• University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
SOAS University of London Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Birmingham Featured Masters Courses
Loughborough University Featured Masters Courses
"computer"×
0 miles

Masters Degrees (Computer)

  • "computer" ×
  • clear all
Showing 1 to 15 of 3,517
Order by 
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc in Computer Science course is for you if you are a graduate from one of a wide range of disciplines and are looking to change direction or because of the needs of your chosen career, require a solid foundation in Computer Science.

As the use of computers and computer based systems continues to grow in all aspects of life, at home and at work, it is apparent that there will be for years to come a need for many people who can combine a knowledge of Computer Science, the discipline that underlies Information Technology, and degree level knowledge in a wide variety of other disciplines.

Over the duration of the MSc Computer Science course you will study a variety of modules taught by academic staff that are part of internationally renowned research groups. The course is also regularly updated to ensure that it keeps pace with the rapid developments in Computer Science.

Key Features of Computer Science MSc

• We are top in the UK for career prospects*
• We are 3rd in the UK for teaching quality**
• 5th in the UK overall*
• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]
• 7th in the UK overall and Top in Wales*
• High employability prospects - we are 8th in the UK for graduate prospects*
• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
• Our Project Fair allows students to present their work to local industry
• Strong links with industry
• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017
**Times & Sunday Times University Guide 2016

Modules of Computer Science MSc

Modules for the MSc in Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15].

Student Profile

“I chose the MSc Computer Science as a conversion from my previous War and Society degree, primarily employment opportunities. The course was by no means easy for me coming from an arts background, and the first few weeks I felt a little over my head, but thanks to the truly stimulating content from the syllabus and the high quality of the teaching within the department I soon caught up and began to thrive on the course. My project revolved around a comparative study of the Haskell Web-Framework Yesod and ASP.NET. During the completion of this I picked up many of the skills that I now use on an everyday basis in my role at Kinspeed (A Sheffield based Software House). Since starting work I have been able to apply many of the skills I obtained during my time at Swansea and have no doubt that choosing to study the MSc Computer Science at Swansea was one of the better decisions of my life.”

Chris Swires

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Advanced Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Advanced Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

On the MSc in Advanced Computer Science course you will be thoroughly prepared for a career in IT or related industries. The Advanced Computer Science course is for you if you are a Computer Science graduate or if you have gained experience of computing and programming in a different first degree. Willingness to work hard and an ability to problem solve are equally important for this MSc in Advanced Computer Science. The MSc in Advanced Computer Science course will develop the skills and knowledge you have gained from your first degree by broadening and deepening your knowledge of Computer Science through a variety of advanced modules and material. The MSc in Advanced Computer Science is accredited by the British Computer Society.

Key Features of Advanced Computer Science MSc

• We are top in the UK for career prospects*
• We are 3rd in the UK for teaching quality**
• 5th in the UK overall*
• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]
• 7th in the UK overall and Top in Wales*
• High employability prospects - we are 8th in the UK for graduate prospects*
• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
• Our Project Fair allows students to present their work to local industry
• Strong links with industry
• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017
**Times & Sunday Times University Guide 2016

Modules of Advanced Computer Science MSc

Modules for the MSc in Advanced Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Student Profile

Francesca Madeddu, originally from Italy, completed an outstanding Master’s thesis (which earned her a distinction) investigating interaction with augmented reality on mobile devices. More specifically, she investigated how to interact with virtual Egyptian artefacts placed in real scenes. The final game was deployed at Swansea's Egypt Centre last year and was evaluated by volunteers working at the museum. A Master’s thesis does not often lead to a publication. However, part of Francesca's research was written up as an extended abstract and presented at Computer Graphics and Visual Computing (CGVC), a Eurographics UK conference for visual computing last year. An exceptional achievement!

Read less
Take advantage of one of our 100 Master’s Scholarships to study Theoretical Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Theoretical Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Computer Science is at the cutting edge of modern technology, is developing rapidly, and Swansea Computer Science graduates enjoy excellent employment prospects.

Computer Science now plays a part in almost every aspect of our lives - science, engineering, the media, entertainment, travel, commerce and industry, public services and the home.

The MSc by Research Theoretical Computer Science enables students to pursue a one year individual programme of research. The
Theoretical Computer Science programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the Theoretical Computer Science MSc by Research programme, you will be fully integrated into one of our established computer science research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features of Theoretical Computer Science

The Department of Computer Science is amongst the top 25 in the UK, with a growing reputation in research both nationally and internationally in computer science. It is home to world class researchers, excellent teaching programmes and fine laboratory facilities.

All postgraduate Computer Science programmes will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Links with Industry

Each spring, Computer Science students prepare and present a poster about their project at a project fair – usually together with a system or software demonstration. The Department of Computer Science also strongly encourages students to create CVs and business cards to take along to the fair, as businesses and employers visit to view the range of projects and make contact with the graduating students.

