• Birmingham City University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Surrey Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Cass Business School Featured Masters Courses
Birmingham City University Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
Ulster University Featured Masters Courses
"computational" AND "fina…×
0 miles

Masters Degrees (Computational Finance)

We have 208 Masters Degrees (Computational Finance)

  • "computational" AND "finance" ×
  • clear all
Showing 1 to 15 of 208
Order by 
The master of science in computational finance is designed for students interested in computational or quantitative finance careers in banking, finance, and a growing number of additional industries. Read more

Program overview

The master of science in computational finance is designed for students interested in computational or quantitative finance careers in banking, finance, and a growing number of additional industries. Professionals in these fields use their strengths in business, modeling, and data analysis to understand and use complex financial models, often involving differential and stochastic calculus.

The program addresses a vital and growing career field, reaching beyond banking and finance. Typical job titles include risk analyst, research associate, quantitative analyst, quantitative structured credit analyst, credit risk analyst, quantitative investment analyst, quantitative strategist, data analyst, senior data analyst, fixed income quantitative analyst, and financial engineer. Computational finance is an excellent career option for technically-oriented professionals in the fields of business, math, engineering, economics, statistics, and computer science. Programming knowledge is highly preferred.

Plan of study

The curriculum offers an integration of finance, mathematics, and computing. The required mathematics courses have substantial financial content and the experiential computational finance course, which students take during the summer, makes use of skills learned in the mathematics, analytics, and finance courses taken up to that point. The program has a strong multidisciplinary nature and combines the expertise of four of RIT's colleges. The program is a full-time, 17-month curriculum beginning exclusively in the fall. The program ends with a required non-credit comprehensive exam based on the courses completed by the student.

Curriculum

Computational finance, MS degree, typical course sequence:
-Accounting for Decision Makers
-Survey of Finance
-Equity Analysis
-Debt Analysis
-Advanced Derivatives
-Mathematics for Finance I
-Mathematics for Finance II
-Analytics Electives
-Electives
-Computational Finance Experience

Other admission requirements

-Submit official transcripts (in English) from all previously completed undergraduate and graduate course work.
-Submit the results of the Graduate Management Admission Test (GMAT) or Graduate Record Exam (GRE) (GMAT preferred).
-Submit a personal statement (Applicants should explain why their background, please indicate mathematical and programming knowledge, and interests make them suitable for the program).
-Submit a current resume, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 580 (paper-based) or 92 (Internet-based) are required. Scores from the International English Language Testing System (IELTS) will be accepted in place of the TOEFL exam. The minimum acceptable score is 7.0. The TOEFL or IELTS requirement is waived for native speakers of English or for those submitting transcripts from degrees earned at American institutions. For additional information on the IELTS, visit http://www.ielts.org.
-Completed applications for admission should be on file in the Office of Graduate Enrollment Services at least four weeks prior to registration for the next academic semester for students from the United States, and up to 10 weeks prior for international students applying for student visas.
-Accepted students can defer enrollment for up to one year. After one year, a new application must be submitted and will be re-evaluated based on the most current admission standards.

Read less
This degree, offered by the Department of Computer Science and the Department of Economics, allows you to specialise in modern quantitative finance and computational methods for financial modelling, which are demanded for jobs in asset structuring, product pricing as well as risk management. Read more

This degree, offered by the Department of Computer Science and the Department of Economics, allows you to specialise in modern quantitative finance and computational methods for financial modelling, which are demanded for jobs in asset structuring, product pricing as well as risk management.

Skills that you will acquire include the ability to:

  • analyse, critically evaluate, and apply methods of computational finance to practical problems, including pricing of derivatives and risk assessment
  • analyse and critically evaluate methods and general principles of computational finance and their applicability to specific problems
  • work with methods and techniques such as clustering, regression, support vector machines, boosting, decision trees, and neural networks
  • analyse and critically evaluate applicability of machine learning algorithms to problems in finance
  • implement methods of computational finance and machine learning using object-oriented programming languages and modern data management systems
  • work with software packages such as MATLAB and R
  • work with Relational Database Systems and SQL

You will be taught by world-leading academics. Research in Machine Learning at Royal Holloway started in the 1990’s, at which time V. Vapnik and A. Chervonenkis (the inventors of Support Vector Machines) were both professors here. We have developed both fundamental theory and practical algorithms that have fed into the analytics methods and techniques that are in use today. Current researchers include Alexander Gammerman and Vladimir Vovk – the inventors of conformal predictors theory, a radically new method of estimating the accuracy of each prediction as it is made – and Chris Watkins, originator of reinforcement learning who developed ‘Q-learning’, a work that is fundamental to planning and control.

