• University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
University College London Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Cranfield University Featured Masters Courses
Newcastle University Featured Masters Courses
"computer" AND "applicati…×
0 miles

Masters Degrees (Computer Applications)

We have 1,194 Masters Degrees (Computer Applications)

  • "computer" AND "applications" ×
  • clear all
Showing 1 to 15 of 1,194
Order by 
This two-year master’s programme Computer Science offers stimulating, significant and innovative research at an internationally renowned institute and combines theoretical, experimental and applied approaches. Read more

This two-year master’s programme Computer Science offers stimulating, significant and innovative research at an internationally renowned institute and combines theoretical, experimental and applied approaches.

What does this master’s programme entail?

The two-year master’s programme in Computer Science offers six specialisations which combine excellent theoretical teaching with possibilities for applied work with industrial relevance. This is achieved by intensive collaboration with companies at the Leiden Centre of Data Science. Course themes include topics such as Evolutionary Algorithms, Neural Networks, Databases and Data Mining, Swarm-Based Computation, Bayesian Networks, Multimedia Systems, Embedded Systems and Software, Advanced Compilers and Architectures, Bio-Modeling and Petri Nets.

Read more about our Computer Science programme.

Why study Computer Science at Leiden University?

  • Interdisciplinary research opportunities as well as industrial applications provide you with exciting possibilities. The industrial application areas and interdisciplinary activities include, among others: Bioinformatics and Life Sciences, Medicine, Pharma, Physics, Engineering Applications, Logistics Applications, Energy and Utility related Applications and Financial Applications.
  • You will benefit from our diverse collaborations and the possibilities for internships and projects with our partners such as BMW, ING and Strukton.
  • You have ample of opportunities to assemble your own study path: an individually tailored programme will be designed for each student.

Find more reasons to choose Computer Science at Leiden University.

Computer Science: the right master’s programme for you?

The programme is open for students with an internationally recognized bachelor’s degree in computer science or equivalent. You will be trained as an independent researcher, equipped with the necessary skills to advance your career as a computer scientist.

Read more about the entry requirements for Computer Science.

Specialisations



Read less
The MSc in Archaeological Information Systems course will provide you with applied practical experience and critical theoretical engagement with a full range of computing systems and technology used for publishing, archiving, analysing, visualising and presenting archaeological information today. Read more
The MSc in Archaeological Information Systems course will provide you with applied practical experience and critical theoretical engagement with a full range of computing systems and technology used for publishing, archiving, analysing, visualising and presenting archaeological information today.

The University of York’s Archaeology Department has been at the forefront of researching and developing archaeological computer applications since the early days of digital practice in the discipline and has hosted the first online peer-reviewed e-journal for archaeology since 1996. It also hosts the world-leading Archaeology Data Service, which is the UK’s national digital data archive for the historic environment.

• Gain applied practical experience in internet applications, database design and management, GIS technology, CAD and computer modelling systems.
• Build a broad foundation of expertise in archaeological computing applications.
• Access the University of York’s world-leading expertise in e-publishing and digital archiving.
• Develop IT knowledge and skills that are highly valued in heritage-sector careers.
• Access a full suite of research computing hardware and software
• Receive tailored careers advice from staff with significant experience of recruiting within the sector.

York is one of the best places to study Archaeology, Heritage or Conservation. The Department has an excellent reputation and is one of the largest Archaeology teaching centres in the UK. The historic City of York is rich in architectural and archaeological treasures and resources which you will have easy access to during your studies.

What does the course cover?

Through a combination of academic studies, practical training, research and work placements, you will:
• Develop vital knowledge of the digital and internet technologies used for disseminating, publishing and archiving archaeological information.
• Learn practical skills in 3-D modelling, GIS, CAD and other technologies used for analysing and visualising archaeological information.

The course provides a detailed introduction to the broad range of information systems used in archaeology, and provides the opportunity to apply these systems in practice. The work placement and dissertation enable you to specialise in a particular technique or approach, giving you valuable practical experience in your areas of interest.

Who is it for?

The MSc in Archaeological Information Systems is designed for people who have a basic grounding in computer literacy and an interest in archaeology and heritage, and who wish to follow vocational training in archaeological information systems.

What can it lead to?

Many of our graduates go onto careers in archaeological computing, working in contract units or county-based records organisations. Others have founded their own consultancy businesses. Some apply their computing skills in more mainstream archaeological work, in museums, or in the wider world. Others have pursued further research at doctoral level. Click on the alumni tab above to find out what our alumni and current students have to say about the course.

Content

This one-year MSc course is taught via a combination of lectures, seminars and tutorials. You will study two core modules, two optional modules and four shorter skills modules of your choice. You will also gain valuable practical experience of applying information systems in the workplace on a work placement module. Finally, in the summer term you will develop your research and presentation skills by producing a dissertation and giving an assessed lecture.

Placement

Your work placement is a key feature of the course, providing valuable experience of using IT in an archaeological work environment. The placement offers you the chance to gain practical experience in a professional, academic or heritage environment. You will be able to work on projects that help you develop new skills or put into practice skills gained from your taught courses.

Aims
-To provide experience of computer applications within a workplace in the historic environment sector.
-To consolidate knowledge and understanding of computer applications from one or more of the taught modules.

Learning outcomes
Upon completing your placement you should have:
-Gained detailed knowledge of how information technology is applied in the workplace in the historic environment sector, under the guidance of experienced professionals.
-Developed an understanding of the contexts in which IT is applied, and of real world limitations.
-Developed your IT skills in one or more of the core areas covered by the taught programme (i.e. database design, web technologies, digital archiving, electronic publication, CAD, GIS and virtual reality modelling).

