• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
Cranfield University Featured Masters Courses
University of Bradford Featured Masters Courses
Ulster University Featured Masters Courses
Northumbria University Featured Masters Courses
"computational" AND "desi…×
0 miles

Masters Degrees (Computational Design)

  • "computational" AND "design" ×
  • clear all
Showing 1 to 15 of 395
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Computational Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computational Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has gained a significant international profile as one of the key international centres for research and training in computational mechanics and engineering. As a student on the Master's course in Erasmus Mundus Computational Mechanics, you will be provided with in-depth, multidisciplinary training in the application of the finite element method and related state-of-the-art numerical and computational techniques to the solution and simulation of highly challenging problems in engineering analysis and design.

Key Features of Erasmus Mundus Computational Mechanics MSc

The Zienkiewicz Centre for Computational Engineering is acknowledged internationally as the leading UK centre for computational engineering research. It represents an interdisciplinary group of researchers who are active in computational or applied mechanics. It is unrivalled concentration of knowledge and expertise in this field. Many numerical techniques currently in use in commercial simulation software have originated from Swansea University.

The Erasmus Mundus MSc Computational Mechanics course is a two-year postgraduate programme run by an international consortium of four leading European Universities, namely Swansea University, Universitat Politècnica de Catalunya (Spain), École Centrale de Nantes (France) and University of Stuttgart (Germany) in cooperation with the International Centre for Numerical Methods in Engineering (CIMNE, Spain).

As a student on the Erasmus Mundus MSc Computational Mechanics course, you will gain a general knowledge of the theory of computational mechanics, including the strengths and weaknesses of the approach, appreciate the worth of undertaking a computational simulation in an industrial context, and be provided with training in the development of new software for the improved simulation of current engineering problems.

In the first year of the Erasmus Mundus MSc Computational Mechanics course, you will follow an agreed common set of core modules leading to common examinations in Swansea or Barcelona. In addition, an industrial placement will take place during this year, where you will have the opportunity to be exposed to the use of computational mechanics within an industrial context. For the second year of the Erasmus Mundus MSc Computational Mechanics, you will move to one of the other Universities, depending upon your preferred specialisation, to complete a series of taught modules and the research thesis. There will be a wide choice of specialisation areas (i.e. fluids, structures, aerospace, biomedical) by incorporating modules from the four Universities. This allows you to experience postgraduate education in more than one European institution.

Modules

Modules on the Erasmus Mundus MSc Computational Mechanics course can vary each year but you could expect to study the following core modules (together with elective modules):

Numerical Methods for Partial Differential Equations
Continuum Mechanics
Advanced Fluid Mechanics
Industrial Project
Finite Element Computational Analysis
Entrepreneurship for Engineers
Finite Element in Fluids
Computational Plasticity
Fluid-Structure Interaction
Nonlinear Continuum Mechanics
Computational Fluid Dynamics
Dynamics and Transient Analysis
Reservoir Modelling and Simulation

Accreditation

The Erasmus Mundus Computational Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

On the Erasmus Mundus MSc Computational Mechanics course, you will have the opportunity to apply your skills and knowledge in computational mechanics in an industrial context.

As a student on the Erasmus Mundus MSc Computational Mechanics course you will be placed in engineering industries, consultancies or research institutions that have an interest and expertise in computational mechanics. Typically, you will be trained by the relevant industry in the use of their in-house or commercial computational mechanics software.

You will also gain knowledge and expertise on the use of the particular range of commercial software used in the industry where you are placed.

Careers

The next decade will experience an explosive growth in the demand for accurate and reliable numerical simulation and optimisation of engineering systems.

Computational mechanics will become even more multidisciplinary than in the past and many technological tools will be, for instance, integrated to explore biological systems and submicron devices. This will have a major impact in our everyday lives.

Employment can be found in a broad range of engineering industries as this course provides the skills for the modelling, formulation, analysis and implementation of simulation tools for advanced engineering problems.



Student Quotes

“I gained immensely from the high quality coursework, extensive research support, confluence of cultures and unforgettable friendship.”

Prabhu Muthuganeisan, MSc Computational Mechanics

Read less
At the University of Calgary, we formed the Computational Media Design Program to enable students to conduct research at the intersection of art, music, dance, drama, design and computer science. Read more
At the University of Calgary, we formed the Computational Media Design Program to enable students to conduct research at the intersection of art, music, dance, drama, design and computer science.