  • Study in two highly-regarded departments, respectively ranked 11th and 8th in the UK for research quality (Research Excellence Framework 2014).
  • Benefit from strong industry ties, with close proximity to ‘England’s Silicon Valley’.
  • Graduate with a Masters degree with excellent graduate employability prospects.
  • Tailor your learning with a wide range of engaging optional modules.
  • Choose from a one-year programme structure or add an optional year in industry.

Course structure

Core modules

  • Data Analysis
  • Programming for Data Analysis
  • Database Systems
  • Foundations of Finance
  • Investment and Portfolio Management
  • Individual Project

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Please note that some of these modules may have pre-requisites. During Welcome Week, your personal advisor will help you choose the electives that best suit your background and career ambitions, as well as your timetable.

  • Machine Learning
  • Computation with Data
  • Methods of Computational Finance
  • Software Verification
  • Advanced Data Communications
  • Fundamentals of Digital Sound and Music
  • Intelligent Agents and Multi-Agent Systems
  • Semantic Web
  • Internet and Web Technologies
  • On-line Machine Learning
  • Large-Scale Data Storage and Processing
  • Service-Oriented Computing, Technology and Management
  • Business Intelligence
  • Business Intelligence Systems, Infrastructures and Technologies.
  • Computational Optimisation
  • Methods of Bioinformatics
  • Visualisation and Exploratory Analysis
  • Corporate Finance
  • Financial Econometrics
  • Fixed Income Securities and Derivatives
  • Microeconometrics
  • Decision Theory and Behaviour
  • The Economics of Banking
  • Private Equity
  • Inference
  • Applied Probability
  • Security Technologies
  • Introduction to Cryptography and Security Mechanisms
  • Network Security
  • Computer Security (Operating Systems)
  • Security Management
  • Smart Cards, RFIDs and Embedded Systems Security
  • Digital Forensics
  • Security Testing - Theory and Practice
  • Software Security
  • Cyber Security
  • Database Security

Teaching & assessment

Teaching is organised in terms of 11 weeks each. Examinations are taken in April/May of each academic year, except for Data Analysis for which the exam is in January. The individual project is taken over 12 weeks during the Summer.

A weekly seminar series runs in parallel with the academic programme, which includes talks by professionals in a variety of application areas as well as workshops that will train you to find a placement or a job and lead a successful career.

Assessment is carried out by a variety of methods including coursework, small group projects, and examinations, the proportions of which vary according to the nature of the modules.

This degree can be taken part-time - visit our website for details

Your future career

Demand for data scientists is buoyant, in the UK and worldwide, with salaries much higher than other IT professions and at least double the UK average full time wage. All our graduates found jobs at the end of (if not during) their studies.

We bring several companies to our campus throughout the year, both for fairs and for delivering advanced topics seminars, which are an excellent opportunity to learn about what they do and discuss possible placements or jobs. Together with the University’s Careers Service, we offer you workshops and one-to-one coaching that prepare you to find a placement or a job and lead a successful career. 

  • 90% of Royal Holloway graduates in work or further education within six months of graduating.
  • Strong industry ties help to provide placement and networking opportunities.
  • On-site Careers Service provides help and support for students.


Read less
This course, offered by the Department of Computer Science and the Department of Economics, allows you to specialise in modern quantitative finance and computational methods for financial modelling, which are demanded for jobs in asset structuring, product pricing as well as risk management. Read more

This course, offered by the Department of Computer Science and the Department of Economics, allows you to specialise in modern quantitative finance and computational methods for financial modelling, which are demanded for jobs in asset structuring, product pricing as well as risk management.

Skills that you will acquire include the ability to:

  • analyse, critically evaluate, and apply methods of computational finance to practical problems, including pricing of derivatives and risk assessment
  • analyse and critically evaluate methods and general principles of computational finance and their applicability to specific problems
  • work with methods and techniques such as clustering, regression, support vector machines, boosting, decision trees, and neural networks
  • analyse and critically evaluate applicability of machine learning algorithms to problems in finance
  • implement methods of computational finance and machine learning using object-oriented programming languages and modern data management systems
  • work with software packages such as MATLAB and R
  • work with Relational Database Systems and SQL

You will be taught by world-leading academics. Research in Machine Learning at Royal Holloway started in the 1990’s, at which time V. Vapnik and A. Chervonenkis (the inventors of Support Vector Machines) were both professors here. We have developed both fundamental theory and practical algorithms that have fed into the analytics methods and techniques that are in use today. Current researchers include Alexander Gammerman and Vladimir Vovk – the inventors of conformal predictors theory, a radically new method of estimating the accuracy of each prediction as it is made – and Chris Watkins, originator of reinforcement learning who developed ‘Q-learning’, a work that is fundamental to planning and control.

