• Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Durham University Featured Masters Courses
King’s College London Featured Masters Courses
University of Leeds Featured Masters Courses
Imperial College London Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Swansea University Featured Masters Courses
"computational" AND "inte…×
0 miles

Masters Degrees (Computational Intelligence And Robotics)

We have 45 Masters Degrees (Computational Intelligence And Robotics)

  • "computational" AND "intelligence" AND "robotics" ×
  • clear all
Showing 1 to 15 of 45
Order by 
Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation
our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise
modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options
full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory
have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects
artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

• Computational Intelligence Research Methods
• Artificial Intelligence (AI) Programming
• Mobile Robots
• Fuzzy Logic
• Artificial Neural Networks
• Evolutionary Computing
• Applied Computational Intelligence
• Intelligent Mobile Robots
• Individual Project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation
our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise
modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options
full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory
have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects
artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

• Computational Intelligence Research Methods
• Artificial Intelligence (AI) Programming
• Mobile Robots
• Fuzzy Logic
• Artificial Neural Networks
• Evolutionary Computing
• Applied Computational Intelligence
• Data Mining
• Individual Project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

Academic expertise

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you will gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Read more
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Robotics is increasingly prominent in a variety of sectors, from manufacturing and health to remote exploration of hostile environments such as space and the deep sea, and as autonomous and semi-autonomous systems that interact with people physically and socially.

This programme exposes you to a wide range of advanced engineering and computer science concepts, with the opportunity to carry out a practical robot project at the Bristol Robotics Laboratory, one of the UK's most comprehensive robotics innovation facilities and a leading centre of robotics research.

The programme is jointly awarded and jointly delivered by the University of Bristol and the University of the West of England, both based in Bristol, and therefore draws on the combined expertise, facilities and resources of the two universities. The Bristol Robotics Laboratory is a collaborative research partnership between the two universities with a vision to transform robotics by pioneering advances in autonomous robot systems that can behave intelligently with minimal human supervision.

Programme structure

Your course will cover the following core subjects:
-Robotics systems
-Robotic fundamentals
-Intelligent adaptive systems
-Robotics research preparation
-Image processing and computer vision
-Technology and context of robotics and autonomous systems
-Bio-inspired artificial intelligence

Typically you will be able to select from the following optional subjects:
-Computational neuroscience
-Uncertainty modelling for intelligent systems
-Introduction to artificial intelligence
-Learning in autonomous systems
-Design verification
-Animation production
-Advanced DSP and FPGA implementation
-Statistical pattern recognition
-Control theory
-Advanced techniques in multidisciplinary design
-Advanced dynamics
-Virtual product development
-Biomechanics
-Sensory ecology
-Transport modelling
-Electromechanical systems integration
-Advanced control and dynamics

Please note that your choice of optional units will be dependent on your academic background, agreement with the programme director and timetable availability.

Dissertation
During your second semester, you will start working on a substantial piece of research work that will make up one third of the overall MSc. It is possible to work on this project at Bristol Robotics Laboratory or in conjunction with one of our many industrial partners. Within the Bristol Robotics Laboratory, there are a number of themes from which projects may be chosen, including:
-Aerial robots
-Assisted living
-Bioenergy and self-sustainable systems
-Biomimetics and neuro-robotics
-Medical robotics
-Nonlinear robotics
-Robot vision
-Safe human-robot interaction
-Self-reparing robotic systems
-Smart automation
-Soft robotics
-Swarm robotics
-Tactile robotics
-Unconventional computation in robots
-Verification and validation for safety in robots

Further information is available from the Faculty of Engineering.

NB: Teaching for this programme is delivered at both the University of Bristol and the University of the West of England campuses. Students attending the programme will be given free transport passes to travel between the two universities.

Careers

Robotics is a huge field spanning areas such as electronics, mechanics, software engineering, mathematics, physics, chemistry, psychology and biology. Career opportunities include: automotive industry, aerospace industry, advanced manufacturing, deep sea exploration, space exploration, food manufacture, pharmaceutical production and industrial quality control.

