• University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Cranfield University Featured Masters Courses
Staffordshire University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Manchester Featured Masters Courses
"computational" AND "stat…×
0 miles

Masters Degrees (Computational Statistics)

We have 212 Masters Degrees (Computational Statistics)

  • "computational" AND "statistics" ×
  • clear all
Showing 1 to 15 of 212
Order by 
This MSc teaches advanced analytical and computational skills for success in a data rich world. Read more

This MSc teaches advanced analytical and computational skills for success in a data rich world. Designed to be both mathematically rigorous and relevant, the programme covers fundamental aspects of machine learning and statistics, with potential options in information retrieval, bioinformatics, quantitative finance, artificial intelligence and machine vision.

About this degree

The programme aims to provide graduates with the foundational principles and the practical experience needed by employers in the area of machine learning and statistics. Graduates of this programme will have had the opportunity to develop their skills by tackling problems related to industrial needs or to leading-edge research.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), four to six optional modules (60 to 90 credits), up to two elective modules (up to 30 credits) and a research project (60 credits). Please note that not all combinations of optional modules will be available due to timetabling restrictions.

Core modules

  • Supervised Learning (15 credits)
  • Statistical Modelling and Data Analysis (15 credits)

Optional modules

Students must choose 15 credits from Group One Options. Of the remaining credits, students must choose a minimum of 30 and a maximum of 60 from Group Two, 15 credits from Group Three and a maximum of 30 credits from Electives.

Group One Options (15 credits)

  • Graphical Models (15 credits)
  • Probabilistic and Unsupervised Learning (15 credits)

Group Two Options (30 to 60 credits)

  • Advanced Deep Learning and Reinforcement Learning (15 credits)
  • Advanced Topics in Machine Learning (15 credits)
  • Applied Machine Learning (15 credits)
  • Approximate Inference and Learning in Probabilistic Models (15 credits)
  • Information Retrieval and Data Mining (15 credits)
  • Introduction to Deep Learning (15 credits)
  • Machine Vision (15 credits)
  • Statistical Natural Language Processing (15 credits)

Group Three Options (15 credits)

  • Applied Bayesian Methods (15 credits)
  • Statistical Design of Investigations (15 credits)
  • Statistical Inference (15 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

A list of acceptable elective modules is available on the Departmental page.

Dissertation/report

All MSc students undertake an independent research project, which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, discussions, practical sessions and project work. Student performance is assessed through unseen written examinations, coursework, practical application and the project assessment process.

Further information on modules and degree structure is available on the department website: Computational Statistics and Machine Learning MSc

Careers

There is a strong national and international demand for graduates with skills at the interface of traditional statistics and machine learning. Substantial sectors of UK industry, including leading, large companies already make extensive use of computational statistics and machine learning techniques in the course of their business activities. Globally there are a large number of very successful users of this technology, many located in the UK. Areas in which expertise in statistics and machine learning is in particular demand include: finance, banking, insurance, retail, e-commerce, pharmaceuticals, and computer security. Graduates have gone on to further study at, for example, the Universities of Cambridge, Helsinki, Chicago, as well as at UCL. The MSc is also ideal preparation for a PhD, in statistics, machine learning or a related area.

Recent career destinations for this degree

  • Data Scientist, Interpretive
  • Software Engineer, Google
  • Data Scientist, YouGov
  • Research Engineer, DeepMind
  • PhD in Computer Science, UCL

Employability

Scientific experiments and companies now routinely generate vast databases and machine learning and statistical methodologies are core to their analysis. There is a considerable shortfall in the number of qualified graduates in this area internationally. CSML graduates have been in high demand for PhD positions across the sciences. In London there are many companies looking to understand their customers better who have hired our CSML graduates. Similarly graduates now work in companies in, amongst others, Germany, Iceland, France and the US in large-scale data analysis. The finance sector has also hired several graduates recently.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The Centre for Computational Statistics and Machine Learning (CSML) is a major European Centre for machine learning having coordinated the PASCAL European Network of Excellence.

Coupled with the internationally renowned Gatsby Computational Neuroscience and the Machine Learning Unit, and UCL Statistical Science, this MSc programme draws on world-class research and teaching talents. The centre has excellent links with world-leading companies in internet technology, finance and related information areas.

The programme is designed to train students in both the practical and theoretical sides of machine learning. A significant grounding in computational statistics is also provided.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Computer Science

96% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
There is a high demand from industry worldwide, including from substantial sectors in the UK, for graduates with skills at the interface of traditional statistics and machine learning. Read more

There is a high demand from industry worldwide, including from substantial sectors in the UK, for graduates with skills at the interface of traditional statistics and machine learning. MRes graduates benefit from the department's excellent links in finding employment; this programme is also ideal preparation for a research career.

About this degree

The programme aims to provide graduates with the foundational principles and the practical experience needed by employers in the areas of computational statistics and machine learning (CSML). Students will have the opportunity to develop their skills by tackling problems related to industrial needs or to leading-edge research. They also undertake a nine-month research project which enables the department to more fully assess their research potential.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (30 credits), three optional modules (45 credits) and a dissertation (105 credits).

