• University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
De Montfort University Featured Masters Courses
Cardiff University Featured Masters Courses
University of Leeds Featured Masters Courses
Southampton Solent University Featured Masters Courses
Aberdeen University Featured Masters Courses
"computer" AND "engineeri…×
0 miles

Masters Degrees (Computer Engineering)

  • "computer" AND "engineering" ×
  • clear all
Showing 1 to 15 of 1,645
Order by 
The master of science degree in computer engineering provides students with a high level of specialized knowledge in computer engineering, strengthening… Read more

Program overview

The master of science degree in computer engineering provides students with a high level of specialized knowledge in computer engineering, strengthening their ability to successfully formulate solutions to current technical problems, and offers a significant independent learning experience in preparation for further graduate study or for continuing professional development at the leading edge of the discipline. The program accommodates applicants with undergraduate degrees in computer engineering or related programs such as electrical engineering or computer science. (Some additional bridge courses may be required for applicants from undergraduate degrees outside of computer engineering).

Plan of study

The degree requires 30 semester credit hours and includes Analytical Topics in Computer Engineering (CMPE-610), two core courses, four graduate electives, two semesters of graduate seminar, and the option of completing either a thesis research or a graduate project. The core courses and graduate electives provide breadth and depth of knowledge. The Computer Engineering Graduate Seminar (CMPE-795) provides students with exposure to a variety of topics presented by researchers from within RIT, industry, and other universities, and guides students to choose either a thesis or project as their culminating experience. The Project/Thesis Initiation Seminar (CMPE-796) guides students to complete their thesis proposal or project execution plan with their faculty adviser.

Students who pursue the thesis option complete nine semester credit hours of thesis research (CMPE-790) to conduct research with a faculty adviser to answer a fundamental science/engineering question that contributes to new knowledge in the field. Students are expected to formulate the problem under the faculty adviser's guidance and conduct extensive quantitative or qualitative analyses with sound methodology. Research findings should be repeatable and generalizable, with sufficient quality to make them publishable in technical conferences and/or journals. Students who pursue the project option take six semester credits of graduate electives directly related to their project deliverables and three semester credits of Graduate Project (CMPE-792) to professionally execute a project under the supervision of a faculty adviser. The project generally addresses an immediate and practical problem, a scholarly undertaking that can have tangible outcomes, where students are expected to give a presentation or demonstration of the final deliverables of the project.

Research tracks/Graduate electives

Students may select four graduate electives from within the following research tracks. Students are encouraged to choose most of their graduate electives within a single research track. At least two of the electives must be from the computer engineering department (computer engineering department courses begin with the prefix CMPE). Courses outside the lists below may be considered with approval from the department of computer engineering. Research tracks are available in the following areas (see website for research track details):
-Computer architecture
-Computer vision and machine intelligence
-Integrated circuits and systems
-Networks and security
-Signal processing, control and embedded systems
-Additional graduate-level math courses

Curriculum

Thesis and project options differ in course sequence, see website for a particular option's module information.

Other admission requirements

-Submit official transcripts (in English) from all previously completed undergraduate and graduate course work.
-Have an GPA of 3.0 or higher.
-Submit scores from the Graduate Record Exam (GRE).
-Submit two letters of reference from individuals well qualified to judge the candidate's ability for graduate study, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) or International English Language Testing System (IELTS).

Read less
UA’s Department of Electrical and Computer Engineering offers dynamic programs for students interested in a traditional electrical engineering degree or those who desire a specialization in computer engineering. Read more
UA’s Department of Electrical and Computer Engineering offers dynamic programs for students interested in a traditional electrical engineering degree or those who desire a specialization in computer engineering.

MISSION

UA’s Department of Electrical and Computer Engineering will

- provide high-quality and broad-based undergraduate and graduate education in electrical and computer engineering
- conduct high-quality research programs that will advance the state of knowledge
- contribute to the engineering profession and to society through service activities

Visit the website http://ece.eng.ua.edu/graduate/ms-program/

Master of Science–Thesis Option (PLAN I):

30 Credit Hours
A minimum of 24 credit hours of coursework is required. Constraints on these 24 hours shall include:
- A minimum of 12 hours of closely related Electrical and Computer Engineering (ECE) designated courses in the student’s area of concentration, as defined by the advisory committee.

- A minimum of 9 hours of courses in an elective area approved by the advisory committee.