Read less
Mechatronics, robotics and autonomous systems represent a range of important technologies which underpin many applications – from manufacturing and automation through to self-driving cars and robotic surgical tools. Read more

Mechatronics, robotics and autonomous systems represent a range of important technologies which underpin many applications – from manufacturing and automation through to self-driving cars and robotic surgical tools.

Delivered by the Schools of Electronic and Electrical Engineering, Mechanical Engineering and Computing, this programme will equip you with the specialist knowledge and wide range of skills to pursue a career in this dynamic field.

Core modules will give you a foundation in the many applications of mechatronics and robotics and develop your understanding of the wide range of industry sectors that use robotics. You’ll also build research skills with a major project in fields as diverse as robot swarms, sensing systems, bio-inspired robots and surgical robotics.

Diverse optional modules will allow you to focus on topics that suit your interests and career plans, guided by academics whose teaching is informed by their own world-class research.

Specialist facilities

The Faculty of Engineering is an exciting and stimulating environment where you’ll learn in specialist facilities. These include an ABB robotic manufacturing cell, the Embedded Systems Lab, the Keysight Technologies Communications Lab, the National Instruments LabVIEW Academy, and computer clusters with a very wide range of industry-standard CAD/CAE/CAM software packages.

The three Schools that deliver this programme collaborate in research projects within the themes of surgical robotics, rehabilitation robotics, exploration robotics and future cities. 

Course content

Three core modules act as the foundations of the course, developing your understanding of key aspects of mechatronics and robotics and how they fit into the context of the full range of industrial sectors and rapidly-developing everyday applications.

Mechatronics and Robotics Applications will look at the challenges, problems and solutions involved in integrating components such as actuators and computer control into modern engineering systems in domains such as healthcare and the automotive industry.

To build your understanding of the global industry and career opportunities, you’ll also complete a dissertation in a topic of your choice. This is supported by a series of lectures that cover the principles of globalisation, industry sectors, manufacturing, business models, teamwork skills and entrepreneurship. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

Over the summer months you’ll also work on your research project. This gives you the chance to work on a project allied to one of our research groups, spanning an exceptionally wide range of areas ranging from computer vision and artificial intelligence through robotic communications, sensing and embedded systems to mechanical design, industrial inspection, biomedical engineering and surgical robotics.

You’ll complete your studies by selecting from a range of optional modules that allow you to focus on topics that suit your personal interests or career intentions. You could build your understanding of computational methods, medical robotics, control systems design and more.

Want to find out more about your modules?

Take a look at the Mechatronics and Robotics module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Mechatronics and Robotics Applications 15 credits
  • Professional Project 75 credits

Optional modules

  • Bio-Inspired Computing 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Drives 15 credits
  • FPGA Design for System-on-Chip 15 credits
  • Control Systems Design 15 credits
  • Embedded Microprocessor System Design 15 credits
  • Medical Electronics and E-Health 15 credits
  • Programming 15 credits
  • Software Development 15 credits
  • Automotive Driveline Engineering 15 credits
  • Engineering Computational Methods 15 credits
  • Biomechatronics and Medical Robotics 15 credits

For more information on typical modules, read Mechatronics and Robotics MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Career opportunities

Mechatronics and robotics is a multidisciplinary field with a strong future, exciting career opportunities and a huge range of applications in robotics, manufacturing, automation, automotive engineering, aerospace, healthcare and medicine, leisure & entertainment and many more.

After graduating from this course, you will be in a good position to seek employment as a development, project or graduate engineer with leading organisations such as GCHQ, JN Bentley, Oilger Towler Ltd, Airbus UK, Avesta, Crosslee Plc, ABB Ltd, AWE, Ricardo, APV Baker, Jaguar Land Rover and Jacobs Engineering.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to drive IT robotics and automation education in the UK.