Core modules

  • Investigating Research
  • Researcher Professional Development

Optional modules

Student select three modules from the following:

  • Advanced Deep Learning and Reinforcement Learning
  • Advanced Topics in Machine Learning
  • Applied Bayesian Methods
  • Approximate Inference and Learning in Probabilistic Models
  • Graphical Models
  • Information Retrieval and Data Mining
  • Introduction to Deep Learning
  • Introduction to Machine Learning
  • Inverse Problems in Imaging
  • Machine Vision
  • Probabilistic and Unsupervised Learning
  • Selected Topics in Statistics
  • Statistical Computing
  • Statistical Inference
  • Statistical Models and Data Analysis
  • Supervised Learning

Dissertation/report

All students undertake an independent research project which culminates in a substantial dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials and seminars. Lectures are often supported by laboratory work with assistance from demonstrators. Students liaise with their academic or industrial supervisor to choose a study area of mutual interest for the research project. Performance is assessed by unseen written examinations, coursework and the research dissertation.

Further information on modules and degree structure is available on the department website: Computational Statistics and Machine Learning MRes

Careers

Graduates have gone on to further study at, for example, the Universities of Cambridge, Helsinki, and Chicago, as well as at UCL. Similarly, CSML graduates now work in companies in Germany, Iceland, France and the US in large-scale data analysis. The finance sector is also particularly interested in CSML graduates.

Employability

Scientific experiments and companies now routinely generate vast databases, and machine learning and statistical methodologies are core to their analysis. There is a considerable shortfall in the number of qualified graduates in this area internationally, while in London there are many companies looking to understand their customers better who have hired CSML graduates. Computational statistics and machine learning skills are in particular demand in areas including finance, banking, insurance, retail, e-commerce, pharmaceuticals, and computer security. CSML graduates have obtained PhD positions both in machine learning and related large-scale data analysis, and across the sciences.

Why study this degree at UCL?

The Centre for Computational Statistics and Machine Learning (CSML) is a major European Centre for machine learning, having co-ordinated the PASCAL European Network of Excellence which represents the largest network of machine learning researchers in Europe.

UCL Computer Science graduates are particularly valued by the world’s leading organisations in internet technology, finance, and related information areas, as a result of the department’s strong international reputation and ideal location close to the City of London.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Computer Science

96% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
International Master's in Statistics - MSc. https://www.kent.ac.uk/courses/postgraduate/163/international-masters-statistics. Read more
International Master's in Statistics - MSc: https://www.kent.ac.uk/courses/postgraduate/163/international-masters-statistics

Overview

The International Master’s in Statistics develops your practical, statistical and computing skills to prepare you for a professional career in statistics or as a solid basis for further research in the area.

The programme has been designed to provide a deep understanding of the modern statistical methods required to model and analyse data. You will benefit from a thorough grounding in the ideas underlying these methods and develop your skills in key areas such as practical data analysis and data modelling.

It has been accredited by the Royal Statistical Society (RSS) and equips aspiring professional statisticians with the skills they need for posts in industry, government, research and teaching. It also enables you to develop a range of transferable skills that are attractive to employers within the public and private sectors.

Students whose mathematical and statistical background is insufficient for direct entry on to the appropriate programme, may apply for this course. The first year of the programme gives you a strong background in statistics, including its mathematical aspects, equivalent to the Graduate Diploma in Statistics. This is followed by the MSc in Statistics.

International Master's in Statistics with Finance - MSc: https://www.kent.ac.uk/courses/postgraduate/164/international-masters-statistics-finance

Overview

This programme, accredited by the Royal Statistical Society (RSS), equips aspiring professional statisticians with the skills they will need for posts in industry, government, research and teaching. It is suitable preparation too for careers in other fields requiring a strong statistical background.

Students whose mathematical and statistical background is insufficient for direct entry on to the appropriate programme, may apply for this course. The first year of the programme gives you a strong background in statistics, including its mathematical aspects, equivalent to the Graduate Diploma in Statistics. This is followed by the MSc in Statistics with Finance.

About the School of Mathematics, Statistics and Actuarial Science (SMSAS)

The School has a strong reputation for world-class research and a well-established system of support and training, with a high level of contact between staff and research students. Postgraduate students develop analytical, communication and research skills. Developing computational skills and applying them to mathematical problems forms a significant part of the postgraduate training in the School. We encourage all postgraduate statistics students to take part in statistics seminars and to help in tutorial classes.

The Statistics Group is forward-thinking, with varied research, and received consistently high rankings in the last two Research Assessment Exercises.

Statistics at Kent provides:

- a programme that gives you the opportunity to develop practical, mathematical and computing skills in statistics, while working on challenging and important problems relevant to a broad range of potential employers

- teaching and supervision by staff who are research-active, with established reputations and who are accessible, supportive and genuinely interested in your work

- advanced and accessible computing and other facilities

- a congenial work atmosphere with pleasant surroundings, where you can socialise and discuss issues with a community of other students.

Research areas

Biometry and ecological statistics
Specific interests are in biometry, cluster analysis, stochastic population processes, analysis of discrete data, analysis of quantal assay data, overdispersion, and we enjoy good links within the University, including the School of Biosciences and the Durrell Institute of Conservation and Ecology. A recent major joint research project involves modelling the behaviour of yeast prions and builds upon previous work in this area. We also work in collaboration with many external institutions.