  • Study in two highly-regarded departments, respectively ranked 11th and 8th in the UK for research quality (Research Excellence Framework 2014).
  • Refine your skills and knowledge with a year in industry at one of the country's top institutions.
  • Benefit from strong industry ties, with close proximity to England’s 'Silicon Valley’.
  • Graduate with a Masters degree with excellent graduate employability prospects.
  • Tailor your learning with a wide range of engaging optional modules.

By electing to spend a year in business you will also be able to integrate theory and practice and gain real business experience. In the past, our students have secured placements in blue-chip companies such as Centrica, Data Reply, Disney, IMS Health, Rolls Royce, Shell, Sociéte Générale, VMWare and UBS, among others.

Course structure

Core modules

Year 1

  • Data Analysis
  • Programming for Data Analysis
  • Database Systems
  • Foundations of Finance
  • Investment and Portfolio Management

Year 2

You will spend this year on a work placement. You will be supported by the Department of Computer Science and the Royal Holloway Careers and Employability Service to find a suitable placement. This year forms an integral part of the degree programme and you will be asked to complete assessed work. The mark for this work will count towards your final degree classification.

  • Individual Project

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1

  • Machine Learning
  • Computation with Data
  • Methods of Computational Finance
  • Software Verification
  • Advanced Data Communications
  • Fundamentals of Digital Sound and Music
  • Intelligent Agents and Multi-Agent Systems
  • Semantic Web
  • Internet and Web Technologies
  • On-line Machine Learning
  • Large-Scale Data Storage and Processing
  • Service-Oriented Computing, Technology and Management
  • Business Intelligence
  • Business Intelligence Systems, Infrastructures and Technologies
  • Computational Optimisation
  • Methods of Bioinformatics
  • Visualisation and Exploratory Analysis
  • Corporate Finance
  • Financial Econometrics
  • Fixed Income Securities and Derivatives
  • Microeconometrics
  • Decision Theory and Behaviour
  • The Economics of Banking
  • Private Equity
  • Inference
  • Applied Probability
  • Security Technologies
  • Introduction to Cryptography and Security Mechanisms
  • Network Security
  • Computer Security (Operating Systems)
  • Security Management
  • Smart Cards, RFIDs and Embedded Systems Security
  • Digital Forensics
  • Security Testing - Theory and Practice
  • Software Security
  • Database Security
  • Cyber Security

Teaching & assessment

Teaching is organised in terms of 11 weeks each. Examinations are taken in April / May of each academic year, except for Data Analysis for which the exam is in January. Your 'Year in Industry' typically starts at the end of June or beginning of July and lasts for a maximum of one year. The individual project is taken over 12 weeks during the Summer after the placement.

A weekly seminar series runs in parallel with the academic programme, which includes talks by professionals in a variety of application areas as well as workshops that will train you to find a placement or a job and lead a successful career.

Assessment is carried out by a variety of methods including coursework, small group projects, and examinations, the proportions of which vary according to the nature of the modules. The placement is assessed as part of your degree (10% of the individual project).

Although the responsibility for finding a placement is ultimately with the student, our Careers Team will help you identify suitable opportunities, make applications and prepare for interviews. Please note that progression to the placement is conditional on good academic performance. Students who fail to qualify for or find a placement are automatically transferred to the one-year programme. Find out more on our year in industry page.

Your future career

Demand for data scientists is buoyant, in the UK and worldwide, with salaries much higher than other IT professions and at least double the UK average full time wage. Our graduates have an excellent track record of finding jobs at the end of (if not during) their studies. 

We bring several companies to our campus throughout the year, both for fairs and for delivering advanced topics seminars, which are an excellent opportunity to learn about what they do and discuss possible placements or jobs.



Read less
The MSc in Computational Finance will introduce students to the computational methods that are widely used by practitioners and financial institutions in today's markets. Read more

The MSc in Computational Finance will introduce students to the computational methods that are widely used by practitioners and financial institutions in today's markets. This will provide students with a solid foundation not only in traditional quantitative methods and financial instruments, but also scientific computing, numerical methods, high-performance computing, distributed ledgers, big-data analytics, and agent-based modelling. These techniques will be used to understand financial markets from a post-crisis perspective which incorporates findings from the study of financial markets at high-frequency time scales, modern approaches to understanding systematic risk and financial contagion, and disruptive technologies such as distributed-ledgers and crypto-currencies. The programme is highly practical, and students will have the opportunity to apply their learning to real-world data and case studies in hands-on laboratory sessions.