Placement providers
Although the organisations offering placements change from year to year, and you have the option of proposing other providers that match your specific interests, the following list is a good indication of some of the choices available:
-Yorkshire Museums Trust
-Archaeology Data Service
-City of York Council
-Internet Archaeology
-York Archaeological Trust
-Centre for Christianity and Culture
-L-P: Archaeology
-On Site Archaeology
-Council for British Archaeology
-West Yorkshire Archaeology Service
-Historic England
-English Heritage
-National Trust

Careers

The MSc in Archaeological Information Systems offers practical, careers-focused training for many essential roles in the professional world of archaeology. By the end of the course you will:
-Have examined how computers are applied in archaeology and their impact on the development of the discipline
-Understand the concept of the internet, be able to find and use relevant information and add materials to it
-Have the skills to evaluate critically the claims made for different computer applications and select the correct application for a given problem
-Have an understanding of authoring tools and be able to create an electronic text
-Have an understanding of database design and be able to design and implement a simple relational database
-Have an understanding of CAD and GIS and be able to create effective applications in each
-Have an awareness of digital archiving principles, resource discovery and metadata

Many graduates from this course go on to careers in archaeological computing with contract and county-based records units, or found their own consultancy businesses. Some apply their computing skills to more mainstream archaeological settings, such as museums, or in a range of the others sectors and roles, including:
-Archive management
-Social media management
-Local government and development
-Computing and IT services
-Business and administration
-Marketing and public relations
-Education

Read less
What is great about this computing master’s course is the flexibility it offers you – the direction you take is entirely up to you. Read more

What is great about this computing master’s course is the flexibility it offers you – the direction you take is entirely up to you. You can design your programme from a huge range of subjects. Choose those that are most relevant to you and build a bespoke course that enhances your career opportunities and progression.

Course details

This course prepares you for a wide range of careers in the computing industry. Whether you are a graduate looking at the first step on the career ladder or a current employee looking to turn your industry experience into qualifications, this course is flexible enough to meet your needs. It is ideal if you already work in the field of computing and want to develop new skills, and equally relevant if you are a recent graduate wanting to develop the technical knowledge and understanding to progress to your chosen career. 

There are three routes you can choose from to gain an MSc Computing:

  • full-time - 2 years with advanced practice (September start)
  • full-time - 1 year (September start) or 16 months (January start)
  • part-time - 2 years.

What you study

This course both develops your knowledge to the forefront of computing and your intellectual ability for abstract analysis and synthesis at the level for postgraduate research. It produces graduates who can make reasoned, critical decisions for selecting or implementing appropriate computer-based solutions. It also produces graduates with sufficient technical and inter-personal skills to make an immediate contribution to major projects at the leading edge of computer applications. We encourage enterprise and progression towards further research including MPhil and/or PhD. You acquire a range of practical, professional and transferable skills.

Course structure

Core module

  • Master’s Project: Computing
  • Research Methods for Computing

 and five optional modules

  • Accrediting Prior and Workbased Studies
  • Agile Project Management
  • Computer and Network Security
  • e-Commerce Management
  • Inclusive Design
  • Information Systems Management
  • Managing Projects with PRINCE2®
  • Mobile App Programming
  • Mobile Apps Development
  • Mobile Systems and Communications
  • Mobile Web Services
  • Network Service Management
  • Pattern-driven Development
  • Rapid Application Development
  • Software Engineering Processes
  • Systems Administration and Security
  • Systems Analysis and Design
  • UX Modelling

Modules offered may vary.

Teaching

How you learn

Lectures are used to introduce and develop material, with research issues and recent developments included as appropriate. Subjects are explored in depth via tutor-led seminars, practical workshops, individual or group research and contribution to discussion forums.

Lectures, discussion seminars and online discussions are used to develop intellectual skills. Directed self study and research are used in many modules to develop your critical evaluation skills.

Lectures, including presentations from guest external practitioners, are used to deliver relevant subject-specific content. Practical work includes case studies from real scenarios and the development of significant computer applications.

Development of transferable skills, self-managed learning and professional development are core themes throughout the programme. Methods include group-based activities and discussions, self-directed learning and research, and tutor-led workshops.

How you are assessed

Most learning outcomes are assessed by individual coursework, including case studies, essays and the development of computer applications, with critical evaluation of processes or products, and evidence of research into a specified area. Some learning outcomes are assessed by group work. The School of Computing is very experienced in assessing group work with a research profile in that area. The assessment starts with a group, with a clear emphasis on process as well as product, but proceeds to individual assessment of each student by a variety of means.

Other assessments include individual portfolios of technical work and presentations to tutors of research findings. Assessment of a significant computer application, plus group work, is used as the vehicle for assessing planning and self-management. Other assessments of transferable skills include oral presentations and the development of portfolios of work to a professional standard.

Employability

Career opportunities

From the beginning of your programme, we prepare you for a career in industry. In addition to your taught classes, we create opportunities for you to meet and network with our industry partners through events such as our ExpoSeries, which showcases student work to industry. ExpoTees is the pinnacle of the ExpoSeries with over 100 businesses from across the UK coming to the campus to meet our exceptional students, with a view to recruitment.

Advanced practice

There are a number of internship options, including:

  1. Vocational internship – spend one semester working full-time in industry or on placement in the University. We have close links with a range of national and international companies who will offer you the chance to develop your knowledge and professional skills in the workplace through an internship. Although we cannot guarantee internships, we will provide you with practical support and advice on how to find and secure your own internship position. A vocational internship is a great way to gain work experience and give your CV a competitive edge.
  2. Research internship – develop your research and academic skills by undertaking a research internship within the University. Experience working as part of a research team in an academic setting. Ideal for those who are interested in a career in research or academia.


Read less
Taking heritage management into the 21st century. Introduced in 2010 in response to the growth in digital heritage practices, this course provides training for professionals who wish to work in digital archiving, visualisation, and museums and heritage sector interpretation, curation and education. Read more
Taking heritage management into the 21st century

Why choose this course?

Introduced in 2010 in response to the growth in digital heritage practices, this course provides training for professionals who wish to work in digital archiving, visualisation, and museums and heritage sector interpretation, curation and education.

It draws on the Archaeology department’s strengths in both Archaeological Information Sciences and Cultural Heritage Management – offering a unique qualification that combines the theoretical and ground-level study of heritage management with practical training in new technologies, from database systems and virtual-reality modelling to social media platforms.

