• University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
De Montfort University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Cardiff University Featured Masters Courses
University of Bedfordshire Featured Masters Courses
Loughborough University Featured Masters Courses
"computational" AND "chem…×
0 miles

Masters Degrees (Computational Chemistry)

  • "computational" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 96
Order by 
A Master’s degree in chemistry qualifies you for expert positions in a wide range of fields, such as industry, research or education. Read more
A Master’s degree in chemistry qualifies you for expert positions in a wide range of fields, such as industry, research or education. The chemicals industry is a major employer and one of the largest export industries in Finland. Your work could also involve applications of environmental or biological sciences, the manufacture of pharmaceutical products, or the development of technological materials or new energy solutions. In the private sector, your duties might include research and development, quality management, training or commerce. Customs and forensic chemists, and chemists working in environmental control, analyse samples as part of their duties. Chemical research often requires interdisciplinary and international cooperation. As a chemist, you can be a part of developing new inventions and serve as an expert in your field and as a connoisseur of natural phenomena!

After completing the Master’s Programme in Chemistry and Molecular Sciences, you will:
-Be profoundly familiar with experimental research methods in one or more fields of chemistry, such as analytical and synthetic chemistry, radiochemistry, molecular research, and spectroscopy.
-Have an in-depth knowledge of the theoretical basis of your field and be able to apply this knowledge to broader topics.
-Know how to search for and manage chemical research data and use them to plan and perform demanding duties in chemical laboratories.
-Be able to act as a chemical expert in project planning and management, both independently and as a member of a team.
-Be able to present your results accurately in accordance with the practices of the field, both orally and in writing, and prepare extensive papers and reports.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

In the Master’s programme, you will deepen the knowledge and skills acquired during your Bachelor’s degree studies. Depending on your choices, you will familiarise yourself with one or more branches of chemistry and learn modern research methodology. The studies include lecture courses, examinations and contact teaching, laboratory courses, presentation series and seminars. Compared to the Bachelor’s degree, these studies require more independent work. The Master’s degree culminates in an extensive Master’s thesis that includes practical research. You can find further details about the studies in the course catalogue (in Finnish) and on WebOodi - http://www.helsinki.fi/ml/opinto-opas/index.html

Students are automatically granted admission to the Master’s programme through the Bachelor’s Programme in Chemistry at the University of Helsinki. You can also apply for the programme after completing an applicable Bachelor’s degree in a different programme or university.

Selection of the Major

In the Master’s programme, you may select study modules from different special fields of chemistry according to your interests and career goals. You can either complete a broad-ranging degree by selecting studies from several modules or specialise in a specific branch of chemistry. In connection with the Master’s programme operates also the international programme Advanced Spectroscopy in Chemistry, where you have the possibility to apply. You will receive assistance in preparing your personal study plan from your student advisor.

Career Prospects

Chemistry is needed in many sectors. Similarly, Master’s studies in chemistry allow you to specialise in many kinds of tasks. In your Master’s degree studies, you will familiarise yourself thoroughly with at least one branch of chemistry, after which you will be qualified to work in demanding expert positions. As a Master’s graduate, you can apply for postgraduate study in a doctoral programme. Approximately one quarter of chemistry graduates continue to complete a doctorate.

As a chemical expert you can embark on a career in industry, research or education, or in the business sector. Your work might also involve applications of environmental or biological sciences, the manufacture of pharmaceutical products, or the development of technological materials or new energy solutions. Potential employers include private companies, research and educational institutes, public agencies and supervisory authorities. A traineeship completed during your studies could help you to choose your career. Chemistry is an international field, so there are also plenty of career opportunities abroad and in international organisations.

Internationalization

An international learning environment: The Master’s Programme in Chemistry and Molecular Sciences accepts students through an international admissions procedure. Lectures are in English. Students of the international Master’s Programme in Advanced Spectroscopy in Chemistry, as well as several exchange students further increase the international scope. In addition, the Department includes several international teachers and researchers. Chemical research is an international effort, and research groups at the University of Helsinki have several international partners.

Student exchange: The University of Helsinki has student exchange agreements with several foreign universities, so you can complete part of your degree abroad. Once you have completed your Master’s degree, you can pursue doctoral studies at a foreign university. The Master’s degree in chemistry completed at the University of Helsinki has been certified with the Euromaster® quality label, which guarantees the recognition of the degree at European universities.