- A minimum of 3 hours of Mathematics (MATH or GES) or Science (Physics, Chemistry, or Biology) courses at the 500 level or above.

- No more than 6 hours may be from courses at the 400 level. In order to receive degree credit, 400-level courses require written application and approval by the Graduate School (http://graduate.ua.edu/) prior to the semester in which any 400-level course is to be takentaken.

A minimum of 6 hours of thesis research (ECE 599) is required.

A student’s curriculum and thesis must be approved by the student’s graduate advisory committee. The student must pass a final comprehensive examination, which is typically a presentation and defense of the thesis. In addition, the student must satisfy all University requirements defined in the current edition of The University of Alabama Graduate Catalog (http://graduate.ua.edu/catalog/index.html).

[[Master of Science–Non-Thesis Option (PLAN II):]
30 Credit Hours
A minimum of 30 credit hours of coursework is required. Constraints on these 30 hours shall include:
- A minimum of 15 hours of closely related Electrical and Computer Engineering (ECE) designated courses in the student’s area of concentration, as defined by the advisory committee.

- A minimum of 12 hours of courses in an elective area approved by the advisory committee.

- A minimum of 3 hours of Mathematics (MATH or GES) or Science (Physics, Chemistry, or Biology) courses at the 500 level or above.

- No more than six (6) hours may be courses at the 400 level. In order to receive degree credit, 400-level courses require written application and approval by the Graduate School prior to the semester in which any 400-level course is to be taken taken.

A student’s curriculum must be approved by the student’s graduate advisory committee. The graduate advisory committee must also approve the submission of a manuscript, authored or co-authored by the candidate, to a refereed journal or conference proceeding. This publication submission shall constitute The University of Alabama Graduate School culminating experience requirement for an MS Plan II degree in electrical and computer engineering.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
This MSc provides advanced training and enhances your skills in the specialised area of electronics, communications and computer engineering. Read more

A UK degree in China

This MSc provides advanced training and enhances your skills in the specialised area of electronics, communications and computer engineering.

The course aims to provide you with a comprehensive coverage of the skills required by an engineer working in instrumentation, electronic systems, wireless and wired telecommunications, computer hardware, and software aspects of computer engineering.

The programme provides an excellent basis for engineers wishing to update their knowledge, students who wish to embark a career in advance research and development, or for students wishing to enhance their training and qualifications.

After completing the taught components of the course, you will undertake an industrial internship placement with the major industry players in the field of electronics, communications and computer engineering. Subsequently, with knowledge/skills gained through industrial internship period, you will proceed with highly industry-oriented research project supervised by our expert members of faculty staffs.

This course operates on a modular basis and consists of a series of taught modules (worth 120 credits), followed by 6 months of non-credit bearing industrial internship. During the industrial internship, you will explore your interest in a specific research topic/project dissertation which will be beginning right after your industrial placement. The project dissertation will be 60-credit worth, and will begin in the following spring period.

You will be taught using the latest advances in teaching methods and electronic resources, as well as small-group and individual tutorial.

Tutors provide feedback on assignments. Our objective is to help you develop the confidence to work as a professional academic, at ease with the conventions of the discipline, and ready to tackle any area of research in electronic communications and computer engineering.

Core Modules

Instrumentation and Measurement
Engineering Ultrasonics
Optical Communications and Networks
HDL for Programmable Logic
Applied Computational Engineering
Integrated Photonics: Design and Technology
Control Systems Design
Electronic Design
Solid State Devices
Digital Communications
Power Electronic Design
Embedded Computing
Digital Signal Processing for Telecommunication Multimedia and Instrumentation
RF Microelectronics
Mobile Communications
VLSI Design
Telecommunication Electronics
Web Based Computing
Optical Communications
Applied Computational Engineering

Read less
The URV-UOC online Master's Degree in Computer Engineering and Mathematics (ECiM) offers interdisciplinary training in the areas of engineering and applied sciences. Read more
The URV-UOC online Master's Degree in Computer Engineering and Mathematics (ECiM) offers interdisciplinary training in the areas of engineering and applied sciences. The ECiM programme includes cutting-edge topics such as computer modelling and simulation, numerical methods, parallel and distributed computing, knowledge representation, networks and graphs, and applied optimisation. The aim of the degree is to prepare students for R&D positions in industry, research centres and universities. It is intended for graduates with various scientific and technical qualifications (computer engineering, mathematics, telecommunications engineering, industrial engineering, statistics, physics, etc.).