Key benefits

  • An understanding of modern financial technology (FinTech) including electronic trading and distributed-ledger technology.
  • Practical hands-on techniques for working with and analysing financial data, which draw on modern developments in Artificial Intelligence and Big Data technology.
  • The opportunity to understand the practical aspects of quantitative finance and FinTech from Industry experts located in the heart of one of the World’s financial centres.

Description

Computational Finance studies problems of optimal investment, risk management and trade execution from a computational perspective. As with any engineering discipline, computational finance analyses a given problem by first building a model for it and then examining the model. In computational finance, however, our model is typically analysed by running computer programs, rather than solving mathematical equations. In addition to standard computational methods such as Monte-Carlo option pricing, you will also learn more advanced modelling techniques such as agent-based modelling, in which the model itself takes the form of a computer program.

The programme will provide a foundation in the core skills required for successful risk management and optimal investment by giving a grounding in the key quantitative methods used in finance, including computer programming, numerical methods, scientific computing, numerical optimisation, and an overview of the financial markets. You can then go on to study more advanced topics, including the market micro-structure of modern electronic exchanges, high-frequency finance, distributed-ledger technology and agent-based modelling.

Career prospects

Students are expected to go in to careers such as Investment Banking, Hedge Funds and Regulatory Bodies.  

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
This one year MSc programme in Statistics and Computational Finance aims to train students to work as professional statisticians, not only at the interface between statistics and finance, but to provide skills applicable in sociology, health science, medical science, biology, and other scientific areas where data analysis is needed. Read more

This one year MSc programme in Statistics and Computational Finance aims to train students to work as professional statisticians, not only at the interface between statistics and finance, but to provide skills applicable in sociology, health science, medical science, biology, and other scientific areas where data analysis is needed.

The emphasis of the programme is on data analysis. It equips students with contemporary statistical ideas and methodologies as well as advanced knowledge, which will make students very competitive to industry, academic and governmental institutions. There are excellent career prospects for employment in industry and the public sector for our graduates. An MSc degree in Statistics and Computational Finance provides attractive employment opportunities in financial industries, government, consultancy companies, research centres, and other industries where data analysis is needed. Students with an interest in academic work may also decide to continue on a PhD programme in Statistics or a related field, for which the MSc in Statistics and Computational Finance provides a sound foundation.

Career opportunities

There are excellent career prospects for students with a background in statistics and data analysis. The programme is designed to equip students with contemporary statistical ideas and methodologies which makes our students very competitive when seeking employment in industry and governmental institutions, as well as in academic careers. The skills taught are applicable in sociology, health science, medical science, biology and other related disciplines where data analysis is needed.

Recent destinations of graduates from the MSc in Statistics and Computational Finance have included:

-PhD in the Department of Mathematics at the University of York (Non-parametric modelling in high dimensional data analysis)

-PhD at Florida State University

-Modelling Analyst (automotive data provider)

-Graduate Technical Analyst (HSBC)

-Research and Development in a Property and Casualty Insurance company, specialising in catastrophe insurance

-Mainframe Software Solution Sales in a major IT brand

-Data Analyst in a health data company

-Trainee Chartered Accountant

Programme structure

To achieve an MSc degree students must complete modules to the value of 180 credits, including 100 credits of core taught modules, 20 credits chosen among the optional taught modules, and a 60-credit dissertation.



Read less
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling. Read more
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling.

We provide practical, hands-on learning about how modern, highly computerised financial markets work, how assets should be priced, and how investors should construct a portfolio of assets. In addition to traditional topics in derivatives and asset pricing, we place a special emphasis on risk management in non-Gaussian environment with extreme events.

You master these areas through studying topics including:
-Non-linear and evolutionary computational methods for derivatives pricing and portfolio management
-Applications of calculus and statistical methods
-Computational intelligence in finance and economics
-Financial markets

You also graduate with an understanding of the use of artificial financial market environments for stress testing, and the design of auctions and other financial contracts.

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation.

Our research is geared towards real-world, practical applications, and many of our academic staff have experience of applying their findings in industry and in advising the UK government.