The Computational Media Design (CMD) graduate program is composed of the Faculty of Science: Department of Computer Science, the Faculty of Environmental Design and the Faculty of Arts: School of Creative and Performing Arts, Department of English and Department of Art. Students can earn graduate degrees, both Master of Science and PhD. The research-based graduate degrees explore the relationships between and among art, design, science and technology.

In the expanding world of multimedia and design, there is an increasing need for graduates who can conduct and direct complex projects that combine computing expertise with the creative energies of artists and designers. Numerous opportunities exist for our graduates in companies whose primary business is game design and development, film, TV, web design, simulation, networking, interactive media, and mobile and wearable computing to name just a few. Interest in our graduates also comes from the creative fields of dance, music, theatre and the visual arts.

Read less
This MSc Product Design programme is for students with a background in design, engineering or related areas. The course and modules aim to develop and enhance your innovation skills and knowledge required to achieve successful product design development and innovation. Read more
This MSc Product Design programme is for students with a background in design, engineering or related areas. The course and modules aim to develop and enhance your innovation skills and knowledge required to achieve successful product design development and innovation.

You will develop a high level of creativity and design ideas as a part of your response to possible market opportunities. This is a key element to your learning on this programme.

The course will also enable you to develop a critical understanding of sustainable factors and its relevance and importance to all our futures. The course creates opportunities for students to originate new ideas and model or prototype design solutions that will meet perceived manufacturing, marketing and consumer needs.

Subject guide and modules

The range of modules reflects the nature of innovative design solutions plus the additional knowledge and skills required to put it into practice professionally. Elective module selection is detailed in the Programme Specifications.

Core Taught Modules
-New Product Development (EM4006)
-Research Project (PD4001)
-Product Design Innovation (PD4002)
-Sustainable Design (PD4005)
-Innovation Business Development (PD4008)
-Design Realisation (PD4009)
-International Studies (PD4010)

Optional Taught Modules
-Strategic Management (EM4002)
-Computational Fluid Dynamics and Applications (ME4501)
-Finite Element Analysis: Theory and Application (ME4502)
-Renewable Energy (ME4504)
-CAD Principles and Materials Selection (ME4505)
-Advanced Computer Aided Design (ME4518)

The Major Project module is completed between April and September.
-Major Project (PD4000)

Learning, teaching & assessment

The modules in this programme are delivered with lectures, seminars and lab-based tutorials giving a good balance between scientific methodologies and hands-on practice.

Creativity will underpin much of the interactive work during this course. Developed ideas can be manufactured using a variety of techniques including the use of our range of Rapid – Prototyping equipment.

Modules are assessed mainly through coursework, although some modules may also have exams. The major project is assessed by dissertation and supporting design work. Examples of past major projects range from the development of innovative Rigging for Stunt Kite Boarding, Race Car Suspension using composite technologies with Innovative Designs to the use of Solar Energy to help cool domestic conservatories.

Personal development

This is an interactive course aimed to develop your knowledge and understanding of the changes, developments and potential opportunities that face us all in a Global economy. You will create and deliver a major project and develop effective research and specification skills.

Semester 1 modules will enable you to develop the knowledge, skills and expertise required for this level of work, as well as the opportunity to initiate the research for the major project idea. Semester 2 modules will enable you to extend your professional understanding and expertise through module coursework, individual projects and teamwork.

You will also make several individual presentations and get chance to hone your interview techniques.

Professional accreditation

This programme is fully accredited by the Institution of Engineering Designers leading to Chartered Engineering status (CEng).

Career prospects

Career prospects for graduates are excellent On completion of this one year course the student should be able to confidently develop their own product ideas and innovations ‘ready for manufacture and marketing’, start their own design business enterprise, or enter new product development organisations and other creative businesses at a higher level of responsibility.

Read less
This course provides specialist skills in core systems biology with a focus on the development of computational and mathematical research skills. Read more
This course provides specialist skills in core systems biology with a focus on the development of computational and mathematical research skills. It specialises in computational design, providing essential computing and engineering skills that allow you to develop software to program biological systems.

This interdisciplinary course is based in the School of Computing Science and taught jointly with the Faculty of Medical Sciences and the School of Mathematics and Statistics. The course is ideal for students aiming for careers in industry or academia. We cater for students with a range of backgrounds, including Life Sciences, Computing Science, Mathematics and Engineering.

