• Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
University College London Featured Masters Courses
University of Reading Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of London International Programmes Featured Masters Courses
"computer" AND "games" AN…×
0 miles

Masters Degrees (Computer Games Art)

We have 75 Masters Degrees (Computer Games Art)

  • "computer" AND "games" AND "art" ×
  • clear all
Showing 1 to 15 of 75
Order by 
This dynamic course is designed to prepare students with an undergraduate qualification in the arts with the tools they'll need for using their creative skills in the fast-moving and exciting world of computer games development. Read more
This dynamic course is designed to prepare students with an undergraduate qualification in the arts with the tools they'll need for using their creative skills in the fast-moving and exciting world of computer games development. The course is designed with industry practice at its heart and academic rigor to support your development.

Game development pipelines will be explored and you'll become familiar with the development process. You'll also develop your expertise in the design and creation of the assets required to construct a fully-fledged game for a variety of platforms.

Design, illustration, 3D modelling and animation all form the framework of the course, and you'll learn in an open environment on your own dedicated computer using the latest industry-standard development tools. You'll work on individual and group projects, having the opportunity to collaborate with other students across related disciplines within our Faculty of Media and Communication and the National Centre of Computer Animation (NCCA).

Read less
This MA responds to the pressing need for a high quality postgraduate degree serving the computer games and entertainment industries. Read more

This MA responds to the pressing need for a high quality postgraduate degree serving the computer games and entertainment industries. The emphasis is on games design, art and animation, and will also develop the fundamentals of computer programming, entrepreneurship/business, and your own practice. You'll also be able to work with industry partners.

The computer games and interactive entertainment business is a fast-growing multi-billion dollar worldwide business, with games platforms from handhelds and mobiles including iPhones, iPads and Android phones, through consoles such as the Playstation 4, Xbox One and Nintento Wii U, to PCs and massively-multiplayer online games involving tens of thousands of people.

This MA will produce graduates who are well-positioned to have a career in this exciting worldwide industry, meeting the strong demand for graduate computer games designers and artists in the UK and abroad. The programme is delivered by a mix of professionals from the games and effects industries and from the research world.

Potential employers include EAUbisoftSony SCEECreative AssemblyMicrosoftCinesiteFramestore, and many others.

The influence of computer games is spreading to other digital industries, with gamification and games-based learning, social machines and interactive visualisation of scientific and financial data all exploiting techniques from computer games, and all fields where graduates from this MA could make their mark.

Industry placements

We work closely with industry leaders to shape the course content and to offer industry placements at studios including:

Modules & structure

The skills you will learn throughout the programme will have a focus on games design, art and animation, in addition to gaining the fundamentals of computer programming, entrepreneurship/business and practice. 

You will study the following modules:

You will also study:

  • Industry Placement or Research Project and Dissertation (60 credits)

Industry Seminars Series (shared with the MSc in Computer Games and Entertainment course) 

  • With leading speakers from the games and entertainment industry

Skills & careers

We expect that you will leave this programme with strong creative skills, production experience and management capability, giving you the potential for senior roles in the computer games and entertainment industries.

Skills

This MA builds on the success of the MSc in Computer Games and Entertainment, and will develop your skills in game design, art and animation. You'll have the opportunity to work with students from this industry-recognised programme on placements and final projects. Through these creative collaborations with artists, games designers and developers we hope that many exciting and innovative projects will emerge. This mix of students also replicates the typical mix of workers in games development and special effects studios. 

It's likely that this will encourage exciting and innovative projects to emerge, through creative collaborations 

Careers

You'll be well equipped to pursue a career in the computer games industry, covering mainstream computer games for mobile, PC, tablet and console platforms, through to gamification and 'serious games'. 

Or you could choose to work in the broader entertainment industries – including advertising, special effects, television and web/design studios.

Graduate employment destinations of our computing programmes include: 

Find out more about employability at Goldsmiths.



Read less
Our MSc Computer Games Technology is designed to equip you with the specialist skills necessary for a career in programming in the Computer Games industry. Read more
Our MSc Computer Games Technology is designed to equip you with the specialist skills necessary for a career in programming in the Computer Games industry.

Postgraduate funding (tuition fee and living cost loan) may be available from the Student Awards Agency for Scotland for those who meet the eligibility criteria.

Why choose this course?

Our MSc Computer Games Technology is designed to equip you with the specialist skills necessary for a career in programming in the Computer Games industry - a buoyant industry estimated to contribute as much as £1.7bn to the UK economy.

Our reputation for leading-edge courses in the field of computer games is well known. During your studies, you will benefit from being part of a community of like-minded individuals within our School of Arts, Media and Computer Games. With strong industry links and the opportunity to work on real team projects, you’ll benefit from developing the skills and expertise essential to computer games companies, as well as building your own network of contacts in this exciting industry. And of course, you’ll be located in the city of Dundee – identified as a key hub of games-making activity in the UK.

Introduction

Studying one of our leading computer games courses is your first step towards a rewarding career in one of the most exciting creative industries. Abertay graduates have gone on to work for leading computer games companies including Realtime Worlds, Sony, Electronic Arts and Rockstar North, or set up their own companies.