Students must complete a total of 60 ECTS credits, distributed as follows: 17 for compulsory subjects, 25 for optional subjects and 18 for the master's thesis. The ECiM is designed to be completed in one year (full-time students) or two years (part-time students). As the programme’s lecturers are active researchers in the fields they teach, they can help students to initiate research careers in computer engineering and mathematics.

Student Profile

This Master's Degree is aimed at candidates who previously obtained:
-Bachelor's degrees in Mathematics, Statistics, Physics and related fields.
-Bachelor's Degree in Computer Science, Telecommunications, Electronics, Industrial, Electrical, Mechanical, Aeronautical and related fields.

Career Opportunities

Gracuates in Inter-university Master's Degree in Computer Engineering and Mathematics are capable of working in:
-Research and development centres
-Companies working in the information and communication technologies
-Computing centres
-Universities

Read less
MSc. This MSc provides advanced training in Electronics, Communications and Computer Engineering. Read more
MSc:

This MSc provides advanced training in Electronics, Communications and Computer Engineering. It will give students a comprehensive coverage of the skills required by an engineer working in instrumentation, electronic systems, wireless and wired telecommunications, computer hardware, and software aspects of computer engineering.

The course provides an excellent basis for engineers wishing to update their knowledge, students who wish to go on to do research, or for first degree students wishing to enhance their training.

Students will develop:
the design, analytical and critical powers in relation to hardware and software aspects of complex electronic systems
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
the ability to communicate ideas effectively in written reports
decision making powers in relation to the specification and solution of embedded system design, system-on-chip (SoC) and electronic engineering problems for appropriate
electronic systems and computer systems

Following the successful completion of the taught modules, an individual research project is undertaken during the summer term.

Previous research projects on this course have included:
FPGA implementation of the optimized SIFT Algorithm for an image matcher
Zigbee-Based generic wireless data acquisition systems
Digital pulse position modulation for free space optical communication

Please see the school web pages for further details of the PG Dip course.

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

PGDip:

This Postgraduate Diploma provides advanced training in electronics, communications and computer engineering.

The course aims to provide you with a comprehensive coverage of the skills required by an engineer working in instrumentation, electronic systems, wireless and wired telecommunications, computer hardware, and software aspects of computer engineering.

The programme provides an excellent basis for engineers wishing to update their knowledge, or for first degree students wishing to enhance their training.

Read less
Develop a different set of skills with this new one year conversion masters course. Read more
Develop a different set of skills with this new one year conversion masters course.

Are you a keen problem-solver looking to learn new skills that can change and influence processes? Southampton Solent’s computer engineering master’s conversion degree is well-suited to students from a wide range of non-computing backgrounds, helping you to learn new skills and develop advanced theoretical and practical proficiencies to prepare for a career in the IT and computing industries.

‌•The course offers students the opportunity to build web and mobile applications.
‌•Students have access to a range of state-of-the-art labs and facilities including computing and networking laboratories.
‌•To complement their studies, students have the opportunity to take part in enhancement activities, such as industry talks, code jams, employability support, and the chance to work on live projects.
‌•Southampton Solent hosts regular British Computer Society (BCS) professional development events.
‌•Small group teaching allows for tailored support, helping students to shape the course to their own interests.
‌•The course comes to a close with students conducting their own research projects. This can be an excellent way to specialise knowledge towards desired careers, or act as a springboard for PhD study.

The industry

The UK’s IT industry is worth over £58 billion annually. With employment of IT professionals expected to grow nearly twice as fast as the UK average between now and 2020 (e-skills UK), it looks like demand for well-qualified information technology graduates is set to remain strong.

A postgraduate qualification can put you at the forefront of this demand, demonstrating your commitment to the industry and your ability to carry out in-depth computing research.
Currently there is very high demand for those with technical skills in a wide range of areas with most demand in software development, SQL databases, web scripting and Agile development. Along with this demand, careers in these areas often carry higher than average salaries.

This is echoed in reports and comments from industry:

“As a small software house, dealing with a group of international corporates, we have a regular need for graduates with strong software engineering and database skills. Given that we design systems that link to e-commerce, a good understanding of cyber security engineering is also key. Over the years we have found the pool of graduates with the required technical skills has seriously diminished, so the more technical graduates from Solent University are an important source for us.”
John Noden, Managing Director/Executive Director Technical Design, Zentive

In addition, the CBI (2015) have indicated that the skills gaps in science, technology, engineering and maths (STEM) is affecting employers and have indicated that STEM-qualified graduates are at a real advantage in the jobs market, with four out of ten employers preferring STEM graduates over other graduates.