Degree information

The programme provides an overview of robotic and computational tools for robotics and autonomous systems as well as their main computational components: kinetic chains, sensing and awareness, control systems, mapping and navigation. Optional modules in machine learning, human-machine interfaces and computer vision help students grasp fields related to robotics more closely, while the project thesis allows students to focus on a specific research topic in depth.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), two elective modules (30 credits), and a dissertation/report (60 credits).

Core modules
-Robotic Control Theory and Systems
-Robotic Sensing, Manipulation and Interaction
-Robotic Systems Engineering
-Robotic Vision and Navigation

Optional modules
-Acquisition and Processing of 3D Geometry
-Affective Computing and Human-Robot Interaction
-Artificial Intelligence and Neural Computing
-Image Processing
-Inverse Problems in Imaging
-Machine Vision
-Mathematical Methods, Algorithmics and Implementations
-Probabilistic and Unsupervised Learning
-Research Methods and Reading
-Supervised Learning
-Other selected modules available within UCL Computer Science
-Students also choose two elective MSc modules from across UCL Computer Science, UCL Medical Physics & Biomedical Engineering, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning
Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercises.

Careers

Robotics is a growing field encompassing many technologies with applications across different industrial sectors, and spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MSc programme will have diverse job opportunities in the international marketplace with their knowledge of robotics and the underpinning computational and analytical fundamentals that are highly valued in the established and emerging economies. Students will also be well placed to undertake PhD studies in robotics and computational research specific to robotics but translational across different analytical disciplines or applied fields that will be influenced by new robotic technologies and capabilities.

Employability
This programme prepares students to enter a robotics-related industry or any other occupation requiring engineering or analytical skills. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in demand globally.

Why study this degree at UCL?

UCL was ranked first in the UK for computer science and informatics in the recent Research Excellence Framework (REF).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.

Read less
Artificial intelligence deals with the theory, design, application, and development of biologically, socially and linguistically motivated computational paradigms. Read more
Artificial intelligence deals with the theory, design, application, and development of biologically, socially and linguistically motivated computational paradigms.

You focus on linking artificial intelligence techniques to real-world applications and projects, including artificial intelligence in business and financial applications, artificial intelligence in games, artificial intelligence in biological sciences and medicine, and artificial intelligence in industrial control.

Our unique course covers the theoretical, applied and practical aspects of artificial intelligence, with an emphasis on:
-Genetic algorithms
-Evolutionary programming
-Fuzzy systems
-Neural networks
-Connectionist systems
-Hybrid intelligent systems

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our course opens up employment opportunities designing intelligent software – in banks and businesses designing prediction systems, in computer games companies designing adaptive games, in pharmaceutical companies designing intelligent systems that model a given drug and its various interactions, and in heavy industries designing control systems.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

Artificial Intelligence - MSc
-MSc Project and Dissertation
-Machine Learning and Data Mining
-Professional Practice and Research Methodology
-Group Project
-Intelligent Systems and Robotics
-Computer Vision (optional)
-Game Artificial Intelligence (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Natural Language Engineering (optional)
-Artificial Neural Networks (optional)
-Virtual Worlds (optional)
-Creating and Growing a New Business Venture (optional)
-Learning and Computational Intelligence in Economics and Finance (optional)

Read less
Research profile. The Institute for Adaptive and Neural Computation (IANC) is a world-leading institute dedicated to the theoretical and empirical study of adaptive processes in both artificial and biological systems. Read more

Research profile

The Institute for Adaptive and Neural Computation (IANC) is a world-leading institute dedicated to the theoretical and empirical study of adaptive processes in both artificial and biological systems. We are one of the UK’s largest and most prestigious academic teams in these fields.

We foster world-class interdisciplinary and collaborative research bringing together a range of disciplines.

Our research falls into three areas:

  • machine learning
  • computational neuroscience
  • computational biology

In machine learning we develop probabilistic methods that find patterns and structure in data, and apply them to scientific and technological problems. Applications include areas as diverse as astronomy, health sciences and computing.

In computational neuroscience and neuroinformatics we study how the brain processes information, and analyse and interpret data from neuroscientific experiments

The focus in the computational biology area is to develop computational strategies to store, analyse and model a variety of biological data (from protein measurements to insect behavioural data).