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our departments of economics, computer science and business.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Financial Engineering and Risk Management
-Introduction to Financial Market Analysis
-Learning and Computational Intelligence in Economics and Finance
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Big-Data for Computational Finance (optional)
-Industry Expert Lectures in Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Programming in Python (optional)
-Artificial Neural Networks (optional)
-High Frequency Finance and Empirical Market Microstructure (optional)
-Machine Learning and Data Mining (optional)
-Trading Global Financial Markets (optional)
-Creating and Growing a New Business Venture (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Constraint Satisfaction for Decision Making (optional)

Read less
Students develop an advanced knowledge of computational methods in finance, which is a prerequisite for a successful career in the financial industry within 'quant' teams. Read more

Students develop an advanced knowledge of computational methods in finance, which is a prerequisite for a successful career in the financial industry within 'quant' teams. 'Quants' (development analysts) design and implement complex models and are sought after by banks, fund managers, insurance companies, hedge funds, and financial software and data providers.

About this degree

This degree comprises advanced modules on quantitative and modelling skills, which are essential for 'quant' roles in trading research, regulation and risk. This applied MSc programme is distinctive in that it provides a solid mathematical and statistical foundation together with an education in advanced-level programming.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a dissertation (60 credits).

Core modules

  • Financial Data and Statistics (15 credits)
  • Financial Market Modelling and Analysis (15 credits)
  • Market Risk Measures and Portfolio Theory (15 credits)
  • Numerical Analysis for Finance (15 credits)

Optional modules

Students select 60 credits from optional modules.

  • Algorithmics (15 credits)
  • Applied Computational Finance (15 credits)
  • Database Systems (15 credits)
  • Financial Engineering (15 credits)
  • Financial Institutions and Markets (15 credits)
  • Machine Learning with Applications in Finance (15 credits)
  • Market Microstructure (15 credits)
  • Networks and Systemic Risk (15 credits)
  • Operational Risk Measurement for Financial Institutions (15 credits)
  • Software Engineering (15 credits)
  • Stochastic Processes for Finance (15 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

With permission, a student may substitute up to two optional modules with electives. A list of acceptable elective modules is available on the Departmental page.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of about 10,000 words or 50 pages. Usually this will be undertaken during a summer placement in an industry environment arranged by the department.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, seminars, and project work. It comprises two terms of teaching, followed by examinations and a dissertation. Assessment is through coursework, unseen examinations and a dissertation.

Further information on modules and degree structure is available on the department website: Computational Finance MSc

Careers

This is a relatively new programme and therefore no specific information on graduate destinations is currently available. UCL Computer Science graduates typically find work in financial institutions such as Credit Suisse, JP Morgan, Morgan Stanley, and Deutsche Bank as financial analyst application developers, quant developers, and business managers. The University of Cambridge and UCL are among top further study destinations.

Employability

Our graduates are particularly valued as a result of the department's international reputation, strong links with industry, and ideal location close to the City of London. Graduates are especially sought after by leading finance companies and organisations.

Why study this degree at UCL?

UCL received the highest percentage (96%) for quality of research in Computer Science and Informatics in the UK's most recent Research Excellence Framework (REF2014).

UCL Computer Science hosts the Doctoral Training Centre in Financial Computing and Analytics, which is the only one of its kind in the UK.

UCL's central London location ideally places it close to one of the world's most important financial centres, with which UCL pioneers industrial/academic engagements. Students on the Computational Finance MSc will benefit from teaching input from City of London practitioners.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Computer Science

96% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling. Read more
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling.

We provide practical, hands-on learning about how modern, highly computerised financial markets work, how assets should be priced, and how investors should construct a portfolio of assets. In addition to traditional topics in derivatives and asset pricing, we place a special emphasis on risk management in non-Gaussian environment with extreme events.

You master these areas through studying topics including:

- Non-linear and evolutionary computational methods for derivatives pricing and portfolio management
- Applications of calculus and statistical methods
- Computational intelligence in finance and economics
- Financial markets

You also graduate with an understanding of the use of artificial financial market environments for stress testing, and the design of auctions and other financial contracts.

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation.

Our research is geared towards real-world, practical applications, and many of our academic staff have experience of applying their findings in industry and in advising the UK government.

Read less
The MSc in Computational Finance is an intensive 12 month, full-time programme which combines theoretical rigour with a practical emphasis on the acquisition of advanced computational finance skills. Read more
The MSc in Computational Finance is an intensive 12 month, full-time programme which combines theoretical rigour with a practical emphasis on the acquisition of advanced computational finance skills. It is this blend of advanced analytical and quantitative skills, combined with the innovative use of experiential-learning techniques such as simulated 'live' financial markets trading workshops, which will differentiate graduates of this programme from other programmes in the field.

Read less
The programme will equip students with the cutting-edge quantitative and computational techniques and strategies utilised by leading financial firms and will prepare students for future careers in a quantitative finance, trading or more general finance environment. Read more
The programme will equip students with the cutting-edge quantitative and computational techniques and strategies utilised by leading financial firms and will prepare students for future careers in a quantitative finance, trading or more general finance environment.

