimar. The Bauhaus-Universität Weimar is the living continuation of this tradition. We are an international university in the unique, cultural city of Weimar. We are a vibrant institution, not a museum! Experimentation and excellence are our mission throughout our university faculties Media, Architecture and Urbanism, Civil Engineering and Art and Design. Across our Faculties, transdisciplinary projects and co-operations in research and education are an important part of this mission.

Find out more about student life in Weimar on http://www.uni-weimar.de/en/university/studies/einblickbauhaus/university-town-of-weimar/

Read less

Show 10 15 30 per page



Cookie Policy    X