Training and support

You carry out your research within a research group under the guidance of a supervisor. You will be expected to attend seminars and meetings of relevant research groups and may also attend lectures that are relevant to your research topic. Periodic reviews of your progress will be conducted to assist with research planning.

A programme of transferable skills courses facilitates broader professional development in a wide range of topics, from writing and presentation skills to entrepreneurship and career strategies.

The School of Informatics holds a Silver Athena SWAN award, in recognition of our commitment to advance the representation of women in science, mathematics, engineering and technology. The School is deploying a range of strategies to help female staff and students of all stages in their careers and we seek regular feedback from our research community on our performance.

Facilities

The award-winning Informatics Forum is an international research facility for computing and related areas. It houses more than 400 research staff and students, providing office, meeting and social spaces.

It also contains two robotics labs, an instrumented multimedia room, eye-tracking and motion capture systems, and a full recording studio amongst other research facilities. Its spectacular atrium plays host to many events, from industry showcases and student hackathons to major research conferences.

Nearby teaching facilities include computer and teaching labs with more than 250 machines, 24-hour access to IT facilities for students, and comprehensive support provided by dedicated computing staff.

Among our entrepreneurial initiatives is Informatics Ventures, set up in 2008 to support globally ambitious software companies in Scotland and nurture a technology cluster to rival Boston, Pittsburgh, Kyoto and Silicon Valley.

Career opportunities

The research you will undertake at IANC is perfectly suited to a career in academia, where you’ll be able to use your knowledge to advance this important field. Some graduates take their skills into commercial research posts, and find success in creating systems that can be used in everyday applications.



Read less
Join a hands-on, state-of-the-art course that focuses on the practical side of robotics ad the effects that robots have on society. Read more
Join a hands-on, state-of-the-art course that focuses on the practical side of robotics ad the effects that robots have on society.

Intended as both an academic and industry facing course, the subject is aimed at graduates from a computing, engineering or science discipline who want to develop their understanding of the practical and theoretical aspects of robotic systems. This is an area with a wide-range of applications in industry and research.

This MSc focuses on the computational side of Robotics with an emphasis on the software engineering aspects. In addition it provides the ability to investigate the field of Artificial Intelligence applicable to this sector and a substantial portion of the programme concentrates on the effect that robots have on society. It is the intention of this programme to produce specialists with up to date knowledge and skills that are capable of being used in an industrial, commercial and research environment.

Although the necessary background is introduced as appropriate, the course deals with problem-solving and the provisioning of real time aspects of computer based solutions and applications using current and emerging technologies. In addition to developing an understanding of underlying principles, students are engaged in the practical application of design, implementation, trouble-shooting and management for real-world problems.

Key Course Features

The programme aims to provide the students with the following:
-Hands-on experience of state of the art equipment.
-Specialist, advanced technical skills in the area of Robotics.
-An advanced understanding and competence in the hardware and software used for the development and use of Robotics.
-The ability to critically appraise and disseminate research results.
-A sound basis for further research and / or professional development.

What Will You Study?

The MSc Robotics is offered in full-time and part-time mode. As with most masters programmes the MSc Robotics has 2 parts, a taught part followed by a dissertation. Students study 6 core modules worth 20 credits each followed by a 60 credit dissertation making a total of 180 credits.

MODULES
-Research Methods
-Future & Emerging Technology
-Advanced Artificial Intelligence
-Computational Robotics
-Robotic Applications in Society
-Robotic Software Engineering
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Career Prospects

Modules studied on the programme have been designed to provide the skills to meet industrial and commercial needs as well as those of traditional academic standing. In addition to the academic and theoretical aspects the emphasis will be on the practical side of robotics to enable graduates to practise as a professional in industry or continue with further study towards a research degree.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling. Read more
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling.

We provide practical, hands-on learning about how modern, highly computerised financial markets work, how assets should be priced, and how investors should construct a portfolio of assets. In addition to traditional topics in derivatives and asset pricing, we place a special emphasis on risk management in non-Gaussian environment with extreme events.