You will be working with a team of technology pioneers and computing scholars, who lead the field in researching and developing interpretative content and digital applications for the heritage sector worldwide.
• Gain practical experience in new and mobile technologies used to publish, archive, analyse, visualise and interpret archaeological information.
• Understand all aspects of heritage management theory and practice.
• Develop essential IT knowledge and skills required in heritage-sector careers.
• Gain practical work experience in the heritage sector.
• Access a full suite of research computing hardware and software
• Receive tailored careers advice from staff with significant experience of recruiting within the sector.

York is one of the best places to study Archaeology, Heritage or Conservation. The Department has an excellent reputation and is one of the largest Archaeology teaching centres in the UK. The historic City of York is rich in architectural and archaeological treasures and resources which you will have easy access to during your studies.

What does the course cover?

The course draws on the skills and expertise of leading scholars in heritage management, interpretation and digital media, alongside staff from the Archaeology Data Service, which has been the UK digital archive for heritage data since 1997. It also has strong links with museums and other cultural heritage institutions in York, and work placements are a key feature of the programme.

Through a combination of academic studies, practical training, research and work placements, you will:
• Explore how digital technologies are used to present and curate heritage information.
• Gain experience of using the digital and internet technologies in disseminating, publishing and archiving heritage information.
• Develop your practical skills in 3-D modelling, GIS, CAD and other heritage analysis and visualisation technologies.

Who is it for?

The MSc in Digital Heritage course is designed for people seeking professional training in digital archiving, visualisation, museums and heritage sector curation, interpretation, and education. It is ideally suited for graduates of Archaeology, History, Art History, Museum Studies, Education, Anthropology, Cultural Studies and related fields, and for candidates with proven IT experience.

What can it lead to?

The skills developed on this course lead graduates into careers in archaeological computing, archive management, education, marketing and IT services for commercial organisations, museums and the public sector. Equally, the course can be a stepping stone to further research at doctoral level.

Placement

Your work placement is a key feature of the course, offering you the chance to apply your digital skillset in a professional or academic setting.

Aims
-To provide experience of computer applications within a workplace in the heritage sector.
-To consolidate knowledge and understanding of computer applications from one or more of the taught modules.

Learning outcomes
Upon completing your placement you should have:
-Gained detailed knowledge of how information technology is applied in the workplace in the heritage sector, under the guidance of experienced professionals.
-Developed an understanding of the contexts in which IT is applied, and of real world limitations.
-Developed your IT skills in one or more of the core areas covered by the taught programme (i.e. database design, web technologies, digital archiving, electronic publication, CAD, GIS and virtual-reality modelling).

Placement opportunities
Although the organisations offering placements change from year to year, and you have the option of proposing other work providers that match your specific interests, the following list is a good indication of some of the choices available:
-Yorkshire Museums Trust
-Archaeology Data Service
-City of York Council
-Internet Archaeology
-York Archaeological Trust
-Centre for Christianity and Culture
-L-P: Archaeology
-On Site Archaeology
-Council for British Archaeology
-West Yorkshire Archaeology Service
-Historic England
-English Heritage
-National Trust

Careers

Graduates of the MSc in Digital Heritage will be well equipped to work in IT-related roles in heritage management or presentation, in museums and education, and with a range of other heritage organisations.

By the end of the course you will be able to:
-Plan, design and undertake a piece of independent research in the field of digital heritage;
-Critically evaluate claims made for different computer applications and select the correct application for a given problem;
-Locate and use relevant information on the internet and add materials to it;
-Create an electronic text;
-Design and implement a simple relational database;
-Create effective applications in CAD and VR;
-Evaluate the cultural significance of sites, places and artefacts;
-Recognise areas of potential conflict in heritage management and museum practice;
-Evaluate the implications of stakeholder values and interests for heritage management and heritage interpretation/education;
-Appraise the utility of interpretative and educational media both on site and in museums.

The course opens the door to a wide range of careers in heritage-related organisations and in many other sectors, including:
-Archive management
-Museum curation
-Social media management
-Local government and development
-Computing and IT services
-Business and administration
-Marketing and public relations
-Education

Read less
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Read more
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Computer engineering encompasses the principles, methods, and modern tools for the design and implementation of computing systems.

Our MSc Computer Engineering is the first in the UK and provides a balanced perspective of both hardware and software elements of computing systems, and their relative design trade-offs and applications. It will build on your knowledge in mathematics, science, and engineering to ensure you have a sound foundation in the areas needed for a career in this field.

Laboratory experiences enable you to understand experimental design and simulation techniques. We are internationally leading in this and you will have access to unique computer engineering platforms including our:
-Intelligent Flat (iSpace)
-Robotics Arena
-Networked intelligent campus (iCampus)
-Advanced networking and multimedia labs

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Upon graduation, you can look for employment in:
-Heavy industries, designing advanced computer systems and control
-Hardware companies, designing and developing microprocessors, personal computers, and supercomputers
-Communication and mobile phone companies, designing advanced computer systems for communications systems
-Large computer and microelectronics companies, writing software and firmware for embedded microcontrollers, and designing VLSI chips, analog sensors, mixed signal circuit boards, and operating systems
-Embedded system companies, developing advanced computer systems, and mobile applications and phones
-Banks and businesses, designing intelligent distributed systems to serve their operations
-Computer games companies, designing advanced computer games
-Our recent graduates have progressed to a variety of senior positions in industry and academia.

Some of the companies and organisations where our former graduates are now employed include Electronic Data Systems, Pfizer Pharmaceuticals, Bank of Mexico, Visa International, Hyperknowledge (Cambridge), Hellenic Air Force, ICSS (Beijing), United Microelectronic Corporation (Taiwan) and within our University.

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Converged Networks and Services
-Digital Signal Processing
-High Level Logic Design
-Professional Practice and Research Methodology
-Programming Embedded Systems
-Advanced Embedded Systems Design (optional)
-Artificial Neural Networks (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Electronic System Design & Integration (optional)
-Intelligent Systems and Robotics (optional)
-Mobile Communications (optional)

Read less
The programme aims at preparing engineers to develop and use information technology tools so as to satisfy the widest variety of applications. Read more

Mission and Goals

The programme aims at preparing engineers to develop and use information technology tools so as to satisfy the widest variety of applications. Compared to the Bachelor of Science, Master of Science students acquire greater ability to model and solve complex problems, integrating different advanced skills and technologies. The programme comprises three tracks: Communication and Society Engineering, Sound and Music Engineering, Data Engineering.