Read less
Leiden University offers five different specialisations in the MSc programme in Computer Science. - Bioinformatics. - Computer Science and Advanced Data Analytics. Read more
Leiden University offers five different specialisations in the MSc programme in Computer Science:

- Bioinformatics
- Computer Science and Advanced Data Analytics
- Computer Science and Science Communication and Society
- Computer Science and Science-Based Business
- Data Science: Computer Science

Visit the website: http://en.mastersinleiden.nl/programmes/computer-science/en/introduction

Course detail

Leiden University offers five different specialisations in the MSc programme in Computer Science.

Three specialisations are dedicated to the research areas of the Leiden Institute of Advanced Computer Science:

- Computer Science and Advanced Data Analytics
- Bioinformatics
- Data Science for Computer Science

The other two specialisations are more broadly oriented, and combine at least one year of the computer science curriculum with training in which specific career opportunities in science-related professions can be explored:

- Computer Science and Science-Based Business.
- Computer Science and Science Communication and Society

Reasons to Choose Computer Science in Leiden:

- The programme offers stimulating, significant and innovative research in the field of Computer Science, including recent advances in Data Analytics and Natural Computing.

- Research at the Leiden Institute of Advanced Computer Science (LIACS) has an excellent international reputation.

- The strength of the programmes is the individual approach: an individually tailored programme will be designed for each student.

- The researchers and assistants are easily accessible. Students and staff work closely together in a research-oriented environment.

- Students with an MSc in Computer Science are admissible to a PhD programme.

- It provides students with a thorough computer science background that will allow them to pursue careers in research or industrial environments.

Careers

Masters of Science in Computer Science are not only professionally trained, they also have an analytical mind and problem-solving attitude. These qualities ensure a wide variety of career opportunities.

Master of Science students in Leiden work in a multinational environment and are being prepared to operate in international settings.

How to apply: http://en.mastersinleiden.nl/arrange/admission

Funding

For information regarding funding, please visit the website: http://prospectivestudents.leiden.edu/scholarships

Read less
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Read more
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Computer engineering encompasses the principles, methods, and modern tools for the design and implementation of computing systems.

Our MSc Computer Engineering is the first in the UK and provides a balanced perspective of both hardware and software elements of computing systems, and their relative design trade-offs and applications. It will build on your knowledge in mathematics, science, and engineering to ensure you have a sound foundation in the areas needed for a career in this field.

Laboratory experiences enable you to understand experimental design and simulation techniques. We are internationally leading in this and you will have access to unique computer engineering platforms including our:
-Intelligent Flat (iSpace)
-Robotics Arena
-Networked intelligent campus (iCampus)
-Advanced networking and multimedia labs

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Upon graduation, you can look for employment in:
-Heavy industries, designing advanced computer systems and control
-Hardware companies, designing and developing microprocessors, personal computers, and supercomputers
-Communication and mobile phone companies, designing advanced computer systems for communications systems
-Large computer and microelectronics companies, writing software and firmware for embedded microcontrollers, and designing VLSI chips, analog sensors, mixed signal circuit boards, and operating systems
-Embedded system companies, developing advanced computer systems, and mobile applications and phones
-Banks and businesses, designing intelligent distributed systems to serve their operations
-Computer games companies, designing advanced computer games
-Our recent graduates have progressed to a variety of senior positions in industry and academia.

Some of the companies and organisations where our former graduates are now employed include Electronic Data Systems, Pfizer Pharmaceuticals, Bank of Mexico, Visa International, Hyperknowledge (Cambridge), Hellenic Air Force, ICSS (Beijing), United Microelectronic Corporation (Taiwan) and within our University.

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Converged Networks and Services
-Digital Signal Processing
-High Level Logic Design
-Professional Practice and Research Methodology
-Programming Embedded Systems
-Advanced Embedded Systems Design (optional)
-Artificial Neural Networks (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Electronic System Design & Integration (optional)
-Intelligent Systems and Robotics (optional)
-Mobile Communications (optional)

Read less
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you. The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning. Read more
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you.

The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning.

PROGRAMME OVERVIEW

This degree provides in-depth training for students interested in a career in industry or in research-oriented institutions focused on image and video analysis, and deep learning.

State-of-the-art computer-vision and machine-learning approaches for image and video analysis are covered in the course, as well as low-level image processing methods.

Students also have the chance to substantially expand their programming skills through projects they undertake.

PROGRAMME STRUCTURE

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and a standard project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Signal Processing A
-Object Oriented Design and C++
-Image Processing and Vision
-Space Robotics and Autonomy
-Satellite Remote Sensing
-Computer Vision and Pattern Recognition
-AI and AI Programming
-Advanced Signal Processing
-Image and Video Compression
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department of Electronic Engineering are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas.
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin computer vision, machine learning as well as how they can be related to robotics
-Be able to analyse problems within the field computer vision and more broadly in electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within computer vision, machine learning
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway
This programme in Computer Vision, Robotics and Machine Learning aims to provide a high-quality advanced training in aspects of computer vision for extracting information from image and video content or enhancing its visual quality using machine learning codes.

Computer vision technology uses sophisticated signal processing and data analysis methods to support access to visual information, whether it is for business, security, personal use or entertainment. The core modules cover the fundamentals of how to represent image and video information digitally, including processing, filtering and feature extraction techniques.