You master these areas through studying topics including:
-Non-linear and evolutionary computational methods for derivatives pricing and portfolio management
-Applications of calculus and statistical methods
-Computational intelligence in finance and economics
-Financial markets

You also graduate with an understanding of the use of artificial financial market environments for stress testing, and the design of auctions and other financial contracts.

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation.

Our research is geared towards real-world, practical applications, and many of our academic staff have experience of applying their findings in industry and in advising the UK government.

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our departments of economics, computer science and business.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Financial Engineering and Risk Management
-Introduction to Financial Market Analysis
-Learning and Computational Intelligence in Economics and Finance
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Big-Data for Computational Finance (optional)
-Industry Expert Lectures in Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Programming in Python (optional)
-Artificial Neural Networks (optional)
-High Frequency Finance and Empirical Market Microstructure (optional)
-Machine Learning and Data Mining (optional)
-Trading Global Financial Markets (optional)
-Creating and Growing a New Business Venture (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Constraint Satisfaction for Decision Making (optional)

Read less
Progress and innovation in robotics is now faster than ever, and is providing a wide range of industries and professions access to increasingly sophisticated autonomous and remotely operated devices with a widening range of applications and uses including manufacturing, agriculture, security and medicine. Read more
Progress and innovation in robotics is now faster than ever, and is providing a wide range of industries and professions access to increasingly sophisticated autonomous and remotely operated devices with a widening range of applications and uses including manufacturing, agriculture, security and medicine. As well as enjoying a growing commercial side, robotics also supports scientific research in unprecedented ways, giving us access to ever more remote, unpredictable and hazardous locations. Of course, it is also a major global research discipline in its own right, and robotics' progress has created a burgeoning worldwide demand for experts in a range of disciplines in this expanding billion-dollar industry.

Course detail

The MSc Robotics is available through a partnership between UWE Bristol and the University of Bristol, and provides a comprehensive understanding of advanced robotics and automation systems. While providing an excellent background for a range of technology careers that require robotics and automation knowledge and skills, it also offers the specialisms to support doctorate-level studies and ongoing research careers.

Uniquely, the partnership gives you access to the Bristol Robotics Laboratory, a world-leading centre for autonomous robotic systems and robotics research.

Modules

Core modules:
• Robotic Fundamentals (15 credits)
• Image Processing and Computer Vision (10 credits)
• Uncertainty Modelling for Intelligent Systems (10 credits)
• Animation Production (10 credits)
• Intelligent and Adaptive Systems (15 credits)
• Robotic Systems (10 credits)
• Research Skills (20 credits)
• Research Project (60 credits)

Optional modules from:
• Advanced Dynamics
• Computational Neuroscience
• Advanced DSP and FPGA Implementation
• Artificial Intelligence with Logic Programming
• Pattern Analysis and Statistical Learning

Format

You'll learn through a combination of lectures, seminars, group work, and through sessions at the Bristol Robotics Laboratory (BRL). The course is offered in partnership between UWE Bristol and the University of Bristol, and you will attend sessions at UWE Bristol's Frenchay campus, the University of Bristol, and BRL.

Assessment

You will normally be assessed through examination and coursework, as well as the dissertation.

Careers / Further study

The course provides an excellent route into this increasingly important area of industry, and into research and development.

The partnership between UWE Bristol and the University of Bristol has created a unique centre of excellence for engineering, in the heart of one of the UK's most important hubs for engineering industry especially in the aeronautical and electronics sectors. Bristol is a major base for companies such as Airbus, Rolls Royce, Toshiba and Hewlett Packard, with whom both universities enjoy close links.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
Our MSc Robotics will give you the opportunity to translate and develop your existing knowledge, understanding and skills to become an expert in robotics and autonomous systems (RAS). Read more
Our MSc Robotics will give you the opportunity to translate and develop your existing knowledge, understanding and skills to become an expert in robotics and autonomous systems (RAS).

You will develop the multidisciplinary knowledge and interdisciplinary skills needed to become one of the next generation of RAS engineers.