Language studies: The University of Helsinki offers a wide range of opportunities for improving your language skills.

Research Focus

Chemical research is multifaceted and extensively covers the methodology of different branches of chemistry. Operations have been divided into three research programmes: Molecular Sciences, Materials Chemistry, and Synthesis and Analysis. In addition, the Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN) operates at the Department. The Unit of Chemistry Teacher Education actively researches the teaching of chemistry and the development of teaching methods.

Chemical research methods range from laboratory work to demanding equipment technologies, computational research and modelling. Research projects are often multidisciplinary. Researchers at the Department of Chemistry have joint projects with University units in the fields of, for example, physics, biological sciences, pharmacy and medicine. Other key partners include Aalto University, VTT Technical Research Centre of Finland and many universities, research institutes and companies in Finland and abroad.

Read less
Materials Chemistry is one of the modern chemical disciplines underpinning a substantial portion of the chemicals sector. The programme provides a unique general training in the area and includes the chance to specialise in aspects such as Polymer Chemistry, Inorganic Materials, Supramolecular Chemistry or Nanosciences. Read more
Materials Chemistry is one of the modern chemical disciplines underpinning a substantial portion of the chemicals sector.

The programme provides a unique general training in the area and includes the chance to specialise in aspects such as Polymer Chemistry, Inorganic Materials, Supramolecular Chemistry or Nanosciences. Both synthesis and characterisation are core parts of the taught aspects.

The course provides for studies in all aspects of Materials Chemistry. Students can study fundamental aspects of Polymer Chemistry; Nano and Supramolecular Chemistry, Inorganic Materials Chemistry and the programme includes application areas such as Nanomaterials and Semi-conductors.

Professional Accreditation

We will be seeking accreditation from the Royal Society of Chemistry (RSC).

Why Bradford?

Uniquely the programme offers one of the widest ranges of opportunities for carrying out a 12 month research project from a selection that covers all aspects of Materials Chemistry. Projects are supervised by leading researchers in their fields.

Studies can either be conducted over a 12 month period at Bradford or remotely over 24 months with a project being conducted in an area of Materials Chemistry at the student’s workplace.

Rankings

Ranked 18th in the UK for Chemistry in the Guardian University League Tables 2017.

Modules

Core modules:
-Research skills, professional development and commercial awareness
-Research Project - Part 1
-Research Project - Part 2

Option modules:
-Inorganic Materials Chemistry
-Fundamentals of Nano and Supramolecular Materials
-Introduction to Polymer and Colloid Science
-Computational Crystal Engineering
-Materials in Electronics
-Materials Characterisation

Learning activities and assessment

Transferrable skills are at the heart of the programme and these aspects are assessed by submission of a thesis, a draft scientific paper, oral presentation as well as modules on data management.

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Materials Chemists work in a diverse range of areas including: medical devices; electronic devices; sustainable energy generation; nanomaterials; surface coatings; controlled delivery of drugs and agrochemicals and many other areas.

Transferable skills are also a key component and graduating students will be equipped for careers in both academia and industry.

Read less
A fully funded Master by Research in the area of Computational Chemistry is available in the group of Prof. Alessandro Troisi in the Department of Chemistry at University of Warwick to start as soon as possible. Read more
A fully funded Master by Research in the area of Computational Chemistry is available in the group of Prof. Alessandro Troisi in the Department of Chemistry at University of Warwick to start as soon as possible.

Candidates must have some knowledge of Computational Chemistry and should be interested in applications related to Material Science and Renewable Energy.

The research topics available within the group are available in http://www.warwick.ac.uk/go/troisigroup

A tax free stipend of £1100 per month for 9 months will be offered to the successful candidate.

Informal enquires can be directed to .

Read less
The Master in Chemistry is a two-year (120 ECTS) advanced study in chemistry organised by the Vrije Universiteit Brussel, a Flemish university located in Brussels, Belgium. Read more
The Master in Chemistry is a two-year (120 ECTS) advanced study in chemistry organised by the Vrije Universiteit Brussel, a Flemish university located in Brussels, Belgium. This MSc programme combines the expertise in the different research domains of both the Vrije Universiteit Brussel (VUB) and Ghent University (UGent).