An important aspect of the programme is the software implementation of such processes. Students will be able to tailor their learning experience through selection of elective modules to suit their career aspirations.

Key to the programme is cross-linking between core methods and systems for image and video analysis applications. The programme has strong links to current research in the Department of Electronic Engineering’s Centre for Vision, Speech and Signal Processing.

PROGRAMME LEARNING OUTCOMES

The Department's taught postgraduate programmes are designed to enhance the student's technical knowledge in the topics within the field that he/she has chosen to study, and to contribute to the Specific Learning Outcomes set down by the Institution of Engineering and Technology (IET) (which is the Professional Engineering body for electronic and electrical engineering) and to the General Learning Outcomes applicable to all university graduates.

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods

Time and resource management
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Relevant part of: Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

FACILITIES, EQUIPMENT AND SUPPORT

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab. The Faculty’s student common room is also covered by the University’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices.

Specialist experimental and research facilities, for computationally demanding projects or those requiring specialist equipment, are provided by the Centre for Vision, Speech and Signal Processing (CVSSP).

CAREER PROSPECTS

Computer vision specialists are be valuable in all industries that require intelligent processing and interpretation of image and video. This includes industries in directly related fields such as:
-Multimedia indexing and retrieval (Google, Microsoft, Apple)
-Motion capture (Foundry)
-Media production (BBC, Foundry)
-Medical Imaging (Siemens)
-Security and Defence (BAE, EADS, Qinetiq)
-Robotics (SSTL)

Studying for Msc degree in Computer Vision offers variety, challenge and stimulation. It is not just the introduction to a rewarding career, but also offers an intellectually demanding and exciting opportunity to break through boundaries in research.

Many of the most remarkable advancements in the past 60 years have only been possible through the curiosity and ingenuity of engineers. Our graduates have a consistently strong record of gaining employment with leading companies.

Employers value the skills and experience that enable our graduates to make a positive contribution in their jobs from day one.

Our graduates are employed by companies across the electronics, information technology and communications industries. Recent employers include:
-BAE Systems
-BT
-Philips
-Hewlett Packard
-Logica
-Lucent Technologies
-BBC
-Motorola
-NEC Technologies
-Nokia
-Nortel Networks
-Red Hat

INDUSTRIAL COLLABORATIONS

We draw on our industry experience to inform and enrich our teaching, bringing theoretical subjects to life. Our industrial collaborations include:
-Research and technology transfer projects with industrial partners such as the BBC, Foundry, LionHead and BAE
-A number of our academics offer MSc projects in collaboration with our industrial partners

RESEARCH PERSPECTIVES

This course gives an excellent preparation for continuing onto PhD studies in computer vision related domains.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
For Details see below. The deadline for Applicants who graduated outside of Europe allready expired. This international oriented 2-year master’s degree programme is based on the following pillars. Read more

Application for EU graduates until 30 September 2016

For Details see below. The deadline for Applicants who graduated outside of Europe allready expired.

About the Program

This international oriented 2-year master’s degree programme is based on the following pillars:
▪ The study of a range of topics within the field of human-computer interaction: usability, user-centred design and user interface testing and research, and innovative interface technologies such as virtual reality, mobile systems, adaptive systems, mixed reality, ubiquitous computing and graphic interfaces.
▪ Acquisition of key skills and competences through a project-based study approach.

In the English-language Human-Computer Interaction M.Sc. programme, students focus on theoretical and practical issues in current computer science research in the fields of user-centered design, interactive system development and evaluation. In addition, this technically-oriented HCI master offers the opportunity to participate in interdisciplinary projects and attend courses from Architecture and Urbanism, Art and Design, Media Studies and Media Management.

In general, our programme aims at people with a bachelor’s degree or minor in computer science. The medium of instruction for all mandatory courses is English. The program has received accreditation by Acquin until 30.09.2020 in April 2015.

More Information under https://www.uni-weimar.de/en/media/studies/computer-science-and-media-hci/human-computer-interaction-msc/

Program Structure

The programme comprises 120 ECTS, distributed into the following components:
▪ Four compulsory modules (Advanced HCI, Information Processing and Presentation, Virtual/Augmented Reality and Mobile HCI), each comprising 9 ECTS.
▪ Elective module (24 ECTS in total).
▪ Two research projects (15 ECTS each).
▪ The Master’s thesis module (30 ECTS).

In accordance with the Weimar Bauhaus model, research-oriented projects contribute towards a large proportion of the master’s programme. The elective modules allows students to incorporate courses from other degree programmes such as Media Studies, Media Management, Architecture and Urbanism, and Art and Design alongside the general Computer Science and Media course catalogue. Graded language courses up to 6 ECTS may also be included, or an additional HCI related project. The fourth and final semester is dedicated to the master’s thesis.