Bayesian statistics
Current work includes non-parametric Bayes, inference robustness, modelling with non-normal distributions, model uncertainty, variable selection and functional data analysis.
Bioinformatics, statistical genetics and medical statistics
Research covers bioinformatics (eg DNA microarray data), involving collaboration with the School of Biosciences. Other interests include population genetics, clinical trials and survival analysis.

Nonparametric statistics
Research focuses on empirical likelihood, high-dimensional data analysis, nonlinear dynamic analysis, semi-parametric modelling, survival analysis, risk insurance, functional data analysis, spatial data analysis, longitudinal data analysis, feature selection and wavelets.

Careers

Students often go into careers as professional statisticians in industry, government, research and teaching but our programmes also prepare you for careers in other fields requiring a strong statistical background. You have the opportunity to attend careers talks from professional statisticians working in industry and to attend networking meetings with employers.

Recent graduates have started careers in diverse areas such as the pharmaceutical industry, financial services and sports betting.

Professional recognition

The taught programmes in Statistics and Statistics with Finance provide exemption from the professional examinations of the Royal Statistical Society and qualification for Graduate Statistician status.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Data science brings together computational and statistical skills for data-driven problem solving, which is in increasing demand in fields such as marketing, pharmaceutics, finance and management. Read more

Data science brings together computational and statistical skills for data-driven problem solving, which is in increasing demand in fields such as marketing, pharmaceutics, finance and management. This MSc will equip students with the analytical tools to design sophisticated technical solutions using modern computational methods and with an emphasis on rigorous statistical thinking.

About this degree

The programme combines training in core statistical and machine learning methodology, beginning at an introductory level, with a range of optional modules covering more specialised knowledge in statistical computing and modelling. Students choosing the statistics specialisation will take one compulsory module and up to two additional modules in computer science, with the remaining modules (including the research project) taken mainly from within UCL Statistical Science.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation/report (60 credits).

Core modules

  • Introduction to Statistical Data Science
  • Introduction to Machine Learning
  • Statistical Design of Investigations
  • Statistical Computing

Optional modules

At least two from a choice of Statistical Science modules including:

  • Applied Bayesian Methods
  • Decision & Risk
  • Factorial Experimentation
  • Forecasting
  • Quantitative Modelling of Operational Risk and Insurance Analytics
  • Selected Topics in Statistics
  • Stochastic Methods in Finance I
  • Stochastic Methods in Finance II
  • Stochastic Systems

Up to two from a choice of Computer Science modules including:

  • Affective Computing and Human-Robot Interaction
  • Graphical Models
  • Statistical Natural Language Processing
  • Information Retrieval & Data Mining

Dissertation/report

All students undertake an independent research project, culminating in a dissertation usually of 10,000-12,000 words. Workshops running during the teaching terms provide preparation for this project and cover the communication of statistics.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials and classes, some of which are dedicated to practical work. Assessment is through written examination and coursework. The research project is assessed through the dissertation and a 15-minute presentation.

Further information on modules and degree structure is available on the department website: Data Science MSc

Careers

Graduates from UCL Statistical Science typically enter professional employment across a broad range of industry sectors or pursue further academic study. 

The Data Science MSc is a new programme with the first cohort of students due to graduate in 2017. Recent career destinations for graduates of the related Statistics MSc include:

  • Management Associate, HSBC
  • Statistical Analyst, Nielsen
  • PhD in Statistics, UCL
  • Mortgage Specialist, Citibank
  • Research Assistant Statistician, Cambridge Institute of Public Health

Employability

Data science professionals are likely to be increasingly sought after as the integration of statistical and computational analytical tools becomes essential in all kinds of organisations and enterprises. A thorough understanding of the fundamentals is to be expected from the best practitioners. For instance, in applications in marketing, the healthcare industry and banking, computational skills should should be accompanied by statistical expertise at graduate level. Data scientists need a broad background knowledge so that they will be able to adapt to rapidly evolving challenges. Recent graduates from the related Statistics MSc have been offered positions as research analysts or consultants, and job opportunities in these areas are increasing.

Why study this degree at UCL?

UCL Statistical Science has a broad range of research interests, but has particular strengths in the area of computational statistics and in the interface between statistics and computer science.

UCL's Centre for Computational Statistics and Machine Learning, in which many members of the department are active, has a programme of seminars, masterclasses and other events. UCL's Centre for Data Science and Big Data Institute are newer developments, again with strong involvement of the department, where emphasis is on research into big data problems.

UCL is one of the founding members of the Alan Turing Institute, and both UCL Statistical Science and UCL Computer Science will be playing major roles in this exciting new development which will make London a major focus for big data research.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Statistical Science

82% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
About the MSc programme. The MSc Statistics (Social Statistics) aims to provide high-level training in the theory and application of modern statistical methods, with a focus on methods commonly used in the social sciences. Read more

About the MSc programme

The MSc Statistics (Social Statistics) aims to provide high-level training in the theory and application of modern statistical methods, with a focus on methods commonly used in the social sciences.

You will gain insights into the design and analysis of social science studies, including large and complex datasets, study the latest developments in statistics, and learn how to apply advanced methods to investigate social science questions.  

The programme includes two core courses which provide training in fundamental aspects of probability and statistical theory and methods, the theory and application of generalised linear models, and programming and data analysis using the R and Stata packages. These courses together provide the foundations for the optional courses on more advanced statistical modelling, computational methods and statistical computing. Options also include specialist courses from the Departments of Methodology, Economics, Geography and Social Policy. 