About the programme

Apart from a mandatory set of core competences, the programme offers a wide variety of classes within four current trends in Chemistry (clusters composed of a course package of 30 ECTS credits):

• Molecular and Macromolecular Design offers a thorough education in the design and synthesis of organic molecules and polymers, in which medicinal chemistry, computational chemistry and structural analysis feature prominently.
• Materials Chemistry focuses on the properties of materials, such as polymers, for example surface analysis, X-rays and laser spectroscopy and computational chemistry.
• Analysis and Characterisation covers a whole range of analytical techniques, including new electrochemical methods, advanced chromatography and elemental and isotope analyses.
• Environmental Chemistry studies natural and disturbed processes in water, soil and atmosphere. A variety of analytical techniques are used here, and new sampling and measuring techniques are designed, refined and optimised.

Additionally three main orientations exist, allowing you to select a profile composed of an additional course package of 30 ECTS in Research, Industry or Education (the profile ‘Education’ is taught in Dutch).

Approach

Practicals in small groups:
Chemistry is a real experimental science. Consequently, a lot of attention is given to practical experience and laboratory training. Practical sessions are designed to precisely perform experiments in small groups, and to handle chemicals in a safe and environmentally friendly manner. Writing lab reports and oral presentation skills are emphasised, as they constitute an integral part of the preparation for your future career. During these practical sessions, you are exposed to the different research areas and you become familiar with both theoretical and practical aspects of the different branches of chemistry. You will be introduced to the world of nucleic acids, proteins, biochemical processes and their applications, the design and synthesis of new molecules, molecular properties and reactivity studies, as well as the detection of organic pollutants, or the precise measurements of very low metal concentrations in the environment (water, soil, air).

Everyday applications:
Chemistry gives insight into a broad range of phenomena with everyday applications, and teaches you the theoretical basis of molecular properties. You also learn how you can elucidate the structure of complex organic molecules, and how you can build these molecules in the lab. The air you breathe or the water you drink must comply with international quality standards. You will be taught how to monitor that quality. The focus is clearly towards a discipline-based education, with a lot of time for experimental work.

International opportunities

During your master years, you have the opportunity to do an internship and gain experience in a professional environment, such as an international company or research lab. Or you can decide to study abroad for a semester.
Within this programme you can go on exchange to:

Denmark:
- University of Copenhagen
France:
- Université Claude Bernard Lyon I
- Université Pierre et Marie Curie
- Université Montpellier I
Portugal:
- Universidade de Lisboa
Spain:
- Universitat de Girona

Student profile:

Do you want to discover new molecules or develop advanced materials with specific properties, at a university, a public or industrial research lab?
Do you want to work on energy-efficient and environmentally friendly materials and processes?
Do you want to specialise in molecular and macromolecular design, with applications in various field such as medicine, materials, etc.?
Do you want to study the impact of chemical products on the environment?
Do you want to share your knowledge and are you considering a career in education?
Do you already have a professional Bachelor’s degree and are you looking to pursue your education and increase your opportunities on the job market?

Read less
The MChem Analytical Chemistry programme at Plymouth provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels four to seven. Read more
The MChem Analytical Chemistry programme at Plymouth provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels four to seven. Plymouth University is the only university which requires students to work in ISO9001:2015 certified laboratories.

Practical work to the ISO 17025 standard is a requirement at level seven for obtaining the MChem Analytical Chemistry qualification. The programme focuses on producing practical professional chemists through a hands-on approach to learning.

Key features

-The programme provides a pathway for progression through a broadly based undergraduate degree in Chemistry with increasing specialisation in Analytical Chemistry from levels 4 to 7 (Masters Level)
-You will develop the theoretical and practical skills necessary for employment as professional chemist in a range of chemical and allied fields, including research, teaching and industry
-The programme will develop the theoretical and practical skills, and provide training necessary for employment as an analytical chemist with experience of working to ISO 17025, the international standard for all testing and calibration laboratories
-You will learn to become a practical professional chemists through a hands-on approach to learning.
-The course places the professional skills of communication, problem solving, information and data retrieval and project management at its heart.