This course is aimed at students who wish to expand and focus their existing programming skills for the development of computer games. Designed and maintained in close association with games companies, the course also will provide you with access to a range of state-of-the-art facilities.

You will leave us with the confidence and skills to work in one of the most demanding industries in the world, and at a distinct advantage over other computing graduates intending a career in the games industry.

Join our Graduate School

Our Graduate School is a dedicated facility providing support, training and professional development opportunities to our vibrant postgraduate community. Specially designed to promote integration and inculcation of interdisciplinary working in our next generation of researchers, postgraduates study and learn together at Abertay - from Environmental Management to Law, Psychology, Bioscience, Economics and Business, Cybersecurity and Computer Games Development.

When you join us as a postgraduate student or researcher, you’ll be joining a community of creative like-minded scholars and will automatically be provided with access to our dedicated study and social spaces – a forum in which you can meet, work and learn with other researchers and postgraduates from across the University. You’ll benefit from training and professional development opportunities as well as support with funding applications, placement opportunities, teaching support, public engagement and outreach activity.

Further info

Employment opportunitis exist in a variety of sectors including computer games development, graphics and visualisation, multimedia and education.

Typical job titles include games programmer, graphics programmer, and AI programmer. Opportunities also exist for graduates to become self-employed, freelance contractors or to start their own games development business.

Read less
On City's MSc in Computer Games Technology you can develop specialist technical skills for a career in the Computer Games Industry. Read more
On City's MSc in Computer Games Technology you can develop specialist technical skills for a career in the Computer Games Industry.

Who is it for?

This course is aimed at students with a passion for computer games and a strong interest in programming. It is designed for students with an undergraduate degree in a numerate subject with substantial computing content, or those who wish to update their skills after a time in industry as a computing professional.

Objectives

The course is designed for you to develop:
-Strong technical skills suitable for professional programming roles in the game industry.
-Specialist knowledge in computer graphics, AI, physics and audio.
-The ability to design and build game engines from scratch in industry standard languages, including C++.
-Knowledge of the games development process, including the pitch, design, and use of a game engine to build a demo.
-Experience of the planning, management and execution of a major games technology project.

Academic facilities

With over 1,300 workstations, the on-campus computer rooms provide a valuable learning resource and give an opportunity for individuals to do coursework and projects. Computers have games development software including:
-Unity3D
-Unreal
-Microsoft Visual Studio
-Microsoft XNA Game Studio
-MonoDevelop
-MonoGame
-NShader
-FMOD Studio
-FMOD Studio API
-OGRE SDK
-WildMagic Geometric Tools
-Blender
-Adobe Photoshop.

City has recently invested in a new computer lab equipped with high specification NVidia GPUs.

Through City's Interaction Lab and the Department of Computing, there is hardware that can be used for student projects, including:
-Oculus Rift VR Headset
-Emotiv Epoc EEG Headset
-Neurosky Mindwave EEG Headset
-X-Box One Kinect Sensor
-X-Box 360 Kinect Sensor
-Leap Motion (Gestural input device)
-Affectiva Q Band Galvanic Skin Response sensor
-Tobii X-60 Eye Tracker

Placements

As a postgraduate student on a Computing and Information Systems course, you will have the opportunity to complete up to six months of professional experience as part of your degree.

Our longstanding internship scheme gives you the chance to apply the knowledge and skills gained from your taught modules within a real business environment. An internship also provides you with professional development opportunities that enhance your technical skills and business knowledge.

Internships delivered by City, University of London offer an exceptional opportunity to help you stand out in the competitive IT industry job market. The structure of the course extends the period for dissertation submission to January, allowing you to work full-time for up to six months. You will be supported by our outstanding Professional Liaison Unit (PLU) should you wish to consider undertaking this route.

Teaching and learning

The teaching and learning methods we use mean that your specialist knowledge and autonomy increase as you progress through each module. Active researchers guide your progress in the areas of Games Development, Computer Graphics, Artificial Intelligence and Audio, which culminates with an individual project. This is an original piece of research conducted with academic supervision, but largely independently and, where appropriate, in collaboration with industrial partners.

Taught modules are delivered through a series of 20 hours of lectures and 10 hours of tutorials/laboratory sessions. Lectures are normally used to:

present and exemplify the concepts underpinning a particular subject;
highlight the most significant aspects of the syllabus;
indicate additional topics and resources for private study.
Tutorials help you develop the skills to apply the concepts we have covered in the lectures. We normally achieve this through practical problem solving contexts.

Laboratory sessions give you the opportunity to apply concepts and techniques using state-of-the-art software, environments and development tools. In addition, City’s online learning environment Moodle contains resources for each of the modules from lecture notes and lab materials, to coursework feedback, model answers, and an interactive discussion forum.

We expect you to study independently and complete coursework for each module. This should amount to approximately 120 hours per module if you are studying full time. Modules are assessed through written examination and coursework, where you will need to answer theoretical and practical questions to demonstrate that you can analyse and apply computer games technology methods.