Research Stream

The Research stream is similar to the nine-month programme, but will include a dissertation component, extending the programme to twelve months.

Graduate destinations

There is a high demand for graduates with advanced statistics training and an interest in social science applications, and students on this programme have excellent career prospects. 

Potential employers include the public sector (the Office for National Statistics, government departments, universities), market research organisations, survey research organisations and NGOs. This programme would be ideal preparation for doctoral research in social statistics or quantitative social science.

Further information on graduate destinations for this programme



Read less
Statistics is the study of the collection, analysis, interpretation, presentation and organisation of data. Read more

About the course

Statistics is the study of the collection, analysis, interpretation, presentation and organisation of data. Statistical analysis and data analytics is listed as one of the highly desirable skills employers are looking for, and with data becoming an ever increasing part of modern life, the talent to extract information and value from complex data is scarce.

The new Statistics and Data Analytics MSc is designed to train the next generation of statisticians with a focus on the field of data analytics. Employers expect skills in both statistics and computing. This master’s programme will provide a unique and coherent blend of modern statistical methods together with the associated computational skills that are essential for handling large quantities of unstructured data. This programme offers training in modern statistical methodology, computational statistics and data analysis from a wide variety of fields, including financial and health sectors.

Aims

Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. The aim of the MSc Statistics and Data Analytics is to produce graduates that:

- Are equipped with a range of advanced statistical methods and the associated computational skills for handling large quantities of unstructured data
- Have developed a critical awareness of the underlying needs of industry and commerce through relevant case studies
- Are able to analyse real-world data and to communicate the output of sophisticated statistical models in order to inform decision making processes
- Have the necessary computational skills to build and analyse simple/appropriate solutions using statistical Big Data technologies

Course Content

Compulsory modules:

Quantitative Data Analysis
Research Methods and Case Studies
Computer Intensive Statistical Methods
Modern Regression and Classification
Data Visualisation
Big Data Analytics
Time Series Modelling
Network Models
Dissertation

Statistics with Data Analytics Dissertation
Towards the end of the Spring Term, students will choose a topic for an individual research project, which will lead to the preparation and submission of an MSc dissertation. The project supervisor will usually be a member of the Brunel Statistics or Financial Mathematics group. In some cases the project may be overseen by an external supervisor based in industry or another academic institution..

Teaching

You’ll be taught using a range of teaching methods, including lectures, computer labs and discussion groups. Lectures are supplemented by computer labs and seminars/exercise classes and small group discussions. The seminars will be useful for you to carry out numerical data analysis, raise questions arising from the lectures, exercise sheets, or self-studies in an interactive environment.

The first term provides a thorough grounding in core programming, statistical and data analysis skills. In addition to acquiring relevant statistical and computational methods, students are encouraged to engage with real commercial and/or industrial problems through a series of inspiring case studies delivered by guest speakers. Support for academic and personal growth is provided through a range of workshops covering topics such as data protection, critical thinking, presentation skills and technical writing skills.

You’ll also complete an individual student project supervised by a relevant academic on your chosen topic.

Assessment

The assessment of all learning outcomes is achieved by a balance of coursework and examinations. Assessments range from written reports/essays, group work, presentations through to conceptual/statistical modelling and programming exercises, according to the demands of particular modular blocks. Additionally, class tests are used to assess a range of knowledge, including a range of specific technical subjects.

Special Features

The Statistics Group is a growing, highly-research active group, with collaborations across industry and academia, including engineering and pharmaceutical companies, Cambridge University and Imperial College London

Brunel’s Mathematics department is a member of the London Graduate School in Mathematical Finance. This consortium of mathematical finance groups comprises Birkbeck College, Brunel University London, Imperial College London, King’s College London, London School of Economics and Political Science and University College London. 

Read less
Overview. The MSc Statistics and Applied Probability is suitable for students who wish to broaden and deepen their knowledge in both statistics and applied probability. Read more

Overview

The MSc Statistics and Applied Probability is suitable for students who wish to broaden and deepen their knowledge in both statistics and applied probability.

The course offers you the opportunity to further your knowledge in both of these areas, which will be beneficial for a professional career in statistics or as a solid basis for research in statistics or applied probability.

Topics include advanced stochastic processes, queueing processes, epidemic models and reliability, as well as most of those listed for the MSc Statistics.

This course is accredited by the Royal Statistical Society

Key facts:

- This course is informed by the work being carried out in the Statistics and Probability research group.

- The School of Mathematical Sciences is one of the largest and strongest mathematics departments in the UK, with over 60 full-time academic staff.

- In the latest independent Research Assessment Exercise, the School ranked 8th in the UK in "research power" across the three subject areas within the School of Mathematical Sciences (Pure Mathematics, Applied Mathematics, Statistics and Operational Research).

- This course is accredited by the Royal Statistical Society.

Modules

Advanced Stochastic Processes

Applications of Statistics

Computational Statistics

Fundamentals of Statistics

Medical Statistics

Statistics Dissertation

Time Series and Forecasting

Topics in Biomedical Statistics

English language requirements for international students

IELTS: 6.0 (with no less than 5.5 in any element)

Further information



Read less
Overview. The MSc Statistics offers a modern advanced curriculum in statistics which will enable you to broaden and deepen your understanding of the subject and its applications. Read more

Overview

The MSc Statistics offers a modern advanced curriculum in statistics which will enable you to broaden and deepen your understanding of the subject and its applications.