Course details

Year 1
Core modules
-CHM1011 Practice of Chemistry
-CHM1015 Organic and Inorganic Chemistry 2
-CHM1016 Physical and Computational Chemistry 2
-CHM1012 Organic and Inorganic Chemistry 1
-CHM1013 Physical and Computational Chemistry 1

Optional modules
-CHM1014PP Solving Chemical Problems
-MATH1604PP Symmetry and Space
-SPNX100PP Spanish 1
-FREX100PP French 1
-GERX100PP German 1
-MATH1607PP The Quantum Universe

Year 2
Core modules
-CHM2013 Physical Chemistry
-CHM2011 Inorganic Chemistry
-CHM2012 Organic Chemistry
-CHM2015 Analytical Chemistry 2
-CHM2014 Analytical Chemistry 1
-APIE218 Preparation for the Chemical Industry Work Placement
-CHM2016 Research Skills

Year 3
Optional modules
-APIE318 Placement in Chemistry

Year 4
Core modules
-CHM3016 Advanced Physical Chemistry
-CHM3014 Advanced Inorganic Chemistry
-CHM3015 Advanced Organic Chemistry

Optional modules
-CHM3011 Chemistry Project
-CHM3012 Chemistry Project incorporating Work Based Learning
-CHM3013 Advanced Analytical Techniques
-CHM3017 Physical Chemistry

Final year
Core modules
-GEES514 Research Skills for Science
-CHM5001 MChem Analytical Chemistry Project
-CHM5004 Quality Assurance and Accreditation
-CHM5005 Analytical Chemistry Advanced Problems and Practice for MChem

Read less
Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life. Read more

Research profile

Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life.

In addition to gaining research skills, making friends, meeting eminent researchers and being part of the research community, a research degree will help you to develop invaluable transferable skills which you can apply to academic life or a variety of professions outside of academia.

The Chemistry/Biology Interface

This is a broad area, with particular strengths in the areas of protein structure and function, mechanistic enzymology, proteomics, peptide and protein synthesis, protein folding, recombinant and synthetic DNA methodology, biologically targeted synthesis and the application of high throughput and combinatorial approaches. We also focus on biophysical chemistry, the development and application of physicochemical techniques to biological systems. This includes mass spectrometry, advanced spectroscopy and microscopy, as applied to proteins, enzymes, DNA, membranes and biosensors.

Experimental & Theoretical Chemical Physics

This is the fundamental study of molecular properties and processes. Areas of expertise include probing molecular structure in the gas phase, clusters and nanoparticles, the development and application of physicochemical techniques such as mass spectoscropy to molecular systems and the EaStCHEM surface science group, who study complex molecules on surfaces, probing the structure property-relationships employed in heterogeneous catalysis. A major feature is in Silico Scotland, a world-class research computing facility.

Synthesis

This research area encompasses the synthesis and characterisation of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, coordination chemistry, ligand design and supramolecular chemistry, asymmetric catalysis, heterocyclic chemistry and the development of synthetic methods and strategies leading to the synthesis of biologically important molecules (including drug discovery). The development of innovative synthetic and characterisation methodologies (particularly in structural chemistry) is a key feature, and we specialise in structural chemistry at extremely high pressures.

Materials Chemistry

The EaStCHEM Materials group is one of the largest in the UK. Areas of strength include the design, synthesis and characterisation of functional (for example magnetic, superconducting and electronic) materials; strongly correlated electronic materials, battery and fuel cell materials and devices, porous solids, fundamental and applied electrochemistry polymer microarray technologies and technique development for materials and nanomaterials analysis.

Training and support

Students attend regular research talks, visiting speaker symposia, an annual residential meeting in the Scottish Highlands, and lecture courses on specialised techniques and safety. Students are encouraged to participate in transferable skills and computing courses, public awareness of science activities, undergraduate teaching and to represent the School at national and international conferences.

Facilities

Our facilities are among the best in the world, offering an outstanding range of capabilities. You’ll be working in recently refurbished laboratories that meet the highest possible standards, packed with state-of-the-art equipment for both analysis and synthesis.

For NMR in the solution and solid state, we have 10 spectrometers at field strengths from 200-800 MHz; mass spectrometry utilises EI, ESI, APCI, MALDI and FAB instrumentation, including LC and GC interfaces. New combinatorial chemistry laboratories, equipped with a modern fermentation unit, are available. We have excellent facilities for the synthesis and characterisation of bio-molecules, including advanced mass spectrometry and NMR stopped-flow spectrometers, EPR, HPLC, FPLC, AA.