Computational Systems Biology is focused on the study of organisms from a holistic perspective. Computational design of biological systems is essential for allowing the construction of complex and large biological systems.

We provide a unique, multidisciplinary experience essential for understanding systems biology. The course draws together the highly-rated teaching and research expertise of our Schools of Computing Science, Mathematics and Statistics, Biology, and Cell and Molecular Biosciences. The course also has strong links with Newcastle's Centre for Integrated Systems Biology of Ageing and Nutrition (CISBAN).

Our course is designed for students from both biological and computational backgrounds. Prior experience with computers or computer programming is not required. Students with mathematical, engineering or other scientific backgrounds are also welcome to apply.

The course is part of a suite of related programmes that also include:
-Bioinformatics MSc
-Synthetic Biology MSc
-Computational Neuroscience and Neuroinformatics MSc

All four programmes share core modules, creating a tight-knit cohort. This encourages collaborations on projects undertaking interdisciplinary research.

Project work

Your five month research project gives you a real opportunity to develop your knowledge and skills in depth in Systems Biology. You have the opportunity to work closely with a leading research team in the School and there are opportunities to work on industry lead projects. You will have one-to-one supervision from an experienced member of the faculty, supported with supervision from associated senior researchers and industry partners as required.

The project can be carried out:
-With a research group at Newcastle University
-With an industrial sponsor
-With a research institute
-At your place of work

Placements

Students have a unique opportunity to complete a work placement with one of our industrial partners as part of their projects.

Previous students have found placements with organisations including:
-NHS Business Services Authority
-Waterstons
-Metropolitan Police
-Accenture
-IBM
-Network Rail
-Nissan
-GSK

Accreditation

We have a policy of seeking British Computer Society (BCS) accreditation for all of our degrees, so you can be assured that you will graduate with a degree that meets the standards set out by the IT industry. Studying a BCS-accredited degree provides the foundation for professional membership of the BCS on graduation and is the first step to becoming a chartered IT professional.

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Read less
This course provides you with a balance of molecular biology, engineering, computing and modelling skills necessary for a career in synthetic biology. Read more
This course provides you with a balance of molecular biology, engineering, computing and modelling skills necessary for a career in synthetic biology. Computational design of biological systems is important as the field of synthetic biology grows. This allows the construction of complex and large biological systems.

While laboratory approaches to engineering biological systems are a major focus, the course specialises in computational design. This provides you with essential computing and engineering skills to allow you to develop software to program biological systems.

Our course is designed for students from both biological and computational backgrounds. Prior experience with computers or computer programming is not required. Students with mathematical, engineering or other scientific backgrounds are also welcome to apply. It is ideal if you are aiming for careers in industry or academia.

We provide a unique, multidisciplinary experience that is essential for understanding synthetic biology. The programme draws together the highly-rated teaching and research expertise of our Schools of Computing Science, Mathematics and Statistics, and Biology, as well as the Medical Faculty and the Institute of Human Genetics.

Research is a large component of this course. The emphasis is on delivering the research training you will need in the future to meet the demands of industry and academia effectively. Newcastle's research in life sciences, computing and mathematics is internationally recognised.

The teaching staff are successful researchers in their field and publish regularly in highly-ranked systems synthetic biology journals.

Our experienced and friendly staff are on hand to help you. You gain the experience of working in a team in an environment with the help, support and friendship of fellow students.

Project work

Your five month research project gives you real research experience in Synthetic Biology. You will have the opportunity to work closely with a leading research team in the School and there are opportunities to work on industry led projects. You will have one-to-one supervision from an experienced member of the faculty, supported with supervision from associated senior researchers and industry partners as required.

The project can be carried out:
-With a research group at Newcastle University
-With an industrial sponsor
-With a research institute
-At your place of work

Accreditation

We have a policy of seeking British Computer Society (BCS) accreditation for all of our degrees, so you can be assured that you will graduate with a degree that meets the standards set out by the IT industry. Studying a BCS-accredited degree provides the foundation for professional membership of the BCS on graduation and is the first step to becoming a chartered IT professional.