The programme will provide you with specific techniques and skills suitable for a professional career in statistics or as a solid basis for research in the area.

Optional topics typically include generalised linear models, Markov Chain Monte Carlo, the bootstrap, multivariate analysis, spatial statistics, time series and forecasting, multilevel models, stochastic finance, and shape and image analysis.

This course is accredited by the Royal Statistical Society.

Key facts:

- This course is informed by the work being carried out in the Statistics and Probability research group.

- The School of Mathematical Sciences is one of the largest and strongest mathematics departments in the UK, with over 60 full-time academic staff.

- In the latest independent Research Assessment Exercise, the School ranked 8th in the UK in "research power" across the three subject areas within the School of Mathematical Sciences (Pure Mathematics, Applied Mathematics, Statistics and Operational Research).

Modules

Advanced Stochastic Processes

Applications of Statistics

Computational Statistics

Fundamentals of Statistics

Medical Statistics

Statistics Dissertation

Time Series and Forecasting

Topics in Biomedical Statistics

English language requirements for international students

IELTS: 6.0 (with no less than 5.5 in any element)

Further information



Read less
Statistics is one of the most important fields of study in the world. The techniques we use to model and manipulate data guide the political, financial and social decisions that shape our modern society. Read more
Statistics is one of the most important fields of study in the world. The techniques we use to model and manipulate data guide the political, financial and social decisions that shape our modern society. If you are a logical person and enjoy solving problems, statistics at Essex is for you.

Our Department of Mathematical Sciences embraces pure mathematics, applied mathematics and statistics, and operational research, and our course offers you the opportunity to study statistics alongside other mathematical subjects.

Providing a balance of solid statistical theory and practical application, this course builds your knowledge in all areas of statistics, data analysis and probability. You also have the opportunity to specialise, taking optional modules in topics including:
-Survey methodology
-Operations research
-Applied mathematics
-Computer science

Our interdisciplinary research recognises that mathematics, including what can be very abstract mathematics, is an essential part of research in many other disciplines.

Our department has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

Our expert staff

Our Department of Mathematical Sciences is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

Our staff have published several well-regarded text books and are world leaders in their individual specialisms, with their papers appearing in learned journals like Communications in Algebra, Studia Logica, International Journal of Algebra and Computation, SIAM Journal in Optimization, IEEE Evolutionary Computation, Computers and Operations Research, Ecology, Journal of Mathematical Biology, and Journal of Statistical Applications in Genetics and Molecular Biology.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We host regular events and seminars throughout the year
-Our students run a lively Mathematics Society, an active and social group where you can explore your interest in your subject with other students

Your future

Working in industries such as health, business, social care and finance, graduates are consistently in demand, working on projects such as efficacy of social policy, comparable data of cardiac rehabilitation and manipulation of raw data for academic research.

Our Masters graduates have progressed into careers in banking and finance, actuarial sciences, biological sciences, market research and statistics, management and consultancy etc.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Modelling Experimental Data
-Statistical Methods
-Stochastic Processes
-Applied Statistics
-Bayesian Computational Statistics
-Research Methods
-Dissertation
-Nonlinear Programming (optional)
-Financial Modelling (optional)
-Research Methods in Finance: Empirical Methods in Finance (optional)
-Machine Learning and Data Mining (optional)
-Cloud Technologies and Systems (optional)
-Time Series Econometrics (optional)
-Panel Data Methods (optional)
-Topics in Contemporary Social Theory (optional)
-Introduction to Survey Design and Management (optional)
-Applied Sampling (optional)

Read less
These programmes offers the opportunity to begin or consolidate your research career under the guidance of internationally renowned researchers and professionals in the School of Mathematics, Statistics and Actuarial Science (SMSAS). Read more
These programmes offers the opportunity to begin or consolidate your research career under the guidance of internationally renowned researchers and professionals in the School of Mathematics, Statistics and Actuarial Science (SMSAS).

Research interests are diverse and include: Bayesian statistics; bioinformatics; biometry; ecological statistics; epidemic modelling; medical statistics; nonparametric statistics and semi-parametric modelling; risk and queueing theory; shape statistics.

Visit the website https://www.kent.ac.uk/courses/postgraduate/169/statistics

About the School of Mathematics, Statistics and Actuarial Science (SMSAS):

The School has a strong reputation for world-class research and a well-established system of support and training, with a high level of contact between staff and research students. Postgraduate students develop analytical, communication and research skills. Developing computational skills and applying them to mathematical problems forms a significant part of the postgraduate training in the School. We encourage all postgraduate statistics students to take part in statistics seminars and to help in tutorial classes.

The Statistics Group is forward-thinking, with varied research, and received consistently high rankings in the last two Research Assessment Exercises.

Statistics at Kent provides:

- a programme that gives you the opportunity to develop practical, mathematical and computing skills in statistics, while working on challenging and important problems relevant to a broad range of potential employers

- teaching and supervision by staff who are research-active, with established reputations and who are accessible, supportive and genuinely interested in your work

- advanced and accessible computing and other facilities

- a congenial work atmosphere with pleasant surroundings, where you can socialise and discuss issues with a community of other students.