RAS is promising to deliver a step change in the way we live, work and interact on a day-to-day basis. In addition, large companies such as Google, Amazon and automotive and aerospace manufacturers are increasingly seeking to recruit in this area.

The course is taught by experts in control and systems engineering, computer science, electronic and electrical engineering, and psychology.

Modules

You'll study a mixture of modules in robotics, autonomous systems, engineering and computational intelligence, as well as advanced topics in vision, speech, neural networks, mobile robotics and computational neuroscience.

Core modules

Robotics
Biomechatronics
Robotics and Autonomous Systems
Hardware-in-the-Loop and Rapid Control Prototyping
Project

Examples of optional modules

State Space Control Design
Real-Time Embedded Systems
Speech Processing
Adaptive Intelligence
Parallel Computing with Graphical Processing Units
Computational Neuroscience I
Teaching and assessment

There are lectures, seminars, tutorials, practical/laboratory work, design classes, individual assignments and a major research project.

You’re assessed on exams, coursework assignments and a project dissertation.

Read less
Research profile. Robots have the potential to revolutionise society and the economy, working for us, beside us, and interacting with us. Read more

Research profile

Robots have the potential to revolutionise society and the economy, working for us, beside us, and interacting with us. This EPSRC-sponsored programme will produce graduates with the technical skills and industry awareness to create an innovation pipeline from academic research to global markets.

The robotics and autonomous systems area has been highlighted by the UK Government in 2013 as one of the eight Great Technologies that underpin the UK's Industrial Strategy for jobs and growth. Key application areas include manufacturing, assistive and medical robots, offshore energy, environmental monitoring, search and rescue, defence, and support for the ageing population.

The University of Edinburgh and Heriot-Watt University are jointly offering this innovative four-year PhD training programme, which combines a strong general grounding in current theory, methods and applications with flexibility for individualised study and a specialised PhD project.

Robotics and autonomous systems are increasingly studied beyond the range of classical engineering. Today robots represent one of the main areas of application of computer science and provide challenges for mathematics and natural science.

It is impossible to imagine transportation, warehousing, safety systems, space and marine exploration, prosthetics, and many other areas of industry, technology and science without robots. Robots are used in theoretical biology and the neurosciences as a model of behaviour.

Areas of interest specific to the center include: movement control, planning, decision making, bio- and neurorobotics, human-robot interaction, healthcare applications, robot soccer, neuroprosthetics, underwater robotics, bipedal walking, service robots, robotic co-workers, computer vision, speech processing, computer animation realistic simulations, and machine learning.

Many more topics can be found be exploring the Centre’s web pages, particularly the personal web pages of the Centre supervisors:

Training and support

Our four-year PhD programme combines Masters level coursework and project work with independent PhD-level research.

In the first year, you will undertake four or five masters level courses, spread throughout robotics, machine learning, computational neuroscience, computer architectures, statistics, optimization, sensorics, dynamics, mechanics, image processing, signal processing, modelling, animation, artificial intelligence, and related areas. You will also undertake a significant introductory research project. (Students with previous masters-level work in these areas may request to take less courses and a larger project.)

At the end of the first year, successful students will be awarded an MSc by Research by the University of Edinburgh. From this basis, the subsequent three years will be spent developing and pursuing a PhD research project, under the close supervision of your primary and secondary supervisors. The PhD will be awarded jointly by the University of Edinburgh and the Heriot-Watt University.

You will have opportunities for three to six month internships with leading companies in your area, and to participate in our industrial engagement programme, exchanging ideas and challenges with our sponsor companies.

Throughout your studies, you will participate in our regular programmes of seminars, short talks and brainstorming sessions, and benefit from our pastoral mentoring schemes.

Our user partners in industry include companies working in offshore energy, environmental monitoring, defence, assisted living, transport, advanced manufacturing and education. They will provide the real world context for research, as well as opportunities for reciprocal secondments, internships and involvement in our industrial engagement programme.