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Read less
Digital technologies are rapidly changing the way buildings and urban spaces are designed, constructed and inhabited. On this course you’ll learn the theoretical knowledge and technical skills required to produce innovative blueprints for architecture in the digital era. Read more
Digital technologies are rapidly changing the way buildings and urban spaces are designed, constructed and inhabited. On this course you’ll learn the theoretical knowledge and technical skills required to produce innovative blueprints for architecture in the digital era.

The past decade has shown rapidly growing expectations for built spaces with capacity to respond dynamically to changes such as shifts in demographics, new and emerging technology, climate change and ageing populations. These are global challenges and opportunities which demand architects and designers with the ability to creatively shape the way that buildings, landscapes and cities age and adapt over time.

Careers

Graduates go on to careers leading future practice in the digital creative industries, architecture and urban design, digital technology development and environmental design consultancy. The course also fully prepares graduates who are interested in pursuing doctoral studies towards a PhD.

Core modules

Parametric Architectural Geometry; Building Information Modelling Management and Analysis; Challenges of Digital Architecture; Studio Project; Elements of Computational Design 1 and 2; Dissertation Project.

Examples of Optional Modules

Advanced Computational Design; Interactive Urban Visualisation Modelling; Renewable Energy; Conservation and Regeneration Principles and Approaches; Building Information Modelling, Management and Analysis.

Read less
As a Data Visualisation Designer you can contribute innovative solutions with the potential to transform societal challenges, by designing the human interface to increasingly complex problems. Read more

Why take this course?

As a Data Visualisation Designer you can contribute innovative solutions with the potential to transform societal challenges, by designing the human interface to increasingly complex problems.

On this course, you will learn how to create rich and meaningful stories with data. We will study digital content in any mode, whether it is in alphanumeric form, binary, vector, pixel, video, or others. The designer provides an important interface, that allows us to explore data and generates meaningful communication. This communication is predominantly visual, but with developments in Wearables and the Internet of Things, is also becoming increasingly physical, affective, networked and interactive. Data Visualisation Design spans traditional graphic and information design, interaction design, information architecture, computational design, design thinking and user-centred and user experience design.

What will I experience?

On this course you can:

Learn the theory and practice of data visualisation, data, interface/interaction design and user experience, and apply this to your own design
Critically question the role of data related to the social, political, economic and cultural through contextual research
Explore live data sets from real world scenarios, such as industry or charities like the digital humanitarian network
Develop independent research and project ideas to create innovative, forward thinking design solutions and experiences for a digital and data driven world

What opportunities might it lead to?

The course will prepare you to work in the design disciplines of the creative industries, with a focus on data visualisation, information design, computational design, digital content, interactivity and user experience. Data Visualisation designers are in demand in sectors including business, research, health, education, government/public service, the arts.

The skills gained on this course can also be applied to employment in UI (user interface) design, or focus on interaction as a UX (User experience) designer. The critical and contextual outlook allows you to position yourself as a strategist and operate in a consultative manner. The research aspect of the course would also suit a career in compulsory, further and higher education.

Careers include:

Data Visualisation Design
Information Design
Digital Graphic Design
UI (user interface) / UX (user experience) design
Interaction design

Module Details

The course is offered over one year (full-time) or two years (part-time).

You will study five units, one of which is shared with other MA courses in the School of Art and Design. There will be preparatory units delivering a grounding in practical skills, theoretical context and academic research (competencies and skills). You will also study units that allow more thematic engagement with interactive and data driven design in terms of theory such as critical design, affordances, experience and complexity. It will also provide a unit oriented towards employability, and incorporate live briefs and group work. These units work to catalyse your own ideas and research direction for the Major Project unit.

Core units currently comprise:

A Question of Research
Fundamentals of Data and Interaction Design
Digital Futures – Themes and Issues in Practice
Design Solutions for Enterprise, Society and Culture
Major Project

Programme Details

The teaching combines interactive lectures and group seminar discussions with support through one-to-one tutorials. You also receive feedback on your work through friendly but critical peer review in group sessions with other students, members of faculty and other experts as appropriate. One of the units includes working as a team. Your project work emphasises self-initiated learning which gives you the freedom to explore the specialist area of your interest, while being helpfully guided by your supervisor. The curriculum is very closely related to the research areas in the department, so the staff have cutting edge knowledge of the field and its potential for innovation.

Your learning is mostly assessed through the submission of practical course work, such as digital prototypes, and the documentation of the learning journey in sketchbooks, diaries, blogs or journals.