Further information on the curriculum : https://www.uni-weimar.de/en/media/studies/computer-science-and-media-hci/curriculum-master-hci/

Career Perspectives

The HCI Master was developed based upon our experiences with the long-standing Computer Science & Media Master program. CS&M graduates have all readily found employment in industry and academia, in R&D departments at large companies (e.g. Volkswagen, BMW), research institutes (e.g. Fraunhofer), as well as at universities, with many continuing into a PhD.

Usability is becoming more and more important for computer systems as computers are embedded in many aspects of everyday life. The ability to design complex systems and interfaces with regard to usability and appropriateness for the usage context increases in importance. HCI graduates can work both in software development, in particular in conception and development of novel interface technologies, and in the area of usability and user research, which both grow in demand on the job market. Our unique project-based study approach provides graduates with a skill set that qualifies them both for research and industry careers.

Studying in Weimar

The Bauhaus, the most influential design school in the 20th century, was founded in 1919 in our main building. A tie to this history was established in the renaming as Bauhaus-Universität Weimar in 1996. We are an international university in the unique, cultural city of Weimar. We are a vibrant institution, not a museum. Experimentation and excellence prevail throughout the 4 faculties where transdisciplinary projects and co-operations in research and education are conducted.

Weimar is a medium-sized city with UNESCO World Cultural Heritage sites. It is known for its connection to literature, the arts and music and also has a music university. The affordable living costs in this area of Germany and the rich cultural program of Weimar make it a very attractive location for students.

Application Process

Applicants who graduated outside of Europe apply online at: http://www.uni-assist.de.
Applicants who graduated in Europe and do not require a visa apply online at: Online-Application.

For details see http://www.uni-weimar.de/en/media/studies/computer-science-and-media-hci/application-master-hci/

Many typical questions about the program, application process and requirements are answered in our FAQ http://www.uni-weimar.de/en/media/studies/computer-science-and-media-hci/faq-application-hci/

Requirements

Higher Education Entrance Qualification:

Students need a school leaving certificate for studies completed at secondary education level. The formal entrance qualifications for international students are checked by uni-assist (see application process).

Academic Background in Computer Science (CS):

You need some academic background in CS, such as a bachelor's degree in CS, business informatics, HCI or related areas with a focus on CS and HCI. Students with a minor in computer science (at least 60 European Credit Points) may apply, here, decisions are on a case-by-case-base.

Only diplomas of international accredited universities will be accepted. Non-academic, practical experience in computer science alone does not suffice to qualify you.

Sufficient Marks from previous studies:

If the converted credit-weighted average grade of your Bachelor's degree is between 1.0 and 2.0 in the German system, your chances of acceptance are very good. Uni-assist does the conversion into the German system.

Language Requirements:

See http://www.uni-weimar.de/en/media/studies/computer-science-and-media-hci/application-master-hci/

The medium of instruction is English, some electives can be taken in German. B2 level (CEFR) of English proficiency is needed. We require a standardised language certificate (unless your bachelor degree was done in a native-English speaking country). We accept three types of language proficiency certificates:

TOEFL (80 internet-based, 550 paper-based at minimum)
IELTS (6.0 minimum)
ESOL Cambridge First Certificate in English

To be admitted, international students have to provide proof of German proficiency at level A1 (CEFR). This is required for registration to the program. You can apply before having the A1 certificate, but might need to show you are registered for the exam for your visum.


Motivational Letter and CV:

We highly recommend a detailed CV and motivation letter. Please do not send lengthy standard letters. Make clear you know our curriculum and point out why you chose our programme, and describe your specific interest in HCI i and why you want to specialize in this area.

Further information

Please check our FAQ
http://www.uni-weimar.de/en/media/studies/computer-science-and-media-hci/faq-application-hci/


link to Video by an international Master student (from the sibling program) talking about her experiences: https://vimeo.com/77485926

Read less
The Department of Computer Science at Binghamton University aims to provide all graduates with a strong foundation in computer science while also offering the opportunity to pursue specific interests within computer science and/or interests in other disciplines. Read more
The Department of Computer Science at Binghamton University aims to provide all graduates with a strong foundation in computer science while also offering the opportunity to pursue specific interests within computer science and/or interests in other disciplines. The program provides students with an understanding of the theory and practice of automating the representation, storage and processing of information, while emphasizing experimental research to design and engineer a wide variety of computer and information systems.

The Master of Science in Computer Science (MSCS) is intended for students with a strong background in computer science and a desire to prepare for research studies or professional practice. If you have bachelor's degree in computer science or a related field, you're invited to apply for admission to our MSCS program.

The doctoral program leads to a PhD in Computer Science. Students admitted into the program typically have a master's degree in computer science or a closely related discipline. Students with a bachelor's degree and a strong academic record may also be directly admitted.

Recent doctoral graduates have gone on to careers in as software engineering at Intel, eBay, Cisco Systems, positions at Hewlett Packard, Microsoft, Twitter, Bloomberg, the Air Force Research Lab, and the U.S. Census. Academic placements include assistant professorships at California State University at Fullerton, Valdosta State University, and Harran University, Turkey.