The programme

Southampton Solent University’s computer engineering master’s conversion degree exposes students to a wide range of both existing and emerging technologies and covers areas such as coding, software development, problem solving, computing, digital and engineering.

Working with the latest technology, students on this course will also have the opportunity to learn to program robotic devices, and can learn to develop apps for Android devices. To test these apps, students have access to the University’s new device laboratory which is a special test area consisting of a range of mobile devices, allowing students to assess their website designs and apps on real equipment.

The course curriculum is developed with input from a variety of sources, including an industrial liaison panel, to ensure students are studying the latest technology and working practices employed by industry experts.

With a strong focus on employability, and to complement studies, this course offers students the opportunity to work on live briefs, events and projects with real-world companies. Regular industry speakers and events by the BCS can help students to build their professional network.

To aid study, computing students at Southampton Solent have full access to the University’s industry-standard IT, computing and networking laboratories. These labs are set up with the latest design and development software, including Adobe Creative Cloud and GNS3. Real-world networking equipment is provided by Cisco, Fluke and HP, as well as high-fidelity simulation systems, including the market-leading Opnet.

Next steps

Think a career in computing is for you? Southampton Solent’s computer engineering master’s conversion degree will help you build on your existing knowledge and develop high-level technical and project management skills to take the next step in your career. Apply today http://www.solent.ac.uk/courses/2016/postgraduate/computer-engineering-msc/course-details.aspx#tab5

Read less
The graduate programs in Electrical and Computer Engineering are designed to prepare students for a broad range of careers by providing a foundation of study in several technical areas. Read more
The graduate programs in Electrical and Computer Engineering are designed to prepare students for a broad range of careers by providing a foundation of study in several technical areas. Your course of study will be individualized to suit your interests, with intensive training in numerous specializations, such as all aspects of computer engineering, control systems, signal processing and communications, information assurance, VLSI, microelectronics, electro-optics, and power/energy.

The Master's of Science (MS) degree program prepares students for development-oriented engineering careers and/or continuation onto doctoral studies by providing a balance of advanced theory and practical engineering knowledge. The typical time for completion of the MS is 18–24 months of full-time study.

Applicant Qualifications

- Undergraduate major in electrical engineering, computer engineering or related field
- Previous coursework experience in each of the following (or equivalent) areas:
*Calculus through differential equations
*Computer programming
*Electrical circuits
*Electronics
*Digital design logic
*Laboratory experience

- Qualified applicants with non-ECE backgrounds may be extended an offer of conditional admission which will last until they fulfill the department's requirements for regular admission (generally, completion of specific undergraduate courses)
- Minimum GRE quantitative scores of 700 (old scale; 155 new scale); (750 old scale preferred; 169 new scale). GRE scores not required for graduates of ABET-accredited engineering programs
- Minimum TOEFL score of 80 (internet-based exam) for students whose native language is not English. A minimum score of 100 is desirable for students seeking teaching assistantships

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university at which you earned a degree
- Two letters of recommendation (except PhD applicants, as described above)
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Read more
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Computer engineering encompasses the principles, methods, and modern tools for the design and implementation of computing systems.

Our MSc Computer Engineering is the first in the UK and provides a balanced perspective of both hardware and software elements of computing systems, and their relative design trade-offs and applications. It will build on your knowledge in mathematics, science, and engineering to ensure you have a sound foundation in the areas needed for a career in this field.

Laboratory experiences enable you to understand experimental design and simulation techniques. We are internationally leading in this and you will have access to unique computer engineering platforms including our:
-Intelligent Flat (iSpace)
-Robotics Arena
-Networked intelligent campus (iCampus)
-Advanced networking and multimedia labs

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Upon graduation, you can look for employment in:
-Heavy industries, designing advanced computer systems and control
-Hardware companies, designing and developing microprocessors, personal computers, and supercomputers
-Communication and mobile phone companies, designing advanced computer systems for communications systems
-Large computer and microelectronics companies, writing software and firmware for embedded microcontrollers, and designing VLSI chips, analog sensors, mixed signal circuit boards, and operating systems
-Embedded system companies, developing advanced computer systems, and mobile applications and phones
-Banks and businesses, designing intelligent distributed systems to serve their operations
-Computer games companies, designing advanced computer games
-Our recent graduates have progressed to a variety of senior positions in industry and academia.