This will be documenting contextual research as well as stages in practical experimentation and annotation of reflection. There are some written elements to be submitted as well, mostly accompanying proposals/reports to contextualise your practice. The assessment also includes individual and group presentations, this mode is also used to give you formative feedback on your work throughout.

Here's how we assess your work:

Digital artefacts / prototypes
Learning journals
Proposals
Reports
Oral presentation

Student Destinations

This course is an opportunity to focus your creative design practice on the interactive, data driven, user centred and culturally contextualised. It also enhances your design career by upgrading your skills and widening your knowledge and thinking in the digital arena, allowing you to stay one step ahead of the rest. The independent research aspect of the course prepares you for further education in terms of a research degree and employment in R&D and/or education.

Read less
The MSc Digital Architecture and Robotic Construction focuses on digital design methods and construction technologies in Architecture, Engineering and Design. Read more
The MSc Digital Architecture and Robotic Construction focuses on digital design methods and construction technologies in Architecture, Engineering and Design. It provides a scientific and practical foundation and gives an overview of latest developments in Advanced Modelling, Computational Design and Robotic Construction.

Digital technologies have altered the field of architecture and the architectural profession significantly – from design to production. In this context, the course combines the professional quality of an architectural qualification with the theory and practice behind the latest digital developments in the field.

You'll use computer-aided methods for design and study the construction and fabrication process in-depth. As part of the School of the Built Environment and Architecture, you'll work in a transdisciplinary environment where knowledge is shared. Architecture students are also able to work in our Architecture Design Studio, a dedicated studio space with views across the London landscape.

You'll be able to exploit LSBU's extensive industry connections during the course and your dissertation will be closely linked to practice. You'll be encouraged to work together with partners; an engineering company or another academic School within LSBU.

Visit the Digital Architecture and Robotics lab (DARLAB) website, where you can find more information about the facilities and the latest projects taking place

http://www.dar-lab.net/

Modules

Integrative technologies and robotic manufacturing
Advanced digital design techniques
Design project material behaviour
Design project adaptive systems and structures
Technology for building systems
Design research architectural project
Dissertation

Modules will be assessed by a mix of coursework and examinations.

Teaching and learning

The academic team are qualified experts from all over the world, with experience in working with avant-garde technologies to gain the best results in architecture and design. In addition, all are actively involved in research and consultancy, which enables staff to draw on the latest industry developments in both lectures and practical work. You'll enjoy guest lectures from world experts.

The course makes extensive use of DARLAB (Digital Architectural Robotics lab), a research platform in architectural education that advances experimentation and cross-discipline collaboration among professors, students and industry partners to expand the boundaries of architectural practice. The modules' contents are oriented toward integrated learning assignments. The course is delivered through lectures, seminars, projects and internships.

You'll be supported throughout your final project by your tutors and will have access to a range of e-learning materials.

Currently 50% of our full-time student cohort is from overseas. This allows our students to network across America, India, the Middle-East, Australia and Europe.

Placements

Staff use their professional connections to help students find work experience and job opportunities on graduation. All students will be involved in the construction of a large-scale pavilion in central London.

Professional links

The Digital Architecture and Robotics laboratory (DARLAB) partners with industry to provide solutions to their business problems and challenges that they currently face or expect to arise in the near future. We offer businesses a number of avenues for accessing our research expertise. We also undertake research projects for small and big businesses alike at competitive rates and where speed and confidentially are key requirements.

Partners Include:

• Hiteco: designers and manufacturers of high-tech machine components for machining wood, light alloys, plastic and composite materials.
• QDesign: a team of experts in engineering sciences. Their solutions offer a wide range of robotics plants applications and continuous software development.
• SCM Group: company world leader in the production of woodworking machinery and systems.
• CIMsystem: a leading provider of CAD/CAM technology and technological solutions with a worldwide technical and sales partner network.
• HAL: a Grasshopper plugin for industrial robots programming supporting ABB, KUKA and Universal Robots machines. Allows to simulate, program, control and monitor robotic cells.
• KUKA: pioneer in robotics and automation technology, one of the leading manufacturers of robotic systems worldwide.

Employability

The Master's program opens up various possibilities for professional development. You could go on to work in the area of architecture, building construction, engineering, interior or product design. You could also work as a specialist or consultant in the field of computational design and robotic construction.