The School of Informatics holds a Silver Athena SWAN award, in recognition of our commitment to advance the representation of women in science, mathematics, engineering and technology. The School is deploying a range of strategies to help female staff and students of all stages in their careers and we seek regular feedback from our research community on our performance.

Facilities

You will have access to the outstanding facilities in the Edinburgh Robotarium, a national facility for research into robot interaction, supporting the research of more than 50 world-leading investigators from 17 cross-disciplinary research groups.

Research groups at the Edinburgh Robotarium include humanoid movement control, underwater, land and airborne autonomous vehicles, human robot interaction, bio- and neuro-robotics, and planning and decision making in multirobot scenarios.

In addition, our research groups contain a diverse range of compute clusters for compute and data-intensive work, including a large cluster hosted by the Edinburgh Compute and Data Facility.

Career opportunities

Our aim is to produce innovation-ready graduates who are skilled in the principles of technical and commercial disruption and who understand how finance and organisation realise new products in start-up, SME and corporate situations.

We intend for our graduates to become leaders in the globally emerging market for autonomous and robotic systems that reduce risk, reduce cost, increase profit and protect the environment. This vision is shared by our industrial supporters, whose support for our internship programme indicates their strong desire to find highly qualified new employees.

Our component research groups already have excellent track-records in post-graduation destinations, including the research labs of industry-leading companies, and post-doctoral research positions in top tier universities.



Read less
Robotics requires a well-developed knowledge of areas ranging from computer science and artificial intelligence, to engineering and neuroscience, in order to produce hardware which can sense and manipulate the real world. Read more
Robotics requires a well-developed knowledge of areas ranging from computer science and artificial intelligence, to engineering and neuroscience, in order to produce hardware which can sense and manipulate the real world. This field has allowed us to develop everything from satellites and submarines, to racecars and robots.

Research carried out by our team has resulted in appearance in the Robot Soccer World Cup final, an autonomous robot fish in the London Aquarium, and a self-programming computer vision system.

Our course provides a comprehensive coverage of contemporary intelligent systems, with robots serving as a major example of the technology. Thanks to the leading research being undertaken in our School, you will gain a solid understanding of the foundations of this technology, exploring areas including:
-The principles by which sensed data are converted into useful information
-The practical aspects of developing intelligent and robotic systems
-Biologically-inspired robots
-Biometrics
-Computational intelligence

Our MSc Intelligent Systems and Robotics is delivered by our team of internationally recognised researchers, with expertise spanning the entire range of intelligent systems and experience of developing robots intended for land, under water and in the air.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Computer Vision
-Group Project
-Intelligent Systems and Robotics
-Machine Learning and Data Mining
-Professional Practice and Research Methodology
-Programming Embedded Systems
-Artificial Neural Networks (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-Electronic System Design & Integration (optional)
-Evolutionary Computation and Genetic Programming (optional)
-High Level Logic Design (optional)
-Game Artificial Intelligence (optional)
-Virtual Worlds (optional)
-Natural Language Engineering

Read less
Understanding naturally intelligent systems, building artificially intelligent systems, and improving the interactions between humans and artificial systems. Read more

Overview

Understanding naturally intelligent systems, building artificially intelligent systems, and improving the interactions between humans and artificial systems.

As humans, we may be intrigued by the complexity of any daily activity. How do we perceive, act, decide, and remember? On the one hand, if we understand how our own intelligence works, we can use this knowledge to make computers smarter. On the other hand, by making computers behave more like humans, we learn more about how our own cognition works.

The AI Master’s programme at Radboud University has a distinctly cognitive focus. This cognitive focus leads to a highly interdisciplinary programme where students gain skills and knowledge from a number of different areas such as mathematics, computer science, psychology and neuroscience combined with a core foundation of artificial intelligence.

See the website http://www.ru.nl/masters/ai

Scientific and practical applications

Slowly the human brain has been revealing its mystery to the scientific community. Now that we are actually able to model and stimulate aspects of cognition, AI researchers have gained a deeper understanding of cognition. At the world-renowned Donders Institute, the Max Planck Institute and various other leading research centres, we train our students to become excellent researchers in this area.