Key feature: a number of core modules will be taught in the School's new First Derivatives Trading Room, which recreates the excitement of a financial trading floor, and provides students with hands-on trading and investment management experience. Real-time data displayed using industry-standard financial technologies (Bloomberg terminals) will be used to provide the best possible introduction to a financial trading environment.

Read less
The course provides you with a strong mathematical background with the skills necessary to apply your expertise to the solution of real finance problems. … Read more

The course provides you with a strong mathematical background with the skills necessary to apply your expertise to the solution of real finance problems. You will develop skills so that you are able to formulate a well posed problem from a description in financial language, carry out relevant mathematical analysis, develop and implement an appropriate numerical scheme and present and interpret these results.

The course lays the foundation for further research in academia or for a career as a quantitative analyst in a financial or other institution.

You will take three introductory courses in the first week. The introductory courses cover partial differential equations, probability and statistics and MATLAB.

The first term focuses on compulsory core material, offering 80 hours of lectures and 40 hours of classes/practical. The core courses are as follows:

  • Stochastic Calculus
  • Financial Derivatives
  • Numerical Methods I - Monte-Carlo
  • Numerical Methods I - Finite Differences
  • Statistics and Financial Data Analysis
  • Financial Programming with C++ 1

In the second term, three streams are offered; each stream consists of 32 hours of lectures and 16 hours of classes/practical. The Tools stream is mandatory and you will also take either the Modelling stream or the Data-driven stream.

Modelling stream

  • Exotic derivatives
  • Stochastic volatility, jump diffusions
  • Commodities
  • Fixed income

Data-driven stream

  • Asset pricing and inefficiency of markets
  • Market microstructure and trading
  • Algorithmic trading
  • Advanced financial data analysis
  • Machine learning
  • Python

Tools stream

  • Numerical methods 2 - Monte Carlo methods
  • Numerical methods 2 - Finite differences
  • Calibration
  • Optimisation
  • Introduction to stochastic control

As well as the streams, the course includes a compulsory one-week (24 hours of lectures) intensive module on quantitative risk management which is to be held in/around the week before the third term.

The third term is dedicated to a dissertation project which is to be written on a topic chosen in consultation with your supervisor.

The second component of the financial computing course, Financial Computing with C++ 2 (24 hours of lectures and practicals in total), is held shortly after the third term.

The examination will consist of the following elements:

  • two written examinations and one take-home project, each of two hours' duration - the written examinations will cover the core courses in mathematical methods and numerical analysis
  • a written examination on the Modelling stream or a written examination and a computer-based practical examination on the Data-driven stream
  • a written examination assessing the Tools stream
  • a take-home project assessing the course in quantitative risk management
  • two practical examinations assessing two courses in financial computing with C++.

Graduate destinations

MSc graduates have been recruited by prominent investment banks and hedge funds. Many past students have also progressed to PhD-level studies at leading universities in Europe and elsewhere.



Read less
The MSc in Computational Mathematical Finance (CMF) is a dynamic new programme with the aim to deliver high quality training in the theory of Mathematical Finance with strong emphasis on computational methods. Read more

The MSc in Computational Mathematical Finance (CMF) is a dynamic new programme with the aim to deliver high quality training in the theory of Mathematical Finance with strong emphasis on computational methods.

Currently graduates in this field are expected to have a working knowledge of advanced computational finance (including construction of algorithms and programming skills) as well as a sound knowledge of the theory of Probability and Stochastic Analysis. These are the core theories needed in the modern valuation of complex financial instruments.

This MSc programme delivers:

  • a flexible programme of study relevant to the needs of employers such as: top investment banks, hedge funds and asset management firms
  • a solid knowledge in financial derivative pricing, risk management and portfolio management
  • the transferable computational skills required by the modern quantitative finance world

Programme structure

You must obtain a total of 180 credits to be awarded the MSc. Over semesters 1 and 2, you will take compulsory courses worth a total of 85 credits and optional courses worth a further 35 credits. Successful performance in these courses (assessed through coursework or examinations or both) allows you to start work on a three-month dissertation project, worth 60 credits, for the award of the MSc degree.

There are two streams: the Financial stream and the Computational stream.