The course could also lead on to a PhD or employment in engineering research.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
Design informatics focuses on designing with data. This course is run in conjunction with Edinburgh College of Art through the Centre for Design Informatics. Read more

Programme description

Design informatics focuses on designing with data. This course is run in conjunction with Edinburgh College of Art through the Centre for Design Informatics.

On this programme you will learn how to build computational systems as well as the principles of design thinking and making.

Through case studies of real-life products you will apply your knowledge in a practical way, developing an understanding of what it takes to create, design and take a product to market.

Programme structure

Design Informatics: designing with data can be explored in most specialist areas of Informatics, but Design Informatics emphasises entrepreneurial product development.

In the first year you follow two semesters of taught courses, attending lectures, tutorials and group practicals to acquire the theoretical foundation to enable you to engage in independent research.

In the summer you have a commercial or public semester placement, where you will work on a project that will help you test and reflect on your knowledge and skills.

In the second year, taught courses focus on product design, and you will gain experience in leading a group, before completing a dissertation project.

Compulsory courses:

-Case Studies in Design Informatics 1
-Design with Data
-Design Informatics Project
-Histories and Futures of Technology
-Dissertation
-Placement

Option courses:

-Accelerated Natural Language Processing
-Computer Graphics
-Extreme Computing
-Introduction to Vision and Robotics
-Text Technologies for Data Science
-Automatic Speech Recognition
-Innovation Driven Entrepreneurship

Work placement/internship:
You will work on a project that will help you use your skills and knowledge during a summer placement with a commercial or public sector organisation.

Career opportunities

This degree will put you at the cutting edge of design technology and technology for design, opening a host of opportunities in the commercial sector.

Read less
Programme description. Design informatics focuses on designing with data. This programme is run in conjunction with Edinburgh College of Art through the Centre for Design Informatics. Read more

Programme description

Design informatics focuses on designing with data. This programme is run in conjunction with Edinburgh College of Art through the Centre for Design Informatics.

On this programme you will learn how to build computational systems as well as the principles of design thinking and making.

Through case studies of real-life products you will apply your knowledge in a practical way, developing an understanding of what it takes to create, design and take a product to market.

Programme structure

You follow two semesters of taught courses, attending lectures, tutorials and group practicals to acquire the theoretical foundation to enable you to engage in independent research.

Between May and August you will do a major individual research project on which you will write a dissertation.

Design Informatics: designing with data can be explored in most specialist areas of Informatics, but with a focus on entrepreneurial product development.

Compulsory courses:

  • Case Studies in Design Informatics 1
  • Design with Data
  • Design Informatics Project
  • Histories and Futures of Technology
  • Dissertation

Option courses include:

  • Accelerated Natural Language Processing
  • Computer Graphics
  • Extreme Computing
  • Text Technologies for Data Science
  • Automatic Speech Recognition
  • Innovation Driven Entrepreneurship

Career opportunities

This degree will put you at the cutting edge of design technology and technology for design, opening a host of opportunities in the commercial sector.



Read less
Graduate education in Computational Science and Engineering (CMSE) at Koç University is offered through an interdisciplinary program among the Departments of the College of Arts and Sciences and the College of Engineering. Read more
Graduate education in Computational Science and Engineering (CMSE) at Koç University is offered through an interdisciplinary program among the Departments of the College of Arts and Sciences and the College of Engineering. In this program graduate students are trained on modern computational science techniques and their applications to solve scientific and engineering problems. New technological problems and associated research challenges heavily depend on computational modeling and problem solving. Because of the availability of powerful and inexpensive computers model-based computational experimentation is now a standard approach to analysis and design of complex systems where real experiments can be expensive or infeasible. Graduates of the CMSE Program should be capable of formulating solutions to computational problems through the use of multidisciplinary knowledge gained from a combination of classroom and laboratory experiences in basic sciences and engineering. Individuals with B.S. degrees in biology, chemistry, physics, and related engineering disciplines should apply for graduate study in the CMSE Program.

Current faculty projects and research interests:

• Computational Biology & Bioinformatics
• Computational Chemistry
• Computational Physics
• Molecular Dynamics and Simulation
• Parallel and High Performance Computing
• Computational Fluid Dynamics
• Dynamical and Stochastic Systems
• Quantum Mechanics of Many Body Systems
• Electronic Design Automation
• Numerical Methods
• Simulation of Material Synthesis
• Structural Dynamics
• Biomedical Modeling and Simulation
• Virtual Environments

Read less
Computational modelling is crucial for many industries, from bioengineering to automotive and aerospace. Read more

Summary

Computational modelling is crucial for many industries, from bioengineering to automotive and aerospace. This academically challenging course covers the latest techniques, methods and simulation software to give accurate insights into how innovative design ideas will work in practice and how to work effectively with industry.