The individual project is a substantial task. It is your opportunity to develop an autonomous research-related topic under the supervision of an academic member of staff. This is the moment when you can apply your learning to solve a real-world problem, designing and implementing a solution and evaluating the result. At the end of the project you submit a substantial MSc project report, which becomes the mode of assessment for this part of the programme.

Modules

The programme is composed of eight taught modules and a final project.

The eight modules provide you with a firm grounding in computer games technology, including mathematics, programming, and game engines and architecture along with specialist topics in computer graphics, physics, AI, and audio.

The project component gives you an opportunity to carry out an extended piece of work under the supervision of one of our specialist academic and research staff, at the cutting edge of games technology, in an industrial or academic context.

Core Modules - there are eight Core Modules.
-Games development process
-Computer game architectures
-Computer graphics
-Game Physics and Artificial Intelligence
-Digital Signal Processing and Audio Programming
-Programming in C++
-Systems Specification
-Research, Methods and Professional Issues

Career prospects

Graduates are equipped with advanced knowledge and skills in a range of topics in games technology in preparation for a career in computer games development.

Alumni of the course are working in companies including Rockstar, Sony Computer Entertainment, Electronic Arts, and Codemasters, as well as start-ups and independent studios.

City has a dedicated incubation space, called the Hangout, located in the heart of Tech City that is specially designed for student entrepreneurs from City, University of London who want to get their idea off the ground.

Professional roles include:
-3D Graphics Programmer
-Audio Programmer
-Physics Programmer
-Artificial Intelligence Programmer
-Simulation and Game Engine Programmer
-User Interface Programmer
-Tools and Utility Programmer
-Scripting Languages Programmer
-Networking Specialist
-Porting Programmer

Read less
Take your computer game development skills to the next level. Study, plan, produce and test games in our specialist studios. Working alongside students from our Computer Games Development Art course, you’ll gain experience in multi-disciplinary working and create an advanced portfolio. Read more
Take your computer game development skills to the next level. Study, plan, produce and test games in our specialist studios. Working alongside students from our Computer Games Development Art course, you’ll gain experience in multi-disciplinary working and create an advanced portfolio.

Your course will have a new home in Compass House, which will extend our campus along East Road. You’ll have the latest technology at your fingertips and be able to collaborate with other students on innovative projects to hone your skills.

The UK video games industry is worth £3.78 billion and there’s currently a recognised skills shortage of skilled games designers. If you have a first degree in computer science or a similar technical degree, our course will give you the skills to confidently create advanced level games.

Based in Cambridge, the heart of the UK’s games development industry, you’ll work in our Computer Game Development studio and hub, where you’ll create games both on your own and in teams, and gain the technical design skills to publish successfully across a range of platforms.

As well as furthering your development skills, you’ll also focus on games programming and tailor your research project so that you can concentrate on developing skills in an area that you’re passionate about.

We constantly focus on entrepreneurial opportunities, and sharing modules with our MA Computer Games Development (Art) means you’ll work with different strands of the games industry and meet and build your contacts ready for your career. Everything you design will also build into a valuable portfolio to help you secure your dream job when you graduate.

See the website http://www.anglia.ac.uk/study/postgraduate/computer-games-development-computing

Careers

It can take up to three years to create a game, all the way from initial concept to the finished product. One game can involve up to 200 professionals working as a team.

As a game developer, you could design the visual styling as well as how it plays. You could be involved with animating characters and objects, creating audio, programming, testing and producing.

Besides working in the leisure/entertainment sector, you could use your skills to develop ‘serious’ games. These are used in rehabilitation, education and training, defence, science, health, city planning and engineering.

You could also go into a career in marketing, teaching or general technology.

You’re also in the perfect position to continue your academic career and move up to our Computer Science PhD.

Modules & Assessment

Core modules:
• Games Programming
• Portfolio
• Games Development 1
• Games Development 2
• Research Methods
• Major Project

Assessment

We’ll ensure you’re on track through a combination of written and practical work, both as an individual and as team activities.

Where you'll study

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Visit your faculty - http://www.anglia.ac.uk/science-and-technology

Where can I study?

Cambridge - Our campus is close to the centre of Cambridge, often described as the perfect student city.
http://www.anglia.ac.uk/student-life/life-on-campus/cambridge-campus

Specialist facilities

You’ll spend plenty of time in our Games Development Studio, which simulates a commercial working studio and features up-to-date hardware and software. We currently have a range of industry standard software including Unity 3D, Unreal Engine 4, Maya, 3ds Max, Microsoft Visual Studio and Photoshop, as well as GameMaker, 3DGameStudio, Adobe Flash and Action Script, Microsoft XNA Game Studio, GIMP, Blender, Fusion, and Audacity.

Read less
Meeting industry demand for games designers with a combination of creative flair and technical skill, this degree offers the opportunity to develop, innovate and explore your own games design ideas while gaining essential professional skills. Read more

Meeting industry demand for games designers with a combination of creative flair and technical skill, this degree offers the opportunity to develop, innovate and explore your own games design ideas while gaining essential professional skills.