Compulsory courses previously offered include (both streams):

  • Stochastic Analysis in Finance (20 credits, semester 1)
  • Discrete-Time Finance (10 credits, semester 1)
  • Finance, Risk and Uncertainty (10 credits, semester 1)
  • Object-Oriented Programming with Applications (10 credits, semester 1)
  • Risk-Neutral Asset Pricing (10 credits, semester 2)
  • Stochastic Control and Dynamic Asset allocation (10 credits, semester 2)
  • Monte Carlo Methods (5 credits, semester 2)
  • Numerical Methods for Stochastic Differential Equations (5 credits, semester 2)
  • Research-Linked Topics (10 credits, semesters 1 and 2)

Additional compulsory courses for Computational Stream previously offered include:

  • Numerical Partial Differential Equations (10 credits, semester 2)
  • Time Series (10 credits, semester 2)

Additional compulsory courses for Financial stream previously offered include:

  • Financial Risk Theory (10 credits, semester 2)
  • Optimization Methods in Finance (10 credits, semester 2)

Optional courses previously offered include:

  • Numerical Partial Differential Equations (10 credits, semester 2)
  • Time Series (10 credits, semester 2)
  • Financial Risk Theory (10 credits, semester 2)
  • Optimization Methods in Finance (10 credits, semester 2)
  • Integer and Combinatorial Optimization (10 credits, semester 2)
  • Bayesian Theory (10 credits, semester 1)
  • Credit Scoring (10 credits, semester 2)
  • Python Programming (10 credits, semester 1)
  • Scientific Computing (10 credits, semester 1)
  • Programming Skills - HPC MSc (10 credits, semester 1)
  • Parallel Numerical Algorithms - HPC MSc (10 credits, semester 1)
  • Applied Databases (10 credits)

Work placements/internships

We work closely with the Scottish Financial Risk Academy (SFRA) to offer a number of short courses led by industry (part of our Research-Linked Topics) and to provide the opportunity to our best students to write their dissertations during placements with financial services companies.

Learning outcomes

At the end of this programme you will have:

  • developed personal communications skills, initiative, and professionalism within a mathematical context
  • developed transferable skills that maximise your prospects for future employment, including writing, oral presentation, team-working, numerical and logical problem-solving, planning and time-management
  • improved your ability to convey ideas in an articulate fashion, to build upon previous mathematical training and further develop logic and deductive skills
  • mastered standard and advanced mathematical tools used to solve applied problems relevant to the mathematical finance industry
  • developed quantitative and computational skills for the proficient fulfilment of tasks in the financial sector

Career opportunities

Graduates can expect to go on to work in major financial institutions or to continue their studies by joining PhD programmes.



Read less
The School of Mathematics and Alliance Manchester Business School at the University of Manchester have combined their academic strength and practical expertise to deliver the  . Read more

The School of Mathematics and Alliance Manchester Business School at the University of Manchester have combined their academic strength and practical expertise to deliver the  MSc in Mathematical Finance  (UK 1 year), ensuring that students can experience both the mathematical and economic perspective of the subject.

This is also supported by invited lectures from senior staff members of leading financial institutions and outstanding mathematicians who are internationally recognised for contributions to Mathematical Finance. Past lectures include:

  • Professor M. Schweizer (ETH Zurich and Swiss Finance Institute) An overview of quadratic hedging and related topics
  • Professor H. Follmer (Humboldt University of Berlin) Monetary valuation of cash flows under Knightian uncertainty
  • Professor M. H. A. Davis (Imperial College London) Contagion models in credit risk

The course provides students with advanced knowledge and understanding of the main theoretical and applied concepts in Mathematical Finance delivered from a genuinely international and multi-cultural perspective with a current issues approach to teaching. The focus is on mathematical theory and modelling, drawing from the disciplines of probability theory, scientific computing and partial differential equations to derive relations between asset prices and interest rates, and to develop models for pricing, risk management and financial product development.

The finance industry demands recruits with strong quantitative skills and the course is intended to prepare students for careers in this area. The course provides training for those who seek a career in the finance industry specialising in derivative securities, investment, risk management and hedge funds. It also provides research skills for those who subsequently wish to pursue research and/or an academic career (e.g. university lecturer) or continue the study at doctoral level, particularly those wishing to pursue further/advanced studies in Mathematical Finance.

Coursework and assessment

Teaching is shared by the School of Mathematics and Alliance Manchester Business School, and delivered through lectures, case studies, seminars and group project-based work.

Course unit details

There are (i) eight course units to attend over two academic terms and (ii) a dissertation project to be completed in the summer term. Teaching of the course units is shared by the School of Mathematics and the Manchester Business School and delivered through lectures, case studies, seminars and group project-based work.

First term course units (autumn): Derivative Securities; Foundations of Finance Theory; Martingales with Applications to Finance; Stochastic Calculus.

Second term course units (spring): Brownian Motion; Computational Finance; Time Series Analysis and Forecasting in Finance; Stochastic Modelling in Finance.