The Master's program leads to a Master of Science in Computer Science. It is intended for students with a strong background in computer science and a desire to prepare for research studies or professional practice. Holders of the baccalaureate degree in computer science or a related field are invited to apply for admission to the MSCS program. Students whose undergraduate degree is not in computer science may be required to complete some preparatory work in addition to fulfilling the requirements listed below.
Program requirements include four core courses taken over the first two semesters of study. These courses are Computer Organization and Architecture, Operating Systems, Programming Languages and Design & Analysis of Computer Algorithms. Three graduating options are offered: a thesis option, a project option and a comprehensive exam. Beyond the 4 core courses, these options require students to complete 4, 5 and 6 elective courses, respectively, chosen from a broad set of courses offered by the Department.

Applicant Qualifications

- Undergraduate major in computer science or related field desirable for admission
- Applicants are additionally expected to have completed coursework in the following areas:
*Algorithms and data structures
*Computer organization and architecture
*Operating systems
*Programming languages
*Discrete mathematics

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university you have attended
- Two letters of recommendation (three letters of recommendation for PhD applicants)
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
As a student of this master’s programme, you will develop a solid grasp of computer systems and networks through a broad, yet in-depth, training experience in the field of Computer Science and Engineering. Read more
As a student of this master’s programme, you will develop a solid grasp of computer systems and networks through a broad, yet in-depth, training experience in the field of Computer Science and Engineering.

You will acquire theoretical knowledge and engineering skills in:
Parallel and Distributed Systems
Computer Security and Dependability
Computer Systems Engineering
Communication Networks

Programme description

The programme instills a set of essential skills that prepare you to work in Information and Computing Technology (ICT).

Courses in Computer Networks, Fault Tolerant Computer Systems, Parallel and Distributed Systems, Computer Architecture, Computer Security, and Real-Time Systems are taught by internationally recognised faculty in Computer Science and Engineering. In addition to academic training in skills related to algorithm design, programming languages and computer systems engineering, you will gain hands-on experience with emerging technologies and have opportunities to participate in cutting-edge research.

This programme is the first within Chalmers to provide the necessary preparation to contribute to ubiquitous computing, cyber-physical systems, and other rapidly growing areas in the expanding ICT industry. If you are interested in becoming a technology expert in these and other areas, the programme provides excellent background for pursuing doctoral studies.

Why apply

You will learn the design methodologies used to construct computer systems and networks. Such methodologies include Fault-Tolerant Distributed Algorithm Design, Concurrent Programming, Computer Systems Engineering, Systems Programming, and Secure and Dependable Systems Design. The coursework is designed to develop both your theoretical knowledge and practical expertise.

For example, you will learn how to:

design a system based on new and existing components (Systems Engineering)
understand low-level hardware/software interaction, develop systems and applications (Programming)
analyse performance and system design limitations (Distributed Computing) and
assess, evaluate, and design systems, programs and applications to increase security and dependability (Systems Design).

Rather than concentrating on a single aspect of computer systems and networks, the courses provide the broad, practical and up-to-date experience required by major ICT companies who develop computer systems and networks.

Who should apply

The programme trains professionals in the field of Computer Science and Engineering. We welcome applications from graduates of Computer Science, Computer Engineering, Information Engineering, Software Engineering, Electrical Engineering, Mechatronics, Mathematics and Physics.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

As an MSc by Research Computer Science student you will be guided by internationally leading researchers in the field of computer science and will carry out a large individual research project. Computer Science is at the cutting edge of modern technology, and is developing rapidly and Swansea Computer Science graduates enjoy excellent employment prospects.

Computer Science now plays a part in almost every aspect of our lives - science, engineering, the media, entertainment, travel, commerce and industry, public services and the home.

The MSc by Research Computer Science degree enables you to pursue a one year individual programme of research in the field of computer science and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

The MSc by Research programmes including Computer Science MSc by Research all have a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in biosciences or cognate discipline and are looking to pursue a wholly research-based programme of study.

As a student of the MSc by Research Computer Science programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Links with Industry

Each spring, Computer Science students prepare and present a poster about their project at a project fair – usually together with a system or software demonstration. We also strongly encourage students to create CVs and business cards to take along to the fair, as businesses and employers visit to view the range of projects and make contact with the graduating students.

Read less
This programme is suitable for both newcomers to computer security and computer forensics and practitioners who wish to further their skills. Read more
This programme is suitable for both newcomers to computer security and computer forensics and practitioners who wish to further their skills. It covers relevant skills, software and hardware technologies, and the more theoretical studies that underpin everyday practice. It ensures that students have a basic understanding of the legal and regulatory requirements and the international standards pertaining to computer security in different nations.

Students gain knowledge of computer crime, police and forensic methods, and the legal requirements for collecting evidence.

At the end of the programme, students are able to administer and configure business-critical distributed applications. They also gain an understanding of the threats to business networks and servers.

The programme includes hands-on training in current forensic tools as used by the police. Students can therefore contribute quickly to the well-being of corporate IT and informational assets.

Though our short course centre opportunity may also be provided to study for the following professional qualifications: Certified Ethical Hacker (EC-Council); EnCase Computer Forensics, Penetration Testing and Vulnerability Assessment.