The teaching language is English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

Career Opportunities

The information technology engineer operates mainly in companies manufacturing and distributing information technology and robotics equipment and systems, companies providing products and services with a high information technology content, private organisations and public administration using information technology to plan, design, manage, decide, produce and administrate.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Computer_science_and_engineering_CO_01.pdf
The Master of Science programme in Computer Science and Engineering aims at training engineers able to develop and use information technology tools so as to satisfy the widest variety of applications. Four tracks are available, corresponding to four main cultural areas. The “Communication and Society Engineering” track focuses on the integration of computer science and communication skills, for designing, implementing, presenting and evaluating innovative multimedia applications. The methodologies for the management of data, such as data mining, pattern recognition, information retrieval, constitute the core of the “Data Engineering” track. The “ICT Engineering, Business and Innovation” track aims at building professional profiles that combine a solid computer science background with managerial capabilities, through a selection of computer science and management courses, integrated with a broad cross-disciplinary project, carried out in collaboration with companies and Management Engineering students and professors. Finally, the “Sound and Music Engineering” track (in collaboration with the “Giuseppe Verdi” Music Conservatory of Como) focuses on the concepts and processes that are behind generation, analysis, manipulation/ processing, transport, access, coding and rendering of audio and musical signals. The programme is taught in English.

Subjects

Key subjects available:
Multimedia Interactive Applications for Web and Mobile Devices, Computer Graphics and Applications, Advanced Software Engineering, Advanced Computer Architectures, Performance Evaluation of Computer Systems, Multimedia Information Retrieval, Multimedia Signal Processing, Sound Analysis, Synthesis and Processing, Electronics and Electroacoustic.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Ideal for you if you are a professional with a background in computer engineering, communication systems or electronic/electrical engineering, and provides you with the skills and knowledge needed to move into computer networking. Read more

Ideal for you if you are a professional with a background in computer engineering, communication systems or electronic/electrical engineering, and provides you with the skills and knowledge needed to move into computer networking. It is particularly useful for people working in companies that rely on constant innovation in electronics, computer engineering and communications.

Computer networks currently provide the infrastructure for most, businesses, educational institutions, retailers, manufacturers and public services. Many companies rely increasingly on computer and network engineering, which is now a global discipline.

This course is hardware and software based, and examines the design, specification, and integration of current and next generation computer and communications network technologies.

This course provides an opportunity for you to

  • increase the depth of your technical knowledge
  • develop your computer hardware and software skills
  • gain a thorough working knowledge of computer engineering
  • study the latest technologies used in modern day computer networking systems and their applications
  • gain the skills needed to design, develop and maintain computer network systems

You may wish to expand your current knowledge and expertise if you already have computer networking skills or possibly move into a new area of engineering and have the necessary entry requirements for this course.

Professional recognition

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Full time – September start – typically 12 or 18 months

Full time – January start – typically 12 or 18 months

Part time – September start – typically 36 months

Part time – January start – typically 36 months

The course is based around two main themes, communication and networks, and computer engineering. You study eight modules plus a major project.

Communications and network modules

At least three from

  • communication engineering
  • communication media
  • communication networks
  • network applications

Computer engineering modules

At least three from

  • microprocessor engineering
  • object-oriented methods
  • operating systems
  • software engineering

Option modules

Up to two from

  • applicable artificial intelligence
  • digital signal processing
  • embedded systems
  • mixed signal design
  • electrical energy systems
  • efficient machines and electromagnetic applications

Project (equivalent to four modules)

You undertake a major project under the supervision of a tutor.

Assessment

By final examination, coursework and project reports

Employability

Information technology, communications, computer networks and electronics are among some of the fastest growing areas of the economy. By completing this course, you gain a thorough understanding of computer networking systems with the knowledge and expertise to enable you to apply your skills within many areas of industry, or take up a position in higher education or research.



Read less
This programme is suitable for both newcomers to computer security and computer forensics and practitioners who wish to further their skills. Read more
This programme is suitable for both newcomers to computer security and computer forensics and practitioners who wish to further their skills. It covers relevant skills, software and hardware technologies, and the more theoretical studies that underpin everyday practice. It ensures that students have a basic understanding of the legal and regulatory requirements and the international standards pertaining to computer security in different nations.

Students gain knowledge of computer crime, police and forensic methods, and the legal requirements for collecting evidence.

At the end of the programme, students are able to administer and configure business-critical distributed applications. They also gain an understanding of the threats to business networks and servers.

The programme includes hands-on training in current forensic tools as used by the police. Students can therefore contribute quickly to the well-being of corporate IT and informational assets.

Though our short course centre opportunity may also be provided to study for the following professional qualifications: Certified Ethical Hacker (EC-Council); EnCase Computer Forensics, Penetration Testing and Vulnerability Assessment.

The availability of some courses is subject to satisfying constraints that may come into effect in the year of entry. In addition, some options are negotiable, indicating that a course selection will need to be approved prior to the student undertaking the requested option.

Visit the website http://www2.gre.ac.uk/study/courses/pg/netsyst/cfsm

Computing - Networking and Systems

Programmes for computer science or computer engineering graduates who wish to develop a specialism in computer systems and advanced software engineering or computer networks.

We offer specialist programmes with an emphasis on all aspects of networking some with extra content on wireless and mobile aspects. There are computer security and computer forensics programmes suitable for the practitioner who wishes to further their skills.

Some programmes concentrate on technical security, security policy management and legal compliance issues which can be excellent preparation for specialist professional exams with CISA (Certified Information Systems Auditor) and CISSP (Certified Information Systems Security Professional).

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)
Cyber Security (15 credits)
Audit and Security (15 credits)
System Administration and Security (15 credits)
Computer Crime and Forensics (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 15 credits from this list of options.

Requirements Analysis & Methods (15 credits)
Database Architectures and Administration (15 credits)
Software Tools and Techniques (15 credits)

Students are required to choose 15 credits from this list of options.

Project Management (15 credits)
Network Architectures and Services (15 credits)
Penetration Testing (15 credits)
Mobile and Network Technologies (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 30 credits from this list of options.