Some of the companies and organisations where our former graduates are now employed include Electronic Data Systems, Pfizer Pharmaceuticals, Bank of Mexico, Visa International, Hyperknowledge (Cambridge), Hellenic Air Force, ICSS (Beijing), United Microelectronic Corporation (Taiwan) and within our University.

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Converged Networks and Services
-Digital Signal Processing
-High Level Logic Design
-Professional Practice and Research Methodology
-Programming Embedded Systems
-Advanced Embedded Systems Design (optional)
-Artificial Neural Networks (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Electronic System Design & Integration (optional)
-Intelligent Systems and Robotics (optional)
-Mobile Communications (optional)

Read less
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Read more
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Nanoscience and technology research, ranging from nanostructured-materials to nanoelectronics, covers diverse areas in many disciplines, such as medicine and healthcare, aeronautics and space, environmental studies and energy, biotechnology and agriculture, national security and education. A joint postgraduate program in Nanoscience and Technology, initiated by the Schools of Science and Engineering, can offer long-term support to our ongoing research and training as well as to the development of technology and to commercialization efforts. Because of the diverse, multidisciplinary nature of Nanotechnology, its research and training can be best integrated into different disciplines. The aim of the concentration is to equip students with the necessary knowledge in the areas on which they wish to focus on.

Given the above developments, the School of Engineering has introduced the Nanotechnology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Electronic and Computer Engineering and Mechanical Engineering. This allows students to enroll in a particular discipline and pursue a focused-study on a specific area of Nanotechnology or Nanoscience.

The Nanotechnology Concentration is open exclusively to School of Engineering research postgraduates. Students must enroll in one of the following research degree programs prior to their registration for the Nanotechnology Concentration:
-MPhil/PhD in Chemical and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Mechanical Engineering

Research Foci

The research foci of Nanotechnology falls into the following disciplines:
Chemical and Biomolecular Engineering
Study of nanocatalysts, nanocomposite and nanoporous materials, nanomaterials for environmental applications, atmospheric nanoparticle pollutants, usage of nano-sized magnetic particles and nano-electrocatalysts, morphology/property relationship of polymers at nanoscale, bio-functionalized nanoparticles for diagnostics and biosensing, nanocarriers for drug delivery and nanomaterials for tissue engineering, and nano-biomaterials for treatment of industrial effluents.

Civil and Environmental Engineering
Development of iron-based nanoparticles for the removal of heavy metals from groundwater and industrial wastewater, polymeric nanocomposites for the surface coating of concrete structures, and fate, transport, transformation and toxicity of manufactured nanomaterials in water.

Electronic and Computer Engineering
Design, fabrication, and characterization of compound semiconductor-based nano-electronic devices, integration of compound semiconductor-based nano-electronic devices on silicon, modeling of nano-CMOS devices, nanoscale transistors, nanoelectromechanical system (NEMS), nanosize photo-alignment layers, nanoelectronics, nanophotonics, nanoelectronic devices design and fabrication, and system-on-chip and embedded system designs using nanotechnologies.

Mechanical Engineering
Nano precision machining, nanofibers, carbon nanotubes, graphene and organoclay nanoparticles, nanoindentation, applications of nano-particles for printable electronics and nano composites; integrated nano bubble actuator, nanosclae fluid-surface interaction, multiscale mechanics, nanoscale gas transport, micro/nanomechanics; molecular dynamic simulations, thermal interface material; micro fuel cell, and nano-structured materials for lithium ion battery electrodes.

Read less
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Read more
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Computer engineering encompasses the principles, methods, and modern tools for the design and implementation of computing systems.

Our MSc Computer Engineering is the first in the UK and provides a balanced perspective of both hardware and software elements of computing systems, and their relative design trade-offs and applications. It will build on your knowledge in mathematics, science, and engineering to ensure you have a sound foundation in the areas needed for a career in this field.

Laboratory experiences enable you to understand experimental design and simulation techniques. We are internationally leading in this and you will have access to unique computer engineering platforms including our:

- Intelligent Flat (iSpace)
- Robotics Arena
- Networked intelligent campus (iCampus)
- Advanced networking and multimedia labs

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

Read less
The Masters of Engineering (M.Eng.) program is suited to students who wish to pursue their electrical and computer engineering education beyond the undergraduate level but do not wish to pursue a thesis based research program. Read more
The Masters of Engineering (M.Eng.) program is suited to students who wish to pursue their electrical and computer engineering education beyond the undergraduate level but do not wish to pursue a thesis based research program. The program requires students to complete 30 credits of course work with the option of completing a supervised project.