The availability of some courses is subject to satisfying constraints that may come into effect in the year of entry. In addition, some options are negotiable, indicating that a course selection will need to be approved prior to the student undertaking the requested option.

Visit the website http://www2.gre.ac.uk/study/courses/pg/netsyst/cfsm

Computing - Networking and Systems

Programmes for computer science or computer engineering graduates who wish to develop a specialism in computer systems and advanced software engineering or computer networks.

We offer specialist programmes with an emphasis on all aspects of networking some with extra content on wireless and mobile aspects. There are computer security and computer forensics programmes suitable for the practitioner who wishes to further their skills.

Some programmes concentrate on technical security, security policy management and legal compliance issues which can be excellent preparation for specialist professional exams with CISA (Certified Information Systems Auditor) and CISSP (Certified Information Systems Security Professional).

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)
Cyber Security (15 credits)
Audit and Security (15 credits)
System Administration and Security (15 credits)
Computer Crime and Forensics (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 15 credits from this list of options.

Requirements Analysis & Methods (15 credits)
Database Architectures and Administration (15 credits)
Software Tools and Techniques (15 credits)

Students are required to choose 15 credits from this list of options.

Project Management (15 credits)
Network Architectures and Services (15 credits)
Penetration Testing (15 credits)
Mobile and Network Technologies (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 30 credits from this list of options.

Cyber Security (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)

Students are required to choose 30 credits from this list of options.

Audit and Security (15 credits)
System Administration and Security (15 credits)
Computer Crime and Forensics (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)

Students are required to choose 15 credits from this list of options.

Cyber Security (15 credits)
Managing IT Security and Risk (15 credits)
Network and Internet Technology and Design (15 credits)

Students are required to choose 15 credits from this list of options.

Audit and Security (15 credits)
System Administration and Security (15 credits)
Computer Crime and Forensics (15 credits)

Students are required to choose 15 credits from this list of options.

Requirements Analysis & Methods (15 credits)
Database Architectures and Administration (15 credits)
Software Tools and Techniques (15 credits)

Students are required to choose 15 credits from this list of options.

Project Management (15 credits)
Network Architectures and Services (15 credits)
Penetration Testing (15 credits)
Mobile and Network Technologies (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, coursework and a project.

Professional recognition

This programme is accredited by the British Computer Society (BCS). On successful graduation from this degree, the student will have fulfilled the academic requirement for registration as a Chartered IT Professional (CITP) and partially fulfilled the education requirement for registration as a Chartered Engineer (CEng) or Chartered Scientist (CSci). For a full Chartered status there are additional requirements, including work experience. The programme also has accreditation from the European Quality Assurance Network for Informatics Education (EQANIE).

Career options

Upon successful completion of this programme, students will be proficient in computer security and systems security and are in a position to follow careers in system development and administration where knowledge of security and forensics will be an asset or work in a range of specialist roles including: forensics investigators, security consultants or network management specialists.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643958

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Computer science has a brilliant future! You could help to create new network solutions, build the future digital society, develop secure digital services, or be involved in a ground-breaking international software project. Read more
Computer science has a brilliant future! You could help to create new network solutions, build the future digital society, develop secure digital services, or be involved in a ground-breaking international software project. Perhaps you will develop algorithms for utilising genome data in medicine or optimise bus routes using positioning data. Do you wonder about all the things that can be automated? Or would you like to dig deeper and become a researcher?

In the Master’s programme in computer science you can become an expert in a wide range of fields. You will have access to the focus areas of research in computer science at the University of Helsinki: algorithms, distributed or networked systems, and software engineering. You will gain lasting professional skills for specialist, design, or managerial posts in the corporate world, or for research and doctoral education, since the Master’s programme in computer science gives you the aptitude for both independent working and multidisciplinary teamwork.

This education will give you:
-The ability to advance your knowledge in the different areas of computer science.
-The skill to seek, assess, and analyse scientific information in your own area of expertise, and apply the methods of the field in an ethical and sustainable way.
-The ability to act as expert in the field, and to develop the practices and methods of your field in cooperation with specialists from other fields.
-Oral and written communication skills in an international work environment.

The quality teaching within the computer science programme at the University of Helsinki has been highlighted repeatedly in national and international teaching assessments. The student-centred, in-depth learning gives you a solid basis for life-long learning. Studying at the leading research unit for computer science in Finland offers you constant interaction with current research and insight into the development patterns in the field.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

In future, we will increasingly be using intelligent tools, consisting of networked hardware, software, services, and data. They will work based on intelligent, learning algorithms, data streams carried by communication protocols, and global infrastructures.

Within the Algorithms sub-programme, you will study effective algorithms and their application within other disciplines and in corporate life. Future IT systems will contain more and more intelligent components, the function of which will be based on complex mathematical models created automatically with the aid of machine-learning methods. The problems to be solved are computationally challenging, and the ever increasing amounts of data will create their own challenges when it comes to the efficiency of the algorithms needed.