Introducing your course

Based within an art school rather than a computer science or technology department, this course encourages a creative approach to games design alongside the development of technical skills – a combination that is sought after by the games industry. You’ll learn to create graphic assets and develop your own games using a variety of tools and programming skills. You’ll also gain a comprehensive understanding of current issues in games design, and the essential business and marketing skills to help you advance your career or take forward your own business venture. The course is taught by active researchers with professional experience and specialist expertise in expanding fields such as serious games (the use of gaming in areas such as health, education and business). They work with colleagues from the University’s world-renowned computer science team through the interdisciplinary Games Design Hub, and bring the latest research findings to your learning. Lectures and workshops with top professionals and visits to game companies will give you insights into today’s sector and help you grow your networks.

Overview

This course is ideal for graduates with an art or design background who want to pursue a career in games design and related industries. It requires some prior knowledge of programming and design software packages.

Career Opportunities

The MA Games Design and Art will provide you with a combination of creative, technical and business skills that will be attractive to potential employers. You’ll be in a good position to find a job in games development, in roles such as programmer, concept artist, developer or games animator. You’ll also have the skills to take forward your own business venture.



Read less
Serious games and virtual reality represent a large, and actively growing, industry – the application of modern games technology in a wide range of areas around medicine, training, education, security and beyond. Read more
Serious games and virtual reality represent a large, and actively growing, industry – the application of modern games technology in a wide range of areas around medicine, training, education, security and beyond. While educational games already represent a multi-billion dollar global industry, the recent growth in virtual reality has seen predictions that this market will grow to $150 billion dollars by 2020 (Techcrunch, April 6, 2015).

The MSc provides students with the skills to become a key part of this explosive growth, and potential to become key innovators in this exciting and rapidly developing area. The MSc offers students with prior programming/scripting experience the transferable skills to design, develop and analyse games and simulations for a range of application areas and to conduct interdisciplinary research in the serious applications of games technology, particularly in healthcare, education and training.

As Virtual Reality and interaction technologies approach mainstream adoption, new opportunities for the application of immersive games technologies in engineering, medicine and in the home are putting games at the forefront of innovation worldwide.

At the School of Simulation and Visualisation we already have years of experience working on a wide range of serious games based projects for industrial, medical, heritage and education clients, building on our research and our expertise in 3D modeling and animation, motion capture technology and software development. We are pleased to be able to share our experience and expertise with this MSc.

Programme Structure:

Stage 1

Core Research Skills for Postgraduates
Games Programming
Serious Game Design and Research
School of Simulation and Visualisation Elective: Choose one from
Interactive Heritage Visualisation
Applications in Medical Visualisation

Stage 2

Motion Capture & Interaction
Audio for games & interactive applications
Serious Games Development
GSA Elective
Stage 3

MSc Research Project
Part time study is also available. Please see the Part Time Study Guide for more information.

Entry Qualifications:

You should have a Honours degree or equivalent professional practice in any of the following disciplines:

Computer science, computer graphics, computer programming, software development, mathematics, or physics
Computer games programming, game development, game design, game art, 3D modeling and animation, interactive systems
High calibre graduates from other disciplines may be considered if they are able to demonstrate an interest and ability in the field of serious games development.

IELTS 6.0 for overseas applicants for whom English is not their first language.

Scholarships and Funded Places:

Information on career development loans and financial support can be found in the fees and funding pages.

Read less
The Computer Animation Master’s programme at Kent is oriented towards current industrial needs, technology and practice. It is designed to be a direct route into this high-profile, modern and creative industry, and has been developed jointly by the School and our industrial partner Framestore CFC. Read more
The Computer Animation Master’s programme at Kent is oriented towards current industrial needs, technology and practice. It is designed to be a direct route into this high-profile, modern and creative industry, and has been developed jointly by the School and our industrial partner Framestore CFC.

Develop your knowledge and understanding of the animation process, software tools, techniques and packages, and the technical aspects of working in a professional animation environment. The MSc programme offers invaluable experience of working to professional briefs and under expert supervision of professional animators to prepare you for a career in industry.

Competition is fierce in animation and visual effects and success depends on your concentration levels, constant practise and ability to grasp the essence and modern techniques of animation. Successful former students are now working in animation and animation layout roles for companies such as Sony Games and Framestore CFC on major titles in games, television and film.

Visit the website https://www.kent.ac.uk/courses/postgraduate/248/computer-animation

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts successfully combines modern engineering and technology with the exciting field of digital media. The School, which was established over 40 years ago, has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. We have a thriving student population studying for postgraduate degrees in a friendly, supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Course structure

This intensively taught postgraduate course lasts a full year. It takes place in a dedicated computer laboratory where you have your own seat and computer for the duration of the course. The course lectures and workshops, whether led by visiting professionals or staff, are all held in this room. Demonstrations and showing of films are by means of an HD projector. By the end of the year, the lab will be where you live as much as your accommodation.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL831 - Digital Visual Art set-up (15 credits)
EL832 - Animation Principles (15 credits)
EL833 - Visual Training (15 credits)
EL837 - Professional Group Work (15 credits)
EL863 - Advanced 3D Modelling (15 credits)
EL864 - Pre-Visualisation (15 credits)
EL865 - Action in Animation (15 credits)
EL866 - Acting in Animation (15 credits)
EL830 - Computer Animation Project (60 credits)

Assessment

Each module is assessed by practical assignments. The project work is assessed on the outcome of the project itself.