Course structure

The research interests of the group are in line with the mainstream of statistics, with emphasis on both theoretical and applied subjects.

There are strong connections with a number of prestigious research universities such as Texas A&M University, the University of Texas, the University of Otago, the University of Sydney and other research institutions at home and abroad.

The group regularly receives research grants. The EPSRC has awarded two major grants, which support the National Centre for Statistical Ecology (NCSE), a joint venture between several institutions. A BBSRC grant supports stochastic modelling in bioscience.

Research areas

- Biometry and ecological statistics

Specific interests are in biometry, cluster analysis, stochastic population processes, analysis of discrete data, analysis of quantal assay data, overdispersion, and we enjoy good links within the University, including the School of Biosciences and the Durrell Institute of Conservation and Ecology. A recent major joint research project involves modelling the behaviour of yeast prions and builds upon previous work in this area. We also work in collaboration with many external institutions.

- Bayesian statistics

Current work includes non-parametric Bayes, inference robustness, modelling with non-normal distributions, model uncertainty, variable selection and functional data analysis.

- Bioinformatics, statistical genetics and medical statistics

Research covers bioinformatics (eg DNA microarray data), involving collaboration with the School of Biosciences. Other interests include population genetics, clinical trials and survival analysis.

- Nonparametric statistics

Research focuses on empirical likelihood, high-dimensional data analysis, nonlinear dynamic analysis, semi-parametric modelling, survival analysis, risk insurance, functional data analysis, spatial data analysis, longitudinal data analysis, feature selection and wavelets.

Careers

Students often go into careers as professional statisticians in industry, government, research and teaching but our programmes also prepare you for careers in other fields requiring a strong statistical background. You have the opportunity to attend careers talks from professional statisticians working in industry and to attend networking meetings with employers.

Recent graduates have started careers in diverse areas such as the pharmaceutical industry, financial services and sports betting.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The MSc in Statistics aims to train professional statisticians for posts in industry, government, research and teaching. It also provides a suitable preparation for careers in other fields requiring a strong statistical background. Read more
The MSc in Statistics aims to train professional statisticians for posts in industry, government, research and teaching. It also provides a suitable preparation for careers in other fields requiring a strong statistical background.

*This course will be taught at the Canterbury campus*

Key benefits

- Statistics is thriving at Kent, and the research of the Group was rated in the top ten in the UK in the most recent Research Assessment Exercise. We are also one of the main hubs of the National Centre for Statistical Ecology.

- Accredited by the Royal Statistical Society (RSS)

Visit the website: https://www.kent.ac.uk/courses/postgraduate/166/statistics

Course Outline

The programme, which has recently been updated, trains professional statisticians for posts in industry, government, research and teaching. It provides a suitable preparation for careers in other fields requiring a strong statistical background. Core modules give a thorough grounding in modern statistical methods and there is the opportunity to choose additional topics to study.

Format and assessment

You undertake a substantial project in statistics, supervised by an experienced researcher. Some projects are focused on the analysis of particular complex data sets while others are more concerned with generic methodology.

You gain experience of analysing real data problems through practical classes and exercises. The programme includes training in the computer language R.

Modules:

- Stochastic Processes and Time Series (15 credits)
- Stochastic Models in Ecology and Medicine (15 credits)
- Analysis of Large Data Sets (15 credits)
- Practical Statistics and Computing (15 credits)
- Computational Statistics (15 credits)
- Project (60 credits)
- Probability and Classical Inference (15 credits)
- Advanced Regression Modelling (15 credits)
- Bayesian Statistics (15 credits)
- Principles of Data Collection (15 credits)

Assessment is through coursework and formal examinations.

Careers

Students often go into careers as professional statisticians in industry, government, research and teaching but our programmes also prepare you for careers in other fields requiring a strong statistical background. You have the opportunity to attend careers talks from professional statisticians working in industry and to attend networking meetings with employers.

Recent graduates have started careers in diverse areas such as the pharmaceutical industry, financial services and sports betting.

How to apply: https://www.kent.ac.uk/courses/postgraduate/apply/

Why study at The University of Kent?

- Shortlisted for University of the Year 2015
- Kent has been ranked fifth out of 120 UK universities in a mock Teaching Excellence Framework (TEF) exercise modelled by Times Higher Education (THE).
- In the Research Excellence Framework (REF) 2014, Kent was ranked 17th* for research output and research intensity, in the Times Higher Education, outperforming 11 of the 24 Russell Group universities
- Over 96% of our postgraduate students who graduated in 2014 found a job or further study opportunity within six months.
Find out more: https://www.kent.ac.uk/courses/postgraduate/why/

Postgraduate scholarships and funding

We have a scholarship fund of over £9 million to support our taught and research students with their tuition fees and living costs. Find out more: https://www.kent.ac.uk/scholarships/postgraduate/

English language learning

If you need to improve your English before and during your postgraduate studies, Kent offers a range of modules and programmes in English for Academic Purposes (EAP). Find out more here: https://www.kent.ac.uk/courses/postgraduate/international/english.html

Read less
This one year MSc programme in Statistics and Computational Finance aims to train students to work as professional statisticians, not only at the interface between statistics and finance, but to provide skills applicable in sociology, health science, medical science, biology, and other scientific areas where data analysis is needed. Read more

This one year MSc programme in Statistics and Computational Finance aims to train students to work as professional statisticians, not only at the interface between statistics and finance, but to provide skills applicable in sociology, health science, medical science, biology, and other scientific areas where data analysis is needed.