The Networking and services sub-programme educates you to become an expert and strategic leader in the design and management of new global infrastructures. The infrastructures include Internet technologies in fixed networks and mobile environments, as well as the information and service networks built on top of them. Focus areas include the theory, data security, and trust within distributed systems, interactive systems, and the adaptability of services in a changing environment.

The Software systems sub-programme introduces you to the design and implementation of advanced software. The development of a shared software framework or platform for several software products is very demanding both technically and from the development project viewpoint. Developing such software requires technical skills, but also team- and project work, quality assurance, and communication. Within this sub-programme, you can specialise in software engineering, software technology, or information management, and study the current research questions in these areas in depth.

Selection of the Major

The sub-programmes in the Master’s programme for computer science are:
-Algorithms
-Networking and services
-Software systems

You can select any of these programmes according to your preferences at the beginning of your studies. The sub-programme determines which courses you should take.

Programme Structure

The Master’s programme comprises 120 credits, which can be completed in two years, in accordance with an approved personal study plan. The degree includes:
-80 credits of advanced courses, including shared courses within the programme, courses within the programme which support the thesis topic, the Master’s thesis (Pro gradu), 30 credits.
-40 credits of other courses from your own or other programmes. The other courses can include a work-orientation period.

Career Prospects

The employment outlook within the field is excellent. Masters of computer science find varied positions within the ICT field, both as employees and entrepreneurs. The nature of the education is also geared towards giving you an aptitude for managerial posts. All the sub-programmes provide the qualifications to find employment in a wide variety of jobs.

Software-system graduates often start their careers as software developers and designers, while network graduates often start with software at the infrastructure level (such as data communications, computation, or data entry). The skills learned in the algorithms sub-programme enable you to work on challenging tasks in various fields.

As a graduate you can find employment within small or large corporations as well as organisations in the private, public, or third sector. Due to the global nature of the field, you can find employment anywhere in the world. Taking modules from other education programmes will help you apply your computer science skills in other areas. Many jobs are based on these combinations.

Thanks to its strong scientific basis, the degree is also an excellent springboard to a doctoral programme.

Internationalization

There is a very international atmosphere within the programme, as nearly a third of the students come from abroad, and the advanced courses are instructed by international researchers.

In addition, the University of Helsinki and the Faculty of Science offer you many opportunities for international activities:
-Instruction in English within other education programmes.
-International tasks within the students’ organisations or union.
-Language courses at the Language Centre of the University of Helsinki.

You can also get information and counselling about independent international experience, such as:
-Student exchange in one of the exchange locations of the faculty or university.
-Traineeships abroad.

Computer science at the University of Helsinki is a popular exchange location, especially from Germany. Some 5-10 students come annually; exchange students have come from 14 countries in recent years. The students in the department have taken exchange periods in 16 countries in the past few years.

Research Focus

There are several multidisciplinary research projects under way at the Faculty of Science, which are being carried out in cooperation with the research institutes on the science campus and with other faculties, universities, and corporations. The role of computer science within these projects is to develop the basic methods of the discipline in strategic areas and to collaborate in depth with other disciplines.

The sub-programmes within the Master’s programme cover a considerable part of the strategic focus areas of computer science research at the University of Helsinki: algorithms, data analysis and machine learning, networking and services, software systems, bioinformatics, and data science.

Computer science is part of three Finnish Academy centres of excellence: for computational inference, inversion problems, and cancer genetics. These units represent the collaboration between computer science and other disciplines.

Computer science has coordinated the long-lived Algodan centre of excellence, which has been the basis for many current research groups.

Read less
For professionals with an engineering background in computing or a related discipline such as electronic or electrical engineering, this masters course will equip you will the skills you need to move into computer and network engineering. Read more
For professionals with an engineering background in computing or a related discipline such as electronic or electrical engineering, this masters course will equip you will the skills you need to move into computer and network engineering. You learn about the hardware and software aspects of computer network technologies and examine their design, specification and integration in a range of applications.

Ideal for you if you are a professional with a background in computer engineering, communication systems or electronic/electrical engineering, and provides you with the skills and knowledge needed to move into computer networking. It is particularly useful for people working in companies that rely on constant innovation in electronics, computer engineering and communications.

Computer networks currently provide the infrastructure for most, businesses, educational institutions, retailers, manufacturers and public services. Many companies rely increasingly on computer and network engineering, which is now a global discipline.

This course is hardware and software based, and examines the design, specification, and integration of current and next generation computer and communications network technologies.

This course provides an opportunity for you to
-Increase the depth of your technical knowledge.
-Develop your computer hardware and software skills.
-Gain a thorough working knowledge of computer engineering.
-Study the latest technologies used in modern day computer networking systems and their applications.
-Gain the skills needed to design, develop and maintain computer network systems.

You may wish to expand your current knowledge and expertise if you already have computer networking skills or possibly move into a new area of engineering and have the necessary entry requirements for this course.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-computer-and-network-engineering

Professional recognition

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Full time – 12 to 18 months.
Part time – typically 3 years, maximum 6 years.
Starts September and January.