Programme aims

This programme aims to:

- enable you to develop your knowledge and understanding within the field of 3D computer animation, which will equip you to become a professional in the animation and visual effects industry

- produce professionally-trained animators who are highly skilled in using state-of-the-art 3D animation software for producing animated films

- provide you with proper academic guidance and welfare support

- create an atmosphere of co-operation and partnership between staff and students, and offer you an environment where you can develop your potential

- strengthen and expand opportunities for industrial collaboration with the School of Engineering and Digital Arts.

Research areas

- Intelligent Interactions

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

Careers

We have developed the programme with a number of industrial organisations, which means that successful students will be in a strong position to build a long-term career in this important discipline.

The School of Engineering and Digital Arts (http://www.eda.kent.ac.uk/) has an excellent record of student employability (http://www.eda.kent.ac.uk/school/employability.aspx). We are committed to enhancing the employability of all our students, to equip you with the skills and knowledge to succeed in a competitive, fast-moving, knowledge-based economy.

Graduates who can show that they have developed transferable skills and valuable experience are better prepared to start their careers and are more attractive to potential employers.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Computer Systems Engineering is a well-established branch of Computer Science, closely related to Electrical Engineering, and concerned with software-hardware integration and the development of high-performance and energy-efficient embedded systems, for example as used in mobile computing. Read more

Computer Systems Engineering is a well-established branch of Computer Science, closely related to Electrical Engineering, and concerned with software-hardware integration and the development of high-performance and energy-efficient embedded systems, for example as used in mobile computing. Aspects covered include questions such as how software can be designed to make use of new, ever more powerful (and often multicore) hardware, or how hardware can be designed to support certain software paradigms. The School of Computer Science is home to internationally renowned research groups working on these challenging tasks, and students following the Computer Systems Engineering pathway will have the opportunity to profit from their understanding of current technology and visions of how to exploit, for example, the formidable complexity of the billion transistor microchips that semiconductor technology will make commonplace over the next decade.

This pathway combines two themes, namely the Parallel Computing in the Mulit-core Era theme and the Mobile Computing theme. The former provides the student with techniques and tools to successfully develop concurrent multicore systems, while alleviating problems of correctness, reliability, performance and system management. The latter provides the student with an understanding of the current state of the art in computing to support mobility for telecommunications.

Teaching and learning

Computational thinking is becoming increasingly pervasive and is informing our understanding of phenomena across a range of areas; from engineering and physical sciences, to business and society. This is reflected in the way the Manchester course is taught, with students able to choose from an extremely broad range of units that not only cover core computer science topics, but that draw on our interdisciplinary research strengths in areas such as Medical and Health Sciences, Life Sciences and Humanities.

Coursework and assessment

Lectures and seminars are supported by practical exercises that impart skills as well as knowledge. These skills are augmented through an MSc project that enables students to put into practice the techniques they have been taught throughout the course.

Facilities

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The MSc in Advanced Computer Science has an excellent record of employment for its graduates. Opportunities exist in fields as diverse as finance, films and games, pharmaceuticals, healthcare, consumer products, and public services - virtually all areas of business and society. Manchester Computer Science MSc courses are considered among the best in the country and our graduates are actively targeted for the very top jobs in industry and academia.

We maintain close relationships with potential employers and run various activities throughout the year, including career fairs, guest lectures, and projects run jointly with partners from industry. This is managed by our Employability Tutor; see the School of Computer Science's employability pages for more information.

Accrediting organisations

This programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with CEng accredited Bachelors programme.



Read less
The aim of this course is to provide students with a state-of-the-art collection of knowledge, understanding, and skills in the area of Advanced Computer Science. Read more

The aim of this course is to provide students with a state-of-the-art collection of knowledge, understanding, and skills in the area of Advanced Computer Science. This collection aims to be of particular depth so as to provide the student with the relevant knowledge, understanding, and skills to prepare them for a career in Computer Science research. It is designed for students with a good first degree in Computer Science or related areas who wish to deepen their understanding, knowledge, and skills, and aim at a research career in either Industry or Academia.

A student following this course chooses two themes, each consisting of a conceptually coherent set of two course units of 15 credits each, and they take three course units out of these. In addition, they follow three Research Seminars COMP80122, COMP80131, COMP80142 of 5 credits each. This will provide students with the necessary knowledge and skills in Research methodology, ethics and professional issues, as well as communication and presentation skills. As part of COMP80122, students actively participate in the school's annual research symposium, held in reading week between Period 1 and 2.

Teaching and learning

We use a variety of teaching forms, from face-to-face lectures via supervised and unsupervised labs, to self-study elements and supervised projects. Where appropriate, we use blended learning and enquiry based learning.

All our taught course units use coursework as a part of fomative assessment, to deepen and assess both knowledge and understanding and to teach and assess relevant skills.

Coursework and assessment

Course units are assessed through coursework (50%) and end-of-semester examination (50%). However, flexibility is allowed in the delivery and assessment, allowing methods appropriate for each subject. If a course unit's specific features require it for assessments through 66% coursework and 34% exam, or other distributions.