Cyber Security (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)

Students are required to choose 30 credits from this list of options.

Audit and Security (15 credits)
System Administration and Security (15 credits)
Computer Crime and Forensics (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)

Students are required to choose 15 credits from this list of options.

Cyber Security (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)

Students are required to choose 15 credits from this list of options.

Audit and Security (15 credits)
System Administration and Security (15 credits)
Computer Crime and Forensics (15 credits)

Students are required to choose 15 credits from this list of options.

Requirements Analysis & Methods (15 credits)
Database Architectures and Administration (15 credits)
Software Tools and Techniques (15 credits)

Students are required to choose 15 credits from this list of options.

Project Management (15 credits)
Network Architectures and Services (15 credits)
Penetration Testing (15 credits)
Mobile and Network Technologies (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, coursework and a project.

Professional recognition

This programme is accredited by the British Computer Society (BCS). On successful graduation from this degree, the student will have fulfilled the academic requirement for registration as a Chartered IT Professional (CITP) and partially fulfilled the education requirement for registration as a Chartered Engineer (CEng) or Chartered Scientist (CSci). For a full Chartered status there are additional requirements, including work experience. The programme also has accreditation from the European Quality Assurance Network for Informatics Education (EQANIE).

Career options

Upon successful completion of this programme, students will be proficient in computer security and systems security and are in a position to follow careers in system development and administration where knowledge of security and forensics will be an asset or work in a range of specialist roles including: forensics investigators, security consultants or network management specialists.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643958

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The fields of graphics, vision and imaging increasingly rely on one another. Read more

The fields of graphics, vision and imaging increasingly rely on one another. This unique and timely MSc provides training in computer graphics, geometry processing, virtual reality, machine vision and imaging technology from world-leading experts, enabling students to specialise in any of these areas and gain a grounding in the others.

About this degree

Graduates will understand the basic mathematical principles underlying the development and application of new techniques in computer graphics and computer vision and will be aware of the range of algorithms and approaches available, and be able to design, develop and evaluate algorithms and methods for new problems, emerging technologies and applications.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research project (60 credits).

Core modules

  • Computer Graphics (15 credits)
  • Image Processing (15 credits)
  • Mathematical Methods, Algorithmics and Implementations (15 credits)
  • Research Methods and Reading (15 credits)

Optional modules

Students must choose a minimum of 15 and a maximum of 30 credits from Group One options. Students must choose a minimum of 30 and a maximum of 45 credits from Group Two options.

Group One Options (15 to 30 credits)

  • Machine Vision (15 credits)
  • Virtual Environments (15 credits)

Group Two Options (30 to 45 credits)

  • Acquisition and Processing of 3D Geometry (15 credits)
  • Computational Modelling for Biomedical Imaging (15 credits)
  • Computational Photography and Capture (15 credits)
  • Geometry of Images (15 credits)
  • Graphical Models (15 credits)
  • Information Processing in Medical Imaging (15 credits)
  • Introduction to Machine Learning (15 credits)
  • Inverse Problems in Imaging (15 credits)
  • Numerical Optimisation (15 credits)
  • Robotic Sensing, Manipulation and Interaction (15 credits)
  • Robotic Vision and Navigation (15 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

Dissertation/report

All students undertake an independent research project related to a problem of industrial interest or on a topic near the leading edge of research, which culminates in a 60–80 page dissertation.

Teaching and learning

The programme is delivered through a combination of lectures and tutorials. Lectures are often supported by laboratory work with help from demonstrators. Student performance is assessed by unseen written examinations, coursework and a substantial individual project.

Further information on modules and degree structure is available on the department website: Computer Graphics, Vision and Imaging MSc

Careers

Graduates are ready for employment in a wide range of high-technology companies and will be able to contribute to maintaining and enhancing the UK's position in these important and expanding areas. The MSc provides graduates with the up-to-date technical skills required to support a wealth of research and development opportunities in broad areas of computer science and engineering, such as multimedia applications, medicine, architecture, film animation and computer games. Our market research shows that the leading companies in these areas demand the deep technical knowledge that this programme provides. Graduates have found positions at global companies such as Disney, Sony and Siemens. Others have gone on to PhD programmes at leading universities worldwide.

Recent career destinations for this degree

  • Business Analyst, Adobe
  • Software Engineer, FactSet Research Systems
  • MRes in Engineering, Imperial College London
  • Software Engineer, Sengtian Software
  • PhD in Computer Graphics, UCL

Employability

UCL received the highest percentage (96%) for quality of research in Computer Science and Informatics in the UK's most recent Research Excellence Framework (REF2014).

Our graduates have some of the highest employment rates of any university in the UK. This degree programme also provides a foundation for further PhD study or industrial research.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Computer Science contains some of the world's leading researchers in computer graphics, geometry processing, computer vision and virtual environments.

Research activities include geometric acquisition and 3D fabrication, real-time photo-realistic rendering, mixed and augmented reality, face recognition, content-based image-database search, video-texture modelling, depth perception in stereo vision, colour imaging for industrial inspection, mapping brain function and connectivity and tracking for SLAM (simultaneous localisation and mapping).

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Computer Science

96% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Computer Science Departmental degree requirements for the master’s degree, which are in addition to those established by the College of Engineering and the Graduate School (http://graduate.ua.edu/), are as follows for Plan I and Plan II students. Read more
Computer Science Departmental degree requirements for the master’s degree, which are in addition to those established by the College of Engineering and the Graduate School (http://graduate.ua.edu/), are as follows for Plan I and Plan II students.

- Master of Science–Thesis Option (http://cs.ua.edu/graduate/ms-program/#thesis)
- Master of Science–Non-Thesis Option (http://cs.ua.edu/graduate/ms-program/#nonthesis)
- Timetable for the Submission of Graduate School Forms for an MS Degree (http://cs.ua.edu/graduate/ms-program/#timetable)

Visit the website http://cs.ua.edu/graduate/ms-program/

MASTER OF SCIENCE–THESIS OPTION (PLAN I):

30 CREDIT HOURS
Each candidate must earn a minimum of 24 semester hours of credit for coursework, plus a 6-hour thesis under the direction of a faculty member. Unlike the general College of Engineering requirements, graduate credit may not be obtained for courses at the 400-level.