The emphasis of the programme is on data analysis. It equips students with contemporary statistical ideas and methodologies as well as advanced knowledge, which will make students very competitive to industry, academic and governmental institutions. There are excellent career prospects for employment in industry and the public sector for our graduates. An MSc degree in Statistics and Computational Finance provides attractive employment opportunities in financial industries, government, consultancy companies, research centres, and other industries where data analysis is needed. Students with an interest in academic work may also decide to continue on a PhD programme in Statistics or a related field, for which the MSc in Statistics and Computational Finance provides a sound foundation.

Career opportunities

There are excellent career prospects for students with a background in statistics and data analysis. The programme is designed to equip students with contemporary statistical ideas and methodologies which makes our students very competitive when seeking employment in industry and governmental institutions, as well as in academic careers. The skills taught are applicable in sociology, health science, medical science, biology and other related disciplines where data analysis is needed.

Recent destinations of graduates from the MSc in Statistics and Computational Finance have included:

-PhD in the Department of Mathematics at the University of York (Non-parametric modelling in high dimensional data analysis)

-PhD at Florida State University

-Modelling Analyst (automotive data provider)

-Graduate Technical Analyst (HSBC)

-Research and Development in a Property and Casualty Insurance company, specialising in catastrophe insurance

-Mainframe Software Solution Sales in a major IT brand

-Data Analyst in a health data company

-Trainee Chartered Accountant

Programme structure

To achieve an MSc degree students must complete modules to the value of 180 credits, including 100 credits of core taught modules, 20 credits chosen among the optional taught modules, and a 60-credit dissertation.



Read less
Specialised statistical methods are hugely important in dealing with particular problems of economic data. Read more
Specialised statistical methods are hugely important in dealing with particular problems of economic data. For instance, time series econometrics provides methods for analysing the dynamic processes that are often found in macroeconomics, while other techniques are required for analysing the stock market and other financial data.

Econometrics can be described as the application of statistics in an economic context so this course will interest you if your first degree included some training in both statistics and economics.

You study topics including:
-Methods of linear regression and hypothesis testing
-Bayesian statistical modelling and methods
-Actuarial modelling and time series models
-Applied statistics
-Game theory

Our Department of Mathematical Sciences has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

You are also taught within our Department of Economics, who are rated consistently highly for student satisfaction and are Top 5 in the UK for research, with over 90% of their research rated as ‘world-leading’ or ‘internationally excellent’ (REF 2014).

This course can also be studied to a PGDip level - for more information, please view this web-page: http://www.essex.ac.uk/courses/details.aspx?mastercourse=PG00807&subgroup=2

Our expert staff

Our Department of Mathematical Sciences is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

Our staff have published several well-regarded text books and are world leaders in their individual specialisms, with their papers appearing in learned journals like Communications in Algebra, Studia Logica, International Journal of Algebra and Computation, SIAM Journal in Optimization, IEEE Evolutionary Computation, Computers and Operations Research, Ecology, Journal of Mathematical Biology, and Journal of Statistical Applications in Genetics and Molecular Biology.

The academic staff in our Department of Economics are also exceptionally well-regarded; our researchers are at the forefront of their field and have even received MBEs.

Many of our researchers in economics also provide consultancy services to businesses in London and other major financial centres, helping us to develop research for today's society as well as informing our teaching for the future.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-Extensive software for quantitative analysis is available in all computer labs across the university
-We host regular events and seminars throughout the year
-Our students run a lively Mathematics Society where you can explore your interest in your subject with other students
-Alternatively, our Economics Society is an active and social group

Your future

Our graduates are sought after by employers in banking, investment and forecasting, local government and other fields.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Modelling Experimental Data (optional)
-Statistical Methods (optional)
-Stochastic Processes (optional)
-Applied Statistics (optional)
-Bayesian Computational Statistics (optional)
-Research Methods
-Dissertation
-Mathematics of Portfolios (optional)
-Financial Derivatives (optional)
-Partial Differential Equations (optional)
-Econometric Methods (optional)
-Economics of Financial Markets (optional)
-Game Theory and Applications (optional)
-Time Series Econometrics (optional)
-Panel Data Methods (optional)

Read less
Businesses, organisations, and individuals all strive to work as effectively as possible. Operational research uses advanced statistical and analytical methods to help improve the complex decision-making processes to deliver a product or service. Read more
Businesses, organisations, and individuals all strive to work as effectively as possible. Operational research uses advanced statistical and analytical methods to help improve the complex decision-making processes to deliver a product or service. Working in this field, you might be identifying future needs for a business, evaluating the time-life value of a customer, or carrying out computer simulations for airlines.

Our MSc Statistics and Operational Research will appeal if your first degree included mathematics as its major subject, and we expect you to have prior knowledge of statistics – for example significance testing or basic statistical distributions – and operational research such as linear programming.

You specialise in areas including:
-Continuous and discrete optimisation
-Time series econometrics
-Heuristic computation
-Experimental design
-Machine learning
-Linear models

Our interdisciplinary research recognises that mathematics, including what can be very abstract mathematics, is an essential part of research in many other disciplines.