Further information is available at http://intranet.cs.man.ac.uk/intranet_subweb/postgrad

Course unit details

A student following this programme chooses two themes, each consisting of a conceptually coherent set of two course units of 15 credits each, and they take three course units out of these. In addition, they follow three Research Seminars COMP80122, COMP80131, COMP80142 of 5 credits each. This will provide students with the necessary knowledge and skills in Research methodology, ethics and professional issues, as well as communication and presentation skills. As part of COMP80122, students actively participate in the school's annual research symposium, held in reading week between Period 1 and 2.

This makes up the 60 credits taught part of the course.

The MRes research project is worth 120 credits and consists of the following parts: a taster project (10 credits) plus the research project (110 credits), which can but do not have to be related to the same subject and supervised by the same supervisor. The taster project is assessed via a short report. The research project is assessed in two parts, through the Project Progress Report (30 credits) and the Dissertation (80 credits).

A student who chooses two themes that belong to a given pathway, and whose project is in an area suitable for this pathway (which is determined by the examiners) can choose to graduate with an MRes in Advanced Computer Science with a specialisation in an available themes in their course options.

Facilities

  • Newly refurbished computing labs furnished with modern desktop computers
  • Access to world leading academic staff
  • Collaborative working labs complete with specialist computing and audio visual equipment to support group working.
  • Over 300 Computers in the School dedicated exclusively for the use of our students.
  • An Advanced Interfaces Laboratory to explore real time collaborative working;
  • Nanotechnology Centre for the fabrication of new generation electronic devices;
  • An e-Science Centre and Access Grid facility for world wide collaboration over the internet.
  • Access to a range of Integrated Development Environments (IDEs)
  • Specialist electronic system design and computer engineering tools.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Our Advanced Computer Science courses have an excellent record of employment for its graduates. Opportunities exist in fields as diverse as finance, films and games, pharmaceuticals, healthcare, consumer products, and public services - virtually all areas of business and society. Manchester Advanced Computer Science courses are considered among the best in the country and our graduates are actively targeted for the very top jobs in industry and academia.

The MRes in Advanced Computer Science particularly focuses students to explore further study at research level, or to careers in industrial or academic research and development.

We maintain close relationships with potential employers and run various activities throughout the year, including career fairs, guest lectures, and projects run jointly with partners from industry. This is managed by our Employability Tutor; see the School of Computer Science's employability pages for more information.



Read less
Vision is the most useful sense we possess and as such accounts for about 30% of the sensing processing of the brain. Read more
Vision is the most useful sense we possess and as such accounts for about 30% of the sensing processing of the brain. The automation of visual processing (ie computer vision) has many applications in the modern world including medical imaging for better diagnosis, surveillance systems to improve security and safety, industrial and domestic robotics plus advanced interfaces for computer games, mobile phones and human-computer interfaces. The possibilities are only limited by our imagination.

Key features
-The unique combination of computer vision and embedded systems skills is highly desirable in state-of-the-art industrial applications.
-This course is accredited by BCS, The Chartered Institute for IT.
-You will have the opportunity to work on your project dissertation in the internationally recognised Digital Imaging Research Centre with groups on visual surveillance, human body motion, medical imaging and robotics and being involved in national and international projects or in collaboration with our industrial contacts.

What will you study?

The Embedded Systems (Computer Vision) pathway will equip you with the knowledge and skills required to specify and build computer vision embedded systems, choosing from different imaging devices and applying software that can process and understand images. You will study a range of option modules encompassing computing, engineering and digital media processing. It may also be possible for you to undertake a real-world project in an industrial placement or as part of high-quality research working alongside DIRC (Digital Imaging Research Centre) groups (eg visual surveillance, human body motion analysis, robotics, medical imaging).

The Embedded Systems (Computer Vision) MSc course can be combined with Management Studies enabling you to develop business and management skills so you can work effectively with business managers to develop innovative and imaginative ways to exploit computer vision and embedded systems for business advantage. This is a key skill for employability, particularly as organisations in the public, private and voluntary sectors grapple with austerity.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Embedded Systems (Computer Vision) MSc modules
-Digital Signal Processing
-Real-time Programming
-Artificial Vision Systems
-Project Dissertation
-One option module

Embedded Systems (Computer Vision) with Management Studies MSc modules
-Digital Signal Processing
-Real-time Programming
-Artificial Vision Systems
-Business in Practice
-Project Dissertation

Read less
This is a technically oriented course for programmers interested in the technology of games. It is suitable for people seeking employment in programming roles within the games industry. Read more

This is a technically oriented course for programmers interested in the technology of games. It is suitable for people seeking employment in programming roles within the games industry.

The course focuses on the implementation of real-time 3D applications using the C++ programming language in order to develop your understanding of 3D rendering and shader programming techniques.

You also study low-level hardware architectures for optimisation, including the novel architectures of games consoles and how to exploit them. We teach you project management techniques, including the stages of game production and the structure and operation of the games industry.