At Radboud University we also teach students how to develop practical applications that will become the next generation of products, apps, therapies and services. Our department has been awarded several prizes for its pioneering role in bringing innovations from science to society, e.g. in Assistive Technology for people with disabilities. You’ll be taught the skills needed to conduct and steer such innovation processes. Many Master’s research projects have both a scientific and a practical component.

Specialisations

Computational modelling is the central methodology taught and used in this programme. Depending on the area of study, the computational models can range from behavioural models of millions of individuals interacting on the web, to functional models of human or robot decision-making, to models of individual or networks of artificial neurons. At Radboud University we offer the following three specialisations (on campus simply known as Computation, Robot and Web):

- Computation in Neural and Artificial Systems
Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans.

- Robot Cognition
Understand all aspects of Human-Robot interaction: the programming that coordinates a robot’s actions with human action as well the human appreciation and trust in the robot.

- Web and Language Interaction
Learn how to build the intelligence used to power the future of the Web.

Research project and Internship

To finalise your AI master's programme, you have the choice of either an Internship (18EC) and Research Project (30EC) or a single larger Extended Research Project (48EC). During the internship you have the chance to acquire additional AI relevant skills either at a research lab or at a company. During the Research Projects phase, you get to put what you have learned during your master's programme into practice. You can perform your research work in the AI department, at other research departments at the University (e.g. the Behaviour Science Institute or Donders Institute) or at an external company (such as Philips or TNO). You are also encouraged to go abroad for your internship and/or research project (previously students have gone to Stanford University in California and Aldebaran Robotics in Paris). To help you decide on a thesis topic, there is an annual Thesis Fair where academics and companies present possible project ideas.

Job opportunities

Our Artificial Intelligence graduates have excellent job prospects and are often offered a job before they have actually graduated. Many of our graduates go on to do a PhD either at a major research institute or a university with an AI department. Other graduates have started their own companies or work for companies interested in cognitive design and research.

Find out how to apply here http://www.ru.nl/masters/ai

Meet Radboud University

- Information for international students
Radboud University would like to meet you in your country (http://www.ru.nl/meetus) in order to give all the information you need and to answer any questions you might have about studying in the Netherlands. In the next few months, an advisor of Radboud University will be attending fairs in various countries, always accompanied by a current or former student.
Furthermore, we understand if you would like to see the Radboud Campus and the city of Nijmegen, which is why we organise an Master's Open Day for international students (http://www.ru.nl/openday) which will take place on 5 March 2016.

- Information for Dutch students
Radboud University offers students in the Netherlands plenty of opportunities to get more information on your programme of choice, or get answers to any questions you might have and more. Apart from a Master's Evening and a Master's Day, we also organise Orientation Days and a Master’s Afternoon for HBO students.

Read less
Robotics requires a well-developed knowledge of areas ranging from computer science and artificial intelligence, to engineering and neuroscience, in order to produce hardware which can sense and manipulate the real world. Read more
Robotics requires a well-developed knowledge of areas ranging from computer science and artificial intelligence, to engineering and neuroscience, in order to produce hardware which can sense and manipulate the real world. This field has allowed us to develop everything from satellites and submarines, to racecars and robots.

Research carried out by our team has resulted in appearance in the Robot Soccer World Cup final, an autonomous robot fish in the London Aquarium, and a self-programming computer vision system.

Our course provides a comprehensive coverage of contemporary intelligent systems, with robots serving as a major example of the technology. Thanks to the leading research being undertaken in our School, you will gain a solid understanding of the foundations of this technology, exploring areas including:

- The principles by which sensed data are converted into useful information
- The practical aspects of developing intelligent and robotic systems
- Biologically-inspired robots
- Biometrics
- Computational intelligence

Our MSc Intelligent Systems and Robotics is delivered by our team of internationally recognised researchers, with expertise spanning the entire range of intelligent systems and experience of developing robots intended for land, under water and in the air.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

Read less

Show 10 15 30 per page



Cookie Policy    X