The typical completion time for the M.Eng. is 12-16 months, if pursued on a full-time basis. M.Eng. degree candidates registered as full-time students are required to spend at least one winter session at the University. Candidates can also complete the M.Eng. on a part-time basis. In either case the program must be completed within 5 years of initial registration. Course selection must also be approved by their Graduate Supervisor.

A M.Eng. candidate may write an engineering report based on an appropriate engineering project in the candidate's chosen area of specialization, in lieu of 6 credits of course work. The subject of the report should be agreed upon between the candidate and the Graduate Supervisor.

The M.Eng. program is administered by the Faculty of Applied Science, rather than the Faculty of Graduate Studies. Financial aid is generally not available to M.Eng. students and tuition fees are higher than for the M.A.Sc.

Quick Facts

- Degree: Master of Engineering
- Specialization: Electrical and Computer Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework only
- Faculty: Faculty of Applied Science

Read less
Power ahead and make your postgraduate studies really count in the Department of Electronic and Computer Engineering. The recent evolution of Electronic and Computer Engineering has been developed into a wide-ranging discipline covering technologies critical to the growth of the knowledge economy. Read more
Power ahead and make your postgraduate studies really count in the Department of Electronic and Computer Engineering. The recent evolution of Electronic and Computer Engineering has been developed into a wide-ranging discipline covering technologies critical to the growth of the knowledge economy.

Networking, wireless communications, multimedia signal processing, microelectronics, microprocessors, IC design, opto-electronics, display technologies, and control and robotics all fall into this exciting discipline. Advanced training in these fields opens up a wealth of career opportunities in the manufacturing industry, business sector, government and universities worldwide.

The Department has gathered a talented faculty team, with PhDs from the world's top universities, and is equipped with state-of-the-art facilities to enable pioneering research and multimedia teaching to be carried out. We have over 40 teaching faculty members, over 300 research postgraduate students and are committed to world-class research and excellence in teaching, leading to significant results with international impact.

The Department's goal is to prepare students to become leading academics, top quality engineers or productive managers in the ever-changing high-technology world.

The MPhil program is designed for those interested in pursuing a career in research and development in industry or academia, and is an excellent preparation for a PhD degree. Students are required to undertake coursework and successfully research and defend a thesis.

Research Foci

The Department's research concentrates on six pillar areas:
Solid-State Electronics and Photonics
Topics related to Microelectronics, Nanoelectronics, Large Area Electronics, Power and Energy-Efficient Electronic Devices, High-Speed Electronics, Semiconductor Materials, Devices and Fabrication Technology, Micro-Electro-Mechanical Systems (MEMS), Displays, Optoelectronics, Organic Light-Emitting Diodes (OLEDs), Solid-State Lighting, Liquid-Crystal Displays, Liquid-Crystal Photonics, Silicon Photonics, Optical Communications and Interconnects, Solar Cells, Epitaxy of Compound Semiconductors by MOCVD.

Integrated Circuits and Systems
Topics related to Digital, Analog and Mixed-Signal Integrated Circuits (IC) Design, VLSI Design, Embedded Systems, Network-on-Chip and Multiprocessor System-on-Chip, Circuit and System Simulation and Verification Tools. Advanced topics include RF and mm-Wave IC and Systems, Data Converters, Power Management IC, High-Speed Optical Communication Transceiver, Image and Bio-Medical Sensors, Signal Processing and System Architectures, Design Automation, Computer Architecture, Reconfigurable System and Hardware/Software Codesign.

Wireless Communications and Networking
Topics related to Physical Layer, Signal Processing, Coding and Information Theory, Networking as well as New Architecture for Next Generation 5G Wireless Communications, Massive MIMO and Cloud Radio Access Networks, Interference Management, Heterogeneous Networks, Green Communications, Tactile Wireless Systems For Machine Type (MTC), Device-To-Device (D2D) and Multimedia Communications, Integration of Control and Wireless Communication Theory, Display-Smart Mobile Communications And Interactions, Network Coding Theory and Applications, Cross-Layer Stochastic Optimization, Distributed Algorithms and Optimisations, Big Data Systems, Social Media and Cyber-Physical and Social Computing Systems, Self-Organising Networks, Cloud Computing and Virtualisation.