This course benefits from strong industry links with companies like Sony Computer Entertainment and Sumo Digital and industry accreditation from Creative Skillset and PlayStation®First. The lecturers have many decades of commercial games industry experience between them and share a passion for developing the next generation of talent.

PlayStation®First

This course is part of the PlayStation®First Academic Partnership Programme offered by Sony Computer Entertainment Europe (SCEE) and has been awarded PlayStation®First status by fostering best practise in game related development skills across PlayStation® platforms. The programme provides unique access to PlayStation® professional development hardware (dev kits) and software (SDK) to equip students with industry relevant game development skills across PlayStation®4, PlayStation®3, PlayStation®Vita and PlayStation®Portable.

The Steel Minions

Sheffield Hallam University has its own commercially-licensed game studio which provides workplace simulation to students on the University's games degrees. It was the first university studio in the UK to release its own PlayStation® title and has a range of PlayStation, iOS and Android games in development.

Professional recognition

This course is accredited by Creative Skillset (the Creative Industries' Sector Skills Council) and TIGA (The Independent Game Developers Association).

Course structure

Postgraduate certificate modules

  • C++ boot camp
  • Graphics and animation
  • Hardware-oriented software engineering
  • Software studio planning

Postgraduate diploma modules

  • Special techniques for graphics and animation
  • Game development practice
  • Multi-processing and parallel technologies

MSc modules

  • Research methods
  • Individual project

Assessment

  • PgCert – continuous assessment
  • PgDip – continuous assessment involving a large group-based industrial project
  • MSc – 25% continuous assessment and 75% individual research project

Employability

Good games software graduates are in high demand, and our course has been developed to meet the needs of the booming entertainment software industry.

We actively support your collaboration with external companies on your practical software development projects. This gives you real experience while learning and could lead directly to you gaining a job with one of these companies.



Read less
Vision is the most useful sense we possess and as such accounts for about 30% of the sensing processing of the brain. Read more
Vision is the most useful sense we possess and as such accounts for about 30% of the sensing processing of the brain. The automation of visual processing (ie computer vision) has many applications in the modern world including medical imaging for better diagnosis, surveillance systems to improve security and safety, industrial and domestic robotics plus advanced interfaces for computer games, mobile phones and human-computer interfaces. The possibilities are only limited by our imagination.

Key features
-The unique combination of computer vision and embedded systems skills is highly desirable in state-of-the-art industrial applications.
-This course is accredited by BCS, The Chartered Institute for IT.
-You will have the opportunity to work on your project dissertation in the internationally recognised Digital Imaging Research Centre with groups on visual surveillance, human body motion, medical imaging and robotics and being involved in national and international projects or in collaboration with our industrial contacts.

What will you study?

The Embedded Systems (Computer Vision) pathway will equip you with the knowledge and skills required to specify and build computer vision embedded systems, choosing from different imaging devices and applying software that can process and understand images. You will study a range of option modules encompassing computing, engineering and digital media processing. It may also be possible for you to undertake a real-world project in an industrial placement or as part of high-quality research working alongside DIRC (Digital Imaging Research Centre) groups (eg visual surveillance, human body motion analysis, robotics, medical imaging).
The Embedded Systems (Computer Vision) MSc course can be combined with Management Studies enabling you to develop business and management skills so you can work effectively with business managers to develop innovative and imaginative ways to exploit computer vision and embedded systems for business advantage. This is a key skill for employability, particularly as organisations in the public, private and voluntary sectors grapple with austerity.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Embedded Systems (Computer Vision) MSc modules
-Digital Signal Processing
-Real-time Programming
-Artificial Vision Systems
-Project Dissertation
-One option module

Read less
This course takes an immersive approach to learning both the principles and practices of computer systems with much of the material based around examples and practical exercises. Read more
This course takes an immersive approach to learning both the principles and practices of computer systems with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in computer systems and will be able to design and build for example, distributed systems for the Web using Internet, Intranet and other technologies.

Programme Objectives
To provide the foundations for understanding of core ideas, methods and technologies in computer science.
To provide the technical skills and background material so that the postgraduate will be able to conduct a near state-of-the-art research or development project;
To provide the graduate with a range of specialist and transferable skills;
To provide the educational base for further professional development and lifelong learning.
Course Topics
Data networks and communications, project foundations and management tools, broadband communication systems, technologies for Internet systems, agent technologies and Artificial Intelligence, introduction to distributed systems and mobile systems, project and dissertation.

Taught Modules:

Java programming: This module provides students with an in-depth understanding of current and emerging Java programming concepts and programming variations. The module teaches the basic and advanced structures of Java and makes use of the object-oriented approach to software implementation. It also gives an in-depth understanding of advanced Java concepts in the area of user interfaces and will enable students to apply the theoretical knowledge of the Java language onto a test-case software development scenario.

Introduction to distributed systems: This module will introduce key ideas in distributed Systems and its role and application in operating systems and middleware. On completion of this module students will have an understanding of the key issues for distributed systems at OS level or as middleware, they will understand core concepts of concurrency, be able to program multithreaded and distributed applications and understand the issues and use of algorithms for transactional systems.

Data networks and communications: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to understand in detail the process required to provide an end-to-end connection.