Modules

Compulsory modules: Introduction to Advanced Mechanical Engineering Science; Numerical Methods; Advanced Computational Methods I; Design Search and Optimisation (DSO) - principles, methods, parameterizations and case studies; MSc Research Project

Optional modules: further module options are available

Visit our website for further information...



Read less
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling. Read more
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling.

We provide practical, hands-on learning about how modern, highly computerised financial markets work, how assets should be priced, and how investors should construct a portfolio of assets. In addition to traditional topics in derivatives and asset pricing, we place a special emphasis on risk management in non-Gaussian environment with extreme events.

You master these areas through studying topics including:
-Non-linear and evolutionary computational methods for derivatives pricing and portfolio management
-Applications of calculus and statistical methods
-Computational intelligence in finance and economics
-Financial markets

You also graduate with an understanding of the use of artificial financial market environments for stress testing, and the design of auctions and other financial contracts.

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation.

Our research is geared towards real-world, practical applications, and many of our academic staff have experience of applying their findings in industry and in advising the UK government.

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our departments of economics, computer science and business.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Financial Engineering and Risk Management
-Introduction to Financial Market Analysis
-Learning and Computational Intelligence in Economics and Finance
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Big-Data for Computational Finance (optional)
-Industry Expert Lectures in Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Programming in Python (optional)
-Artificial Neural Networks (optional)
-High Frequency Finance and Empirical Market Microstructure (optional)
-Machine Learning and Data Mining (optional)
-Trading Global Financial Markets (optional)
-Creating and Growing a New Business Venture (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Constraint Satisfaction for Decision Making (optional)

Read less
This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Read more
This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Our graduates have progressed to undertake or obtain PhDs or medical studentships, or have found employment in both the private and public sector.

Degree information

The programme covers all aspects of drug design, including genomics, bioinformatics, structural biology, cheminformatics, molecular modelling and fragment-based drug design, drug target selection, intellectual property and marketing. New therapies and research areas such as antibodies, siRNA, stem cells and high throughput screening are covered. Students will develop essential skills such as research methods and techniques of drug design.

Students undertake modules to the value of 180 credits. The programme consists of eight core modules (120 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits) is also offered. A Postgraduate Certificate (60 credits) is also offered. There are no optional modules for this programme.

Core modules
-Bioinformatics and Structural Biology
-Target Identification and High Throughput Screening
-Cheminformatics and Computer Drug Design
-Biological Molecules as Therapeutics - Antibodies, siRNA, and Stem Cells
-Biophysical Screening Methods, Protein NMR and Phenotypic Screening
-Fragment Based Drug Design (FBDD)
-Target Selection - Scientific Grounds
-Target Selection - Commercial and Intellectual Property

Dissertation/report
All MSc students undertake an independent research project which can take the form of a literature project, wet lab/computer modelling based project or an external project with an industrial sponsor.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, self study, practical sessions and discussion groups. The research project forms one third of the programme. Each of the taught modules is assessed by unseen written examination (50%) and coursework (50%). The research project is assessed by the dissertation and viva.

Careers

The programme will provide a good background for students looking to establish a career in drug design/discovery and related industries (biotech, pharma, national research laboratories and NHS agencies), and for industry professionals seeking to gain a greater understanding of new methodology. The knowledge and transferable skills delivered will also be useful for those intent on further PhD or medical studies.

Top career destinations for this degree:
-Industrial Chemistry, University of Oxford
-PhD Researcher (Molecular Biology), EMBL (European Molecular Biology Laboratory)
-Cancer Research, Imperial College London
-PhD Drug Design, University College London (UCL)
-PhD Oncology, Tianjin University

Employability
Graduates from this programme have progressed to PhD/medical studentships at different universities and research institutes around the world, including Oxford, UCL, Grenoble, EMBL, and in the USA and China. Many alumni have secured positions in research teaching and technical sales in the private and public sectors.

Why study this degree at UCL?