Degree Requirements Effective Fall 2011

Credit Hours
The student must successfully complete 30 total credit hours, as follows:

- 24 hours of CS graduate-level course work

- 6 hours of CS 599 Master’s Thesis Research: Thesis Research.

- Completion of at least one 500-level or 600-level course in each of the four core areas (applications, software, systems and theory). These courses must be taken within the department and selected from the following:
Applications: CS 528, CS 535, CS 557, CS 560, CS 609, CS 615
Software: CS 503, CS 507, CS 515, CS 516, CS 534, CS 600, CS 603, CS 607, CS 614, CS 630
Systems: CS 526, CS 538, CS 567, CS 606, CS 613, CS 618
Theory: CS 500, CS 570, CS 575, CS 601, CS 602, CS 612

- No more than 12 hours from CS 511, CS 512, CS 591, CS 592, CS 691, CS 692 and non-CS courses may be counted towards the coursework requirements for the master’s degree. Courses taken outside of CS are subject to the approval of the student’s advisor.

- Additional Requirements -

- The student will select a thesis advisor and a thesis committee. The committee must contain at least four members, including the thesis advisor. At least two members are faculty of the Computer Science department, and at least one member must be from outside the Department of Computer Science.

- The student will develop a written research proposal. This should contain an introduction to the research area, a review of relevant literature in the area, a description of problems to be investigated, an identification of basic goals and objectives of the research, a methodology and timetable for approaching the research, and an extensive bibliography.

- The student will deliver an oral presentation of the research proposal, which is followed by a question-and-answer session that is open to all faculty members and which covers topics related directly or indirectly to the research area. The student’s committee will determine whether the proposal is acceptable based upon both the written and oral presentations.

- The student will develop a written thesis that demonstrates that the student has performed original research that makes a definite contribution to current knowledge. Its format and content must be acceptable to both the student’s committee and the Graduate School.

- The student will defend the written thesis. The defense includes an oral presentation of the thesis research, followed by a question-and-answer session. The student’s committee will determine whether the defense is acceptable.

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School (http://graduate.ua.edu/) and by the College of Engineering.

Degree Requirements Prior to Fall 2011

Credit hours

The student must successfully complete 30 total credit hours, as follows:

- 6 hours of CS 599 Master’s Thesis Research

- 24 hours of CS graduate-level course work with a grade of A or B, including the following courses completed at The University of Alabama:
At least 3 hours of theory courses (CS 500 Discrete math, CS 601 Algorithms, CS 602 Formal languages, CS 612 Data structures)

At least 3 hours of software courses (CS 600 Software engineering, CS 603 Programming languages, CS 607 Human-computer interaction, CS 614 Compilers, CS630 Empirical Software Engineering)

At least 3 hours of systems courses (CS 567 Computer architecture, CS 606 Operating systems, CS 613 Networks, CS 618 Wireless networks)

At least 3 hours of applications courses (CS 535 Graphics, CS 560 or 591 Robotics, CS 591 Security, CS 609 Databases)

- Additional Requirements -

- The student will select a thesis advisor and a thesis committee. The committee must contain at least four members, including the thesis advisor. At least two members are faculty of the Computer Science department, and at least one member must be from outside the Department of Computer Science.

- The student will develop a written research proposal. This should contain an introduction to the research area, a review of relevant literature in the area, a description of problems to be investigated, an identification of basic goals and objectives of the research, a methodology and timetable for approaching the research, and an extensive bibliography.

- The student will deliver an oral presentation of the research proposal, which is followed by a question-and-answer session that is open to all faculty members and which covers topics related directly or indirectly to the research area. The student’s committee will determine whether the proposal is acceptable based upon both the written and oral presentations.

- The student will develop a written thesis that demonstrates that the student has performed original research that makes a definite contribution to current knowledge. Its format and content must be acceptable to both the student’s committee and the Graduate School.

- The student will defend the written thesis. The defense includes an oral presentation of the thesis research, followed by a question-and-answer session. The student’s committee will determine whether the defense is acceptable.

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School (http://graduate.ua.edu/) and by the College of Engineering.

MASTER OF SCIENCE–NON-THESIS OPTION (PLAN II):

30 CREDIT HOURS
Each candidate must earn a minimum of 30 semester hours of credit for coursework, which may include a 3-hour non-thesis project under the direction of a faculty member. Unlike the general College of Engineering requirements, graduate credit may not be obtained for courses at the 400-level.

Degree Requirements Effective Fall 2011

The student must successfully complete 30 total credit hours, as follows:

- Completion of at least one 500-level or 600-level course in each of the four core areas (applications, software, systems and theory).
Applications: CS 528, CS 535, CS 557, CS 560, CS 609, CS 615
Software: CS 503, CS 507, CS 515, CS 516, CS 534, CS 600, CS 603, CS 607, CS 614, CS 630
Systems: CS 526, CS 538, CS 567, CS 606, CS 613, CS 618
Theory: CS 500, CS 570, CS 575, CS 601, CS 602, CS 612

- No more than 12 hours from CS 511, CS 512, CS 591, CS 592, CS 691, CS 692 and non-CS courses may be counted towards the coursework requirements for the master’s degree. Courses taken outside of CS are subject to the approval of the student’s advisor.

- The student may elect to replace 3 hours of course work with 3 hours of CS 598 Research Not Related to Thesis: Non-thesis Project. This course should be proposed in writing in advance, approved by the instructor, and a copy placed in the student’s file. The proposal should specify both the course content and the specific deliverables that will be evaluated to determine the course grade.

- Additional Requirements -

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School and by the College of Engineering.