Modules
The course is based around two main themes, communication and networks, and computer engineering. You study eight modules plus a major project.
-Communications and network modules
At least three from: communication engineering, communication media, communication networks, network applications.
-Computer engineering modules
At least three from: microprocessor engineering, object-oriented methods, operating systems, software engineering.
-Option modules
Up to two from: applicable artificial intelligence, digital signal processing, embedded systems.
-Project (equivalent to four modules)
You undertake a major project under the supervision of a tutor.

Assessment: by final examination, coursework and project reports.

Read less
Degree. Master of Science (two years) with a major in Computer Science and Engineering. Computer science and technology play a key role in every part of the modern world. Read more
Degree: Master of Science (two years) with a major in Computer Science and Engineering.

Computer science and technology play a key role in every part of the modern world. The Computer Science master's programme is centred on the need for computer scientists to master the theoretical foundations of the field and be able to apply and integrate them with other technologies.

The first semester of the programme comprises mandatory core courses in theoretical computer science and programming such as Theory of Computing and Database Technology.

The second and third semesters include elective courses based on students areas of specialisation such as: artificial intelligence, databases and data mining, internet computing, the design and programming of computer games, information security, language technology, human-computer interaction, theoretical computer science or the design and implementation of computer languages.

As the courses given during the programme address both theoretical and practical issues, applicants are expected to have an adequate background in computer science and good programming skills, see the specific requirements.

The Computer Science master's programme focuses on the acquisition of skills necessary for a career at the frontline of modern software technology such as operative system designer, Internet security specialists or game engine programmer. The programme also prepares students for a career in research or continued studies towards a doctoral degree.

The programme is taught at Linköping University, the home of one of the largest centres of computer science and engineering in Northern Europe with 175 employees, including 20 full professors, and internationally renowned for the high quality of its research and education. The research at the Department of Computer Science covers a broad spectrum of topics such as artificial intelligence, cognitive science, security, databases, distributed systems, embedded and real-time systems, human-computer interaction, software engineering.

Welcome to the Institute of Technology at Linköping University

Read less
* Subject to validation, 2017 entry. Liverpool Hope’s MSc Computer Science is a research-informed, academically rigorous course and is designed to provide a flexible, purposeful and challenging set of coherent courses to meet scientific, industrial and employment challenges in this fast-evolving technological area. Read more
* Subject to validation, 2017 entry

Liverpool Hope’s MSc Computer Science is a research-informed, academically rigorous course and is designed to provide a flexible, purposeful and challenging set of coherent courses to meet scientific, industrial and employment challenges in this fast-evolving technological area. Graduates will have developed scientific and analytical skills which are highly valued in the computing, engineering, IT and business industries.

The course offers a mix of compulsory and elective courses, and a research dissertation, so you can focus your skill base and your potential career direction.

The course has been designed with employability in mind, whether it is within IT industry or as a function of other sectors, scientific computing and technical skills are in great demand and therefore highly valued. There are opportunities for placements and enterprise development.

Curriculum

The MSc Computer Science combines academic and practical course, consisting of eight taught courses (four compulsory and four elective) and a dissertation (final research project).

The Compulsory courses are:

· Computational Modelling and Simulation

· Algorithms

· Innovations in Computer Science

· Research Methods for Computer Science

· Dissertation for MSc Computer Science

Elective courses include:

· Embedded Systems and Robotics

· Cloud Computing and Web Services

· Mobile and Ubiquitous Computing

· Human Computer Interaction

· E-Business

Course Descriptions

· Computational Modelling and Simulation (compulsory – 15 credits): This course develops understanding and knowledge of the principles, techniques and design of computational modelling and their applications.

· Algorithms (compulsory - 15 credits): This course gives a firm grounding in the philosophy and evolution of algorithmic design and analysis for computer science, engineering and information systems.

· Innovations in Computer Science (compulsory - 15 credits): You will examine the particular research interests of Computer Science Department.

· Research Methods for Computer Science (compulsory - 15 credits): The course will expose you to the established techniques of research and enquiry that are used to extend, create and interpret knowledge in computer science

· Embedded Systems and Robotics (elective - 15 credits): This course will examine the Robotics Operating System and robotic programming languages, such as Urbi.

· Cloud Computing and Web Services (elective - 15 credits): You will study the concepts behind the idea of cloud computing and web services and gain practical knowledge of Azure, the .Net framework and C#.

· Mobile and Ubiquitous Computing (elective - 15 credits): You will examine mobile phone OSs (Android) and Windows Phone 7. You will learn how to develop software for these devices using JavaFX and C#/Silverlight.

· Human Computer Interaction (elective - 15 credits): Human computer interaction (HCI) is the study of interaction between people and computers and is the most multi-disciplinary module available in the MSc Computer Science.

·
* E-Business (elective - 15 credits): E-business encompasses, and is more than, e-commerce. You will examine e-commerce technology, such as the internet and web-based technologies.

· Dissertation for MSc Computer Science (compulsory - 60 credits): This module will allow the students to develop a Masters level research project with the support of an academic supervisor.

Read less

Show 10 15 30 per page
Featured Listing
★