Biomedical Engineering
Topics related to Medical Imaging, Biomedical Optics and Biophotonics, Neuroengineering, Medical Electronics, Bioinformatics/Computational Biology and Biomedical Microdevices and BioMEMS.

Control and Robotic Systems
Topics related to Control and Optimization (including System Theory, Optimization Theory, Detection and Estimation, Financial Systems, Networked Sensing and Control), Robotics and Automation (including UAV, Next-Generation Industry Robots, Medical/Healthcare Robotics, and Autonomous Systems).

Signal, Information and Multimedia Processing
Topics related to Digital Signal Processing of Video, 3D, Image, Graphics, Audio, Speech, Language, Biomedical Data, Financial Data, and Network Data. Specific topics include Signal Capture, Conditioning, Compression, Transformation, Playback and Visualization, Data Analysis, Information Theory, Error Correction, Cryptography, Computer Vision, Pattern Recognition, Machine Learning, Language Understanding, Translation, Summarization, Retrieval, Multi-Lingual and Multi-Modal Processing, and Embedded Systems.

Facilities

There are extensive facilities available to support the Department's programs. Laboratories for research and teaching encompass: advanced VLSI design and testing analog, automatic-control, biomedical instrumentation, broadband networks, computer networks and system integration, digital electronics and microprocessors, electro-optics, fine-line lithography, integrated power electronics, machine intelligence, optical device characterization, robot manipulation, signal processing and communication and wireless communication.

Relevant central facilities, research centers and research institutes include: the Automation Technology Center, Center for Networking, Center for Wireless Information Technology, Multimedia Technology Research Center, Nanoelectronics Fabrication Facility, Photonics Technology Center, Semiconductor Product Analysis and Design Enhancement Center.

In addition to the University's central computing facilities, the Department has over 200 Linux/Solaris workstations and over 900 PCs and Apple computers. Both industrial standard and research-oriented software are used by faculty and students for teaching and research.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Please visit http://www.ece.ubc.ca/admissions/graduate/apply. - Degree. Master of Applied Science. - Specialization. Electrical and Computer Engineering. Read more
Please visit http://www.ece.ubc.ca/admissions/graduate/apply

Quick Facts

- Degree: Master of Applied Science
- Specialization: Electrical and Computer Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Applied Science

Read less
You will cover subject specific subjects such as Digital Signal Processing and Artificial Intelligence alongside cohort taught subjects to develop their management skills and their employability. Read more
You will cover subject specific subjects such as Digital Signal Processing and Artificial Intelligence alongside cohort taught subjects to develop their management skills and their employability.

On the Msc in Microelectronics and Computer Engineering, the development of skills and advancement of knowledge focus on developing strong design skills for the seamless integration of software and hardware subsystems through the adoption of software-hardware co-design methodologies.

This will enable you to gain experience of designing digital systems for sustainable and smart applications, using DSP/FPGA/ASIC technology. Students will be aware of alternatives to the mainstream superscalar approach to computer design and instil in them design skills for a variety of acceleration intelligence techniques.

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering and manufacturing through a combination of experimental, simulation, research methods and case studies. You can expect to work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Why choose this course?

-Gain experience of designing digital systems for sustainable and smart applications.
-Microelectronics is developing as technology expands at an increasing rate and we are at the forefront for this subjects.
-Supported by the School which has over 25 years' experience of teaching electronic engineering and has established an excellent international reputation in this field.
-We offer extensive lab facilities for engineering students, including the latest software packages.

Careers

You will typically be employed to evaluate, select and deploy appropriate software tools to create/manage or simulate applications/systems. Within your area of expertise, you will be making independent design decisions on mission-critical systems.

Teaching methods

Our enthusiastic staff is always looking for new ways to enhance your learning experience and over recent years, we have won national awards for our innovative teaching ideas. In addition, our staff are active in research and useful elements of it are reflected on the learning experience.

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussions with staff and other students.

A heavy emphasis is placed on theory and practice, and the School of Engineering and Technology has a policy of using industrial standard software wherever possible.

Structure

Modules
-Advanced Reconfigurable Systems and Applications
-Artificial Intelligence
-Computer Architecture Design
-Digital Signal Processing and Processes
-MSc Project
-Mixed Mode and VLSI Technologies
-Operations Management
-Operations Research
-Sustainability and Smart Systems Engineering

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X