Degree Requirements Prior to Fall 2011

Credit hours

The student must successfully complete 30 total credit hours of CS graduate-level course work with a grade of A or B, as follows:

- The following courses will be completed at The University of Alabama:
At least 3 hours of theory courses (CS 500 Discrete math, CS 601 Algorithms, CS 602 Formal languages, CS 612 Data structures)

At least 3 hours of software courses (CS 600 Software engineering, CS 603 Programming languages, CS 607 Human-computer interaction, CS 614 Compilers, CS630 Empirical Software Engineering)

At least 3 hours of systems courses (CS 567 Computer architecture, CS 606 Operating systems, CS 613 Networks, CS 618 Wireless networks)

At least 3 hours of applications courses (CS 535 Graphics, CS 560 or 591 Robotics, CS 591 Security, CS 609 Databases)

- The student may elect to replace 3 hours of course work with 3 hours of CS 598 Research Not Related to Thesis: Non-thesis Project. This course should be proposed in writing in advance, approved by the instructor, and a copy placed in the student’s file. The proposal should specify both the course content and the specific deliverables that will be evaluated to determine the course grade.

- Additional Requirements -

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School and by the College of Engineering.

TIMETABLE FOR THE SUBMISSION OF GRADUATE SCHOOL FORMS FOR AN MS DEGREE
This document identifies a timetable for the submission of all Graduate School paperwork associated with the completion of an M.S. degree

- For students in Plan I students only (thesis option) after a successful thesis proposal defense, you should submit the Appointment/Change of a Masters Thesis Committee form

- The semester before, or no later than the first week in the semester in which you plan to graduate, you should “Apply for Graduation” online in myBama.

- In the semester in which you apply for graduation, the Graduate Program Director will contact you about the Comprehensive Exam.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
One of a range of degrees from the taught Master's Programme at the School of Computer Science. This course considers current research and practice in computer networking, distributed systems and security. Read more
One of a range of degrees from the taught Master's Programme at the School of Computer Science.

About the course

This course considers current research and practice in computer networking, distributed systems and security. You will develop technical expertise and practical skills in the design, management and evaluation of networks, and in the use of tools and techniques for system security.

This MSc can lead to a career such as a network system designer or administrator, or as a security consultant.

Why choose this course?

-This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies
-One of a range of advanced courses within our postgraduate Master's programme in Computer Science, this particular course provides you with a specialism combining theoretical knowledge and practical skills in computer networking
-You will develop technical expertise and practical skills in the design,management and evaluation of networks, and in the use of tools and techniques for system security
-Taught by a highly-regarded and long-established computer science department with strong links to business
-Half the research outputs in Computer Science at the University of Hertfordshire have been rated at world-leading or internationally excellent in the Research Excellence Framework (REF) 2014

Careers

Our masters programme is designed to give Computer Science graduates the specialist, up-to-date skills and knowledge sought after by employers, whether in business, industry, government or research. This particular course will prepare you for a career such as a software engineer, developer or project manager.

Teaching methods

Classes consist of lectures, small group seminars, and practical work in our well-equipped laboratories. We use modern, industry-standard software wherever possible. There are specialist facilities for networking and multimedia and a project laboratory especially for masters students. In addition to scheduled classes, you will be expected a significant amount of time in self-study, taking advantage of the extensive and up-to-date facilities. These include the Learning Resource Centres, open 24x7, with 1,500 computer workstations and wifi access, Studynet our versatile online study environment usable on and off campus, and open access to our labs.

Work Placement

This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies.

This offers you the opportunity to work for one year in a highly professional and stimulating environment. You will be a full time employee in a company earning a salary and will learn new skills that can't be taught at University. During the placement, you will be able to gain further insight into industrial practice that you can take forward into your individual project.

We will provide excellent academic and personal support during both your academic and placement periods together with comprehensive careers guidance from our very experienced dedicated Careers and Placements Service.

Although the responsibility for finding a placement is with you, our Careers and Placements Service maintains a wide variety of employers who offer placement opportunities and organise special training sessions to help you secure a placement, from job application to the interview. Optional one-to-one consultations are also available.

In order to qualify for the placement period you must maintain an overall average pass mark of not less than 60% across all modules studied in semester ‘A’.

Structure

Year 1
Core Modules
-Professional Issues
-Investigative Methods for Computer Science
-Distributed Systems Security
-Secure Systems Programming
-Network System Administration
-Multicast and Multimedia Networking
-Wireless, Mobile and Ad-hoc Networking
-Preparation for Placement
-Professional Work Placement for MSc Computer Science

Optional
-Professional Issues
-Investigative Methods for Computer Science
-Data Mining
-Mobile Standards, Interfaces and Applications
-Human Computer Interaction: Principles and Practice
-Advanced Databases
-Programming Paradigms
-Measures and Models for Software Engineering
-Programming for Software Engineers
-Software Engineering Practice and Experience
-Artificial Life with Robotics
-Neural Networks and Machine Learning
-Theory and Practice of Artificial Intelligence
-Information Security, Management and Compliance
-Digital Forensics
-Penetration Testing

Year 2
Core Modules
-Computer Networking Principles and Practice Masters Project

Read less
One of a range of degrees from the taught Masters Programme at the School of Computer Science our course is especially designed for graduates of numerate subjects other than computer science. Read more
One of a range of degrees from the taught Masters Programme at the School of Computer Science our course is especially designed for graduates of numerate subjects other than computer science. It is mostly taught separately from the other courses. It intensively covers a broad range of the key principles and techniques of computer science.

About the course

There is an emphasis on software development, in particular when applied to solving problems in other disciplines. Depending on the modules chosen, it can lead to a career in areas such as systems development, IT management, or the deployment of advanced applications in specific disciplines.

Why choose this course?

-This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies
-A flexible course, part of our postgraduate master's programme in Computer Science, with two different routes
-Our course is especially designed for graduates of numerate subjects other than computer science
-Taught by a highly-regarded and long-established computer science department with strong links to business
-Half the research outputs in Computer Science at the University of Hertfordshire have been rated as world-leading or internationally excellent in the Research Excellence Framework (REF) 2014

Careers

Our masters programme is designed to give Computer Science graduates the specialist, up-to-date skills and knowledge sought after by employers, whether in business, industry, government or research. This particular course will prepare you for a career such as a software engineer, developer or project manager.