Our Department of Mathematical Sciences has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

This course can also be studied to a PGDip level - for more information, please view this web-page: http://www.essex.ac.uk/courses/details.aspx?mastercourse=PG00808&subgroup=2

Our expert staff

Our Department of Mathematical is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

Our staff have published several well-regarded text books and are world leaders in their individual specialisms, with their papers appearing in learned journals like Communications in Algebra, Studia Logica, International Journal of Algebra and Computation, SIAM Journal in Optimization, IEEE Evolutionary Computation, Computers and Operations Research, Ecology, Journal of Mathematical Biology, and Journal of Statistical Applications in Genetics and Molecular Biology.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We host regular events and seminars throughout the year
-Our students run a lively Mathematics Society, an active and social group where you can explore your interest in your subject with other students

Your future

Our MSc Statistics and Operational Research will equip you with employability skills like problem solving, analytical reasoning, data analysis, and mathematical modelling, as well as training you in independent work, presentation and writing skills.

Your exposure to current active research areas, such as decomposition algorithms on our module, Combinatorial Optimisation, prepares you for further study at doctoral level. Graduates of this course now hold key positions in government, business and academia.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Nonlinear Programming
-Combinatorial Optimisation
-Modelling Experimental Data (optional)
-Statistical Methods (optional)
-Stochastic Processes (optional)
-Applied Statistics (optional)
-Bayesian Computational Statistics
-Research Methods
-Dissertation
-Ordinary Differential Equations (optional)
-Graph Theory (optional)
-Partial Differential Equations (optional)
-Portfolio Management (optional)
-Machine Learning and Data Mining (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Time Series Econometrics (optional)
-Panel Data Methods (optional)
-Applications of Data Analysis (optional)
-Mathematical Research Techniques Using Matlab (optional)

Read less
This exciting and challenging programme studies how data can be utilised to solve major business and societal challenges. The programme provides students with the knowledge, technical ability and skills for leadership roles in the fields of business analytics and data science. Read more

This exciting and challenging programme studies how data can be utilised to solve major business and societal challenges. The programme provides students with the knowledge, technical ability and skills for leadership roles in the fields of business analytics and data science.

About this degree

The programme is designed to give students multidisciplinary skills in computing (i.e. programming, big data), analytics (i.e. data mining, machine learning, computational statistics, complexity), and business analysis. Emphasis will be on business problem framing, leveraging data as a strategic asset, and communicating complex analytical results to stakeholders.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), four or five optional modules (60 to 75 credits), up to one elective module (15 credits) and a dissertation (60 credits).

Core modules

  • Business Strategy and Analytics (15 credits)
  • Data Analytics (15 credits)
  • Programming for Business Analytics (15 credits)

Optional modules

Students must choose a minimum of 60 and a maxuimum of 75 credits from Optional modules. A maximum of 15 credits may be taken from Electives.

  • Consulting Psychology (15 credits)
  • Consumer Behaviour (15 credits)
  • Data Science for Spatial Systems (15 credits)
  • Decision and Risk (15 credits)
  • Decision and Risk Analysis (15 credits)
  • Group Mini Project: Digital Visualisation (30 credits)
  • Introduction to Machine Learning (15 credits)
  • Mastering Entrepreneurship (15 credits)
  • Statistical Design of Investigations (15 credits)
  • Statistical Models and Data Analysis (15 credits)
  • Talent Management (15 credits)
  • Urban Simulation (15 credits)
  • Web Economics (15 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

A list of acceptable elective modules is available on the Departmental page.

Dissertation/report

During the summer students will undertake a work placement with a UCL industrial partner. The research and data analysis conducted during this placement will form the basis of a 10,000-word dissertation.

Teaching and learning

The programme is delivered through a combination of lectures by world-class academics and industry leaders, seminars, workshops, tutorials and project work. The programme comprises two terms of taught material, followed by examinations and then a project. Assessment is through unseen written examinations, coursework and the dissertation. 

Further details are available on UCL Computer Science website.

Further information on modules and degree structure is available on the department website: Business Analytics (with specialisation in Computer Science) MSc

Careers

Graduates of UCL Computer Science are particularly valued due to the department's international status and strong reputation for leading research. Recent graduate destinations include such companies as: IBM, Samsung, Microsoft, Price Waterhouse Coopers, Citibank.

Employability

This programme is designed to satisfy the need, both nationally and internationally, for exceptional data scientists and analysts. Graduates will be highly employable in global companies and high-growth businesses, finance and banking organisations, major retail and service companies, and consulting firms. They will be equipped to influence strategy and decision-making, and be able to drive business performance by transforming data into a powerful and predictive strategic asset. We expect our graduates to progress to leading and influential positions in industry.

Why study this degree at UCL?

UCL Computer Science is a global leader in research in experimental computer science. The department scored highest among UK universities for the quality of research in Computer Science and Informatics in the Research Excellence Framework (REF2014), with 96% regarded as 'world-leading' or 'internationally excellent'.

The department consists of a team of world-class academics specialising in big data, computational statistics, machine learning and complexity.

The programme aims to create the next generation of outstanding academics and industry pioneers, who will use data analysis to deliver real social and business impact.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Computer Science

96% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X