UCL is listed among the top five universities in the TImes Higher Education QS World University Rankings 2015/16 and is located in the centre of one of the world's finest cities. UCL is one of Europe's best and largest centres for biomedical research.

At the Wolfson Institute for Biomedical Research, we have pioneered multidisciplinary research with a particular emphasis on translating that research into useful clinical benefit. Our research expertise includes: medicinal chemistry, computational drug design, neuronal development and signalling, cell cycle control, intensive care medicine, stem cells, mitochondrial biology and cancer.

Read less
The Ravensbourne MA Environment Design investigates spatial design in its real-virtual, and macro-micro scales. Read more
The Ravensbourne MA Environment Design investigates spatial design in its real-virtual, and macro-micro scales. Encompassing interior, architecture, cities and natural environments the programme analyzes a series of different perspectives of theory and practice from art, science, and technology towards an understanding of a cultural sustainability.

Systems - Every year the course aims to produce new research that takes forward questions inherent in Modernity. Currently focused on natural ecological systems (earthquakes, tectonic plates, deltas and shorelines), (re)contruction and war, cosmographies and cultures of outerspace, and bio-tech materials ; the course encourages you to explore your own field of research and practice.

Technologies - The Environment Design operates with a multidisciplinary team where knowledge exchange is one of the core points to focus. From: applied technologies, visual effects, interactive digital media, moving image, communication design and fashion, the programme aims to deploy students with methods and techniques from different perspectives embracing new possibilities offered by new technology and the creative processes involved in designing.

Modeling and simulation - with a hands on training in the use of the scientific instruments and computational tools, Ravensbourne offers you with full access to digital facilities for digital imaging and prototyping; where you will be able to experiment and innovate through technical, user and interaction workshops based upon strategies deployed by leading practitioners within the field.

You will be encouraged to engage with advanced practice within a global context and explore the similarities and key differences and emphases of different centres across the world and to put your learning and design solutions into context.

Here you will expand your own research and practice, by developing and managing an individual programme of enquiry and creative development in environment design culminating in the realisation of a final major project fully informed by professional and industrial contexts and multi disciplinary perspectives.

Study units

- Technology Issues
- Business and Innovation
- Research Process
- Concept and Prototyping
- Major project

The Research Process unit supports you in gaining the research skills needed for the development of your individual projects.

Three five-week workshops in the Technology Issues unit will enable you to explore interdisciplinary, cross-disciplinary and individually negotiated projects.

In the Business Innovation unit, you are helped to develop an understanding of business and innovative practices in the creative industries.

The Concept and Prototyping unit allows you to further develop the skills you have learnt; for example: using hybrid bottom-up strategies and to take a single line of inquiry, idea or theory embedded in environment design and research and develop the concept.

The Major Project represents the culmination of the your investigation and the final stage of the research strategy.

Learning

You will receive regular support from tutors, peers and subject-specific group tutorials as part of a constant critical dialogue to help create a professional and critical understanding of your individual creative process.

You will benefit from working alongside students on other MA pathways in a multi-disciplinary environment, creating opportunities to widen and expand approaches to your own research and practice giving the opportunity to adapt and adopt new and innovative methods and solutions.

The course benefits from its positioning and relationship to allied creative disciplines, such as the Applied Technologies, Fashion, and Interactive Digital Media pathways, affording opportunities for collaboration, cross-fertilisations and synergies. You are also expected to engage with the architectural design profession and to make full use of the resources and opportunities available in London.

Programme Aims

All postgraduate courses at Ravensbourne provide students with the opportunity to develop advanced skills in the conceptualisation and practical realisation of innovative creative projects in their discipline area and provide them with the entrepreneurial skills to realise their commercial potential. These courses share the following common aims:

- to develop advanced creative practitioners with the potential to originate, innovate or influence practice in their discipline area;

- to equip students with a comprehensive understanding of the core principles and technology underpinning their creative project and the theoretical frameworks within which to locate it;

- to underpin students’ creative practice with the entrepreneurial skills and business awareness necessary to turn concepts into commercially viable realities;

- to develop students’ skills in independent learning, self-reflection and research skills necessary to sustain advanced creative practice and scholarship;

- to offer a stimulating environment for postgraduate students which is both supportive and flexible in relation to their learning needs and a creative space in which to incubate their ideas.

Read less

Show 10 15 30 per page



Cookie Policy    X