Teaching methods

Classes consist of lectures, small group seminars, and practical work in our well-equipped laboratories. We use modern, industry-standard software wherever possible. There are specialist facilities for networking and multimedia and a project laboratory especially for masters students. In addition to scheduled classes, you will be expected a significant amount of time in self-study, taking advantage of the extensive and up-to-date facilities. These include the Learning Resource Centres, open 24x7, with 1,500 computer workstations and wifi access, Studynet our versatile online study environment usable on and off campus, and open access to our labs.

Work Placement

This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies.

This offers you the opportunity to work for one year in a highly professional and stimulating environment. You will be a full time employee in a company earning a salary and will learn new skills that can't be taught at University. During the placement, you will be able to gain further insight into industrial practice that you can take forward into your individual project.

We will provide excellent academic and personal support during both your academic and placement periods together with comprehensive careers guidance from our very experienced dedicated Careers and Placements Service.

Although the responsibility for finding a placement is with you, our Careers and Placements Service maintains a wide variety of employers who offer placement opportunities and organise special training sessions to help you secure a placement, from job application to the interview. Optional one-to-one consultations are also available.

In order to qualify for the placement period you must maintain an overall average pass mark of not less than 60% across all modules studied in semester ‘A’.

Structure

Year 1
Core Modules
-Computer Architectures
-Computer Science Masters Project
-Operating Systems and Networks
-Preparation for Placement
-Professional Issues
-Professional Work Placement for MSc Computer Science
-Programming and Program Design
-Software Development Exercise
-Systems Modelling

Year 2
Core Modules
-Computer Science Masters Project

Read less
This post-graduate programme aims at forming engineers endowed with a rich cultural basis and able to develop and exploit the methods and tools of computer science with engineering attitude, to tackle a wide spectrum of applications. Read more

Mission and Goals

This post-graduate programme aims at forming engineers endowed with a rich cultural basis and able to develop and exploit the methods and tools of computer science with engineering attitude, to tackle a wide spectrum of applications. The Degree programme develops the ability to design and implement hardware and software systems, which find application in the area of industry and services, either private or public. Graduates are also able to plan and manage complex projects thanks to a deep knowledge of engineering methodologies and technologies.
A Computing Systems Engineer, however, is not only a designer of applications and systems, but is potentially able to develop new technologies or to find innovative applications.

The programme is taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-milano/

Career Opportunities

The main professional areas targeted by our graduates are innovation and development of production, advanced design, and management of complex systems, either as independent professionals or as members of manufacturing or service enterprises, or in the public administration.
Graduates will find their jobs in the areas of hardware or software production, digital media providers, automation and robotics, information systems and computer networks, services and public administration.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Computer_science_and_engineering_MI_01.pdf
The programme provides the student with a comprehensive background on state-of-the art technologies, with a strong connection with leading edge research. Through an interdisciplinary approach, it forms engineers endowed with a rich cultural basis and able to develop and exploit the methods and tools of computer science with an engineering attitude, to tackle a wide spectrum of applications. The MSc develops the student’s ability to design and implement hardware and software systems, which find application in the area of industry and services. Graduates are highly skilled professionals who can plan and manage complex projects thanks to a deep knowledge of engineering methodologies and technologies.
The programme is taught in English.

Subjects

Key subjects available:
- Advanced Databases, Big Data Analysis and Information Systems
- Advanced Software Engineering
- Artificial Intelligence, Machine Learning and Soft Computing
- Computer Ethics
- Design of Safety-critical, Concurrent and Real-time Systems
- Distributed Systems and Middleware Technologies
- High Performance Computer Architectures and Embedded System Design
- Pervasive Computing
- Robotics and Image Analysis
- Web, and Multimedia Technologies, Videogames Design

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-milano/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-milano/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Develop expertise in contemporary design and practice within computer science. You graduate with the ability to explore further how technology influences people’s lives. Read more
Develop expertise in contemporary design and practice within computer science. You graduate with the ability to explore further how technology influences people’s lives.

Our MSc Advanced Computer Science provides you with the flexibility to master the areas of computing that interest and excite you most. You choose from a range of topics including:
-Intelligent systems and robotics
-Machine learning and data mining
-Human language understanding and text processing
-Computer game development
-Cloud and web technologies
-Computer security
-Evolutionary computation

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from brain-computer interfaces, human language understanding and technology, intelligent and adaptive systems, information and data analysis, robotics and embedded systems, to future networks, optoelectronics and radio frequency and signal processing foundations, with many of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, C++, Perl, MySQL, Matlab, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our graduates have achieved success in a variety of professions. Many have pursued careers in computing and information technology, while others have gone on to work in research organisations or become university academics.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

MSc Advanced Computer Science
-MSc Project and Dissertation
-Professional Practice and Research Methodology
-Group Project
-Computer Security
-Intelligent Systems and Robotics (optional)
-Text Analytics (optional)
-Advanced Web Technologies (optional)
-Mobile & Social Application Programming
-Information Retrieval (optional)

Read less
Increasingly, computer networks cannot be considered without the important issue of security; without secure networks, businesses, commerce and communications would all fail. Read more
Increasingly, computer networks cannot be considered without the important issue of security; without secure networks, businesses, commerce and communications would all fail. This course addresses the need for modern computer network professionals.

You cover topics such as current and future internet protocols, programming networked services and securing these systems. We offer a strong practical element through laboratory programmes in software engineering and in computer networking; laboratory work in security includes unique environments where the techniques of the attackers can be observed and stopped using specialist security tools.

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Specialist staff researching computer networks include Professor Mohammed Ghanbari, Dr Nigel Newton, Professor Stuart Walker, and Professor Klaus McDonald-Maier.

More broadly, our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Graduates of our degree in this area have found work in a variety of networking roles and companies including, network management for companies, Internet service providers and developers for security products both in the UK and overseas.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Computer Security
-IP Networking and Applications
-Networking Principles
-Networks Laboratory
-Professional Practice and Research Methodology
-Programming in Python
-Cloud Technologies and Systems (optional)
-Data Science and Decision Making (optional)
-Converged Networks and Services (optional)
-Creating and Growing a New Business Venture (optional)
-Mobile Communications (optional)
-Advanced Transport Networks (optional)
-Network Security and Cryptographic Principles (optional)

Read less

Show 10 15 30 per page



Cookie Policy    X