Third term dissertation project (summer): In this term students will conduct an original study of a topic relating to the programme and write an MSc dissertation.

Additional fee information

The fees quoted above will be fully inclusive for the course tuition, administration and computational costs during your studies.

All fees for entry will be subject to yearly review and incremental rises per annum are also likely over the duration of courses lasting more than a year for UK/EU students (fees are typically fixed for International students, for the course duration at the year of entry). For general fees information please visit:  postgraduate fees . Always contact the department if you are unsure which fee applies to your qualification award and method of attendance.

Self-funded international applicants for this course will be required to pay a deposit of £1000 towards their tuition fees before a confirmation of acceptance for studies (CAS) is issued. This deposit will only be refunded if immigration permission is refused. We will notify you about how and when to make this payment.

Facilities

The School of Mathematics is one of the largest integrated departments of mathematical sciences in the UK with an outstanding reputation and superb  facilities .

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The finance industry demands recruits with strong quantitative skills and the course is intended to prepare students for careers in this area. The course provides training for those who seek a career in the finance industry specialising in derivative securities, investment, risk management and hedge funds. It also provides research skills for those who subsequently wish to pursue research and/or an academic career (e.g. university lecturer) or continue the study at doctoral level, particularly those wishing to pursue further/advanced studies in Mathematical Finance.



Read less
On our MSc Algorithmic Trading, we equip you with the core concepts and quantitative methods in high frequency finance, along with the operational skills to use state-of-the-art computational methods for financial modelling. Read more
On our MSc Algorithmic Trading, we equip you with the core concepts and quantitative methods in high frequency finance, along with the operational skills to use state-of-the-art computational methods for financial modelling.

We enable you to attain an understanding of financial markets at the level of individual trades occurring over sub-millisecond timescales, and apply this to the development of real-time approaches to trading and risk-management.

The course includes hands-on projects on topics such as order book analysis, VWAP & TWAP, pairs trading, statistical arbitrage, and market impact functions. You have the opportunity to study the use of financial market simulators for stress testing trading strategies, and designing electronic trading platforms.

In addition to traditional topics in financial econometrics and market microstructure theory, we put special emphasis on areas:
-Statistical and computational methods
-Modelling trading strategies and predictive services that are deployed by hedge funds
-Algorithmic trading groups
-Derivatives desks
-Risk management departments

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation. We are supported by Essex’s highly rated Department of Economics, School of Computer Science and Electronic Engineering, and Essex Business School.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our departments of economics, computer science and business.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

More broadly, our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Big-Data for Computational Finance
-High Frequency Finance and Empirical Market Microstructure
-Introduction to Financial Market Analysis
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Trading Global Financial Markets
-Cloud Technologies and Systems (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Financial Engineering and Risk Management (optional)
-High Performance Computing (optional)
-Industry Expert Lectures in Finance (optional)
-Learning and Computational Intelligence in Economics and Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Programming in Python (optional)
-Text Analytics (optional)

Read less
The rigorous training on our MSc Financial Computing focuses on software engineering for large, dynamic and automated financial systems and finance models. Read more
The rigorous training on our MSc Financial Computing focuses on software engineering for large, dynamic and automated financial systems and finance models. This, alongside work on software design in a number of real-world financial systems, will enable you to become a leader in this field.

This course should interest you if you have a good first degree in computer science or engineering, or a BSc degree that provided a high level of programming expertise such as C++ and/or .NET. You receive training on the structure, instruments and institutional aspects of financial markets, banking, payment and settlement systems.

You will attain a high level of competence in software development, in the area of financial computing, for implementation in an electronic market environment, as we introduce you to information and communication technology and automation that underpins financial systems, including:
-Design issues relating to parallel and distributed networks
-Encryption, security and real-time constraints
-Straight Through Processing (STP)
-Quantitative finance
-Financial software architecture

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation.

Our research is geared towards real-world, practical applications, and many of our academic staff have experience of applying their findings in industry and in advising the UK government.

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our Department of Economics, School of Computer Science and Electronic Engineering, and Essex Business School.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Big-Data for Computational Finance
-Cloud Technologies and Systems
-High Performance Computing
-Introduction to Financial Market Analysis
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Computer Security (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-E-Commerce Programming (optional)
-Financial Engineering and Risk Management (optional)
-High Frequency Finance and Empirical Market Microstructure (optional)
-IP Networking and Applications (optional)
-Learning and Computational Intelligence in Economics and Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Mobile & Social Application Programming (optional)
-Programming in Python (optional)
-Industry Expert Lectures in Finance (optional)

Read less

Show 10 15 30 per page



Cookie Policy    X