Technologies for Internet Systems: In this module, students will be introduced to state of the art technologies and tools for Internet Systems and in particular e-commerce systems.

Agent Technologies: This module provides an in-depth understanding of technologies from Artificial Intelligence research such as machine learning, data mining, information retrieval, natural language processing, and evolutionary programming. It will look at the application of agent-oriented technologies for Artificial Life, for building Web search engines, for use in computer games and in film (such as the MASSIVE software developed for the Lord of the Rings movies), and for robotics. It will also provide an introduction to agent-oriented programming using the NetLogo programming language.

Foundations of computer graphics: This module will teach techniques, algorithms and representations for modelling computer graphics and enable students to code 2D and 3D objects and animations.

Database systems: Students completing this module will gain an in depth understanding of DBMS/Distributed DBMS architecture, functionality, recovery and data storage techniques. Students will also have a full understanding of how queries are processed and the importance of database maintenance. This module is designed to enable students to perform research into one or two areas of databases; for example, object oriented databases and deductive databases.

Project foundations and management tools: This module prepares students for their MSc research project, including reference search and survey preparation and familiarisation with project management tools.

MSc Research project: After the successful completion of the taught component of the MSc programme, students will spend the remainder of the time undertaking a research project and producing an MSc Dissertation. During this process, students will conduct project work at state-of-the-art research level and to present this work as a written dissertation. Completing a project and dissertation at this level will train students in: problem solving; researching new topics; organizing knowledge; exercising elementary time and project management skills; reporting and writing skills.

Read less
Gain specialist insight into the technology behind digital entertainment. Become immersed in everything from computer animation to visual effects and games. Read more

Gain specialist insight into the technology behind digital entertainment. Become immersed in everything from computer animation to visual effects and games.

You will study a range of modules including computer graphics and visual effects, and computer vision.

You’ll explore different approaches for creating visual effects and the relationship between the segmentation, classification and identification of images and video.

You’ll learn about modern visual effects tools, programming techniques and physics-based animation, and have the opportunity to apply them and to adapt algorithms to typical problems in an advanced visual effects R&D environment.

This course is for you if you’ve gained mathematics or computer science skills in your first degree and are interested in the technology behind computer games and other digital entertainment.

The course will give you the opportunity to undertake research in our leading centres, including the highly regarded Centre for Digital Entertainment. Our facilities also include the £5 million Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA).

You’ll complete your course with the knowledge and transferable skills to prepare you for a career in the visual effects, computer animation and computer games industries. You’ll gain an understanding of the how to put together a project from scratch, rather than simply use commercial packages, so that your career can take you to a senior position more quickly.

As we involve our industry partners throughout your course, you’ll receive help in getting your CV to our partner companies. When you graduate, you will have already started to build your own industry network.

Recent graduates have gone on to work with companies such as Imagination Technologies, Electronic Arts and Nokia.

Watch a short video on our new Centre for the Analysis of Motion, Entertainment Research & Applications (CAMERA) (https://vimeo.com/133344283).

You can either study the MSc full-time, for one year, or take an optional professional placement and complete the course in two years. The placement offers paid, practical experience in an industrial or commercial environment. Here you’ll have the chance to apply the knowledge and skills you have gained so far, improving your understanding of digital entertainment in practice as you look to build a successful career in this field.

Visit the Department of Computer Science (http://www.bath.ac.uk/comp-sci/) for further information on the department.

Why study Digital Entertainment at Bath?

The programme exists in partnership with our highly regarded Centre for Digital Entertainment, the UK’s premier doctoral training centre for the digital entertainment sector. With established experience in training for this economically important sector, we’ve been able to develop the MSc with 35 of our most innovative partner companies (for example Double Negative Visual Effects, EA Games, Disney Research), as well as existing students.

The MSc in Digital Entertainment is designed to equip you with a wide range of specialist knowledge and transferable skills, so that you can build a successful career within any number of areas in digital entertainment. We involve industry partners in the provision of our course to ensure we provide relevant, timely and current experience to improve your career prospects.

During your studies you’ll also have the chance to study alongside our doctoral students, and enhance your knowledge and understanding with specialist classes taught by company experts.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/msc-digital-entertainment/

Career opportunities

The MSc in Digital Entertainment will equip students with the knowledge and transferable skills for a career in the Visual Effects, Computer Animation and Computer Games industries. It provides a solid understanding across all of these sectors, narrowing down over the year to the part that interests you most. It explains how it is done, rather than how to use commercial packages, so that your career can take you to a senior position more quickly. We involve our industry partners, to make sure you are getting the right kind of experience.

At graduation you will have the breadth which all of these industries require but the deeper specialised knowledge and ability to think for yourself which lead to a high-end career. We can help you get your CV to our supporter companies and you will have already started to build your own industry network during the year.

The Department has active collaborations with academics in leading universities in Europe, Australasia, the USA and Japan. Strong links with industry, e.g. HP labs, Airbus, Qinetiq, Westland, Toshiba and Vodafone.

Find out more about the department here - http://www.bath.ac.uk/comp-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less

Show 10 15 30 per page



Cookie Policy    X