World-class facilities are available for small molecule and macromolecular X-ray diffraction, utilising both single crystal and powder methods. Application of diffraction methods at high pressures is a particular strength, and we enjoy strong links to central facilities for neutron, muon and synchrotron science in the UK and further afield. We are one of the world's leading centres for gas-phase electron diffraction.

Also available are instruments for magnetic and electronic characterisation of materials (SQUID), electron microscopy (SEM, TEM), force-probe microscopy, high-resolution FTRaman and FT-IR, XPS and thermal analysis. We have also recently installed a new 1,000- tonne pressure chamber, to be used for the synthesis of materials at high pressures and temperatures. Fluorescence spectroscopy and microscopy instruments are available within the COSMIC Centre. Dedicated computational infrastructure is available, and we benefit from close links with the Edinburgh Parallel Computing Centre.

Read less
The School of Chemistry is one of the largest in the UK and an internationally recognised centre of teaching and research. Currently there are over 250 postgraduate and postdoctoral researchers, from many different countries, working with more than 60 academic staff on a wide range of research themes. Read more
The School of Chemistry is one of the largest in the UK and an internationally recognised centre of teaching and research. Currently there are over 250 postgraduate and postdoctoral researchers, from many different countries, working with more than 60 academic staff on a wide range of research themes. Extensive collaborations with science-based industries and leading international academic centres ensure that research in Bristol remains at the frontier of science.

The School of Chemistry is housed in spacious, modern laboratories, which are well equipped with state-of-the-art facilities. There is a comprehensive graduate programme to ensure you have the opportunity to build a wide range of skills, both in chemistry and other transferable skills.

The School of Chemistry hosts or participates in a number of Centres for Doctoral Training (CDTs) and Doctoral Training Partnerships (DTPs). Training opportunities in these national flagship centres are available in the following disciplines:
-Chemical synthesis
-Functional nanomaterials
-Catalysis
-Theory and modelling in chemical sciences
-Science and technology of diamond
-Synthetic biology
-Advanced composites
-Earth and environmental sciences
-Quantum engineering
-Future autonomous and robotic systems
-Bioscience
-Condensed matter physics

Research groups

The School of Chemistry maintains a traditional managerial structure with three sections, namely Inorganic and Materials, Organic and Biological, and Physical and Theoretical. However, the school’s research profile is defined according to nine themes, each with a critical mass of researchers. Further information on the school's research profile can be found at Explore Bristol Research (http://research-information.bristol.ac.uk/).

-Atmospheric and Global Change Chemistry
-Biological and Archaeological Chemistry
-Catalysis
-Computational and Theoretical Chemistry
-Materials for Energy
-Soft Matter, Colloids and Materials
-Spectroscopy and Dynamics
-Supramolecular and Mechanistic Chemistry
-Synthesis

Researchers in the School of Chemistry are engaged in a number of collaborative centres and research institutes, with broader engagement from researchers across the Faculty of Science, the University and beyond.

Careers

Many of our PhD graduates are successful in securing postdoctoral positions at universities in the UK and abroad. A PhD in chemistry is valued in many employment sectors worldwide, including pharmaceutical sciences, polymers, coatings, agrochemicals, instrumentation manufacturers and management consultancy. Your skills will be in high demand from the chemical and allied industries, as well as the public sector.

Read less
The aim of the course is to provide experience in a wide range of laboratory techniques and enhance specialist knowledge in chemistry. Read more
The aim of the course is to provide experience in a wide range of laboratory techniques and enhance specialist knowledge in chemistry. Research projects may be chosen from any area of computational, physical, inorganic or organic chemistry.

Course components include:
• An advanced chemistry practical unit
• Two research projects in areas of choice
• Taught units in advanced chemistry
• Optional taught units in chemistry, biological sciences and management
• Modules in transferable skills, including scientific presentations and report writing.

Why study Chemistry with us?

- Outstanding facilities: X-ray powder diffraction, single crystal X-ray diffraction, Mass spectrometry, NMR (250/300/400/500 MHz, multinuclear facility)
- Programmes accredited by the Royal Society of Chemistry
- Outstanding publications, substantial grant income from research councils and industrial partners has resulted in a strong demand for our postgraduates and postdoctoral workers

What will I learn?

The MRes is a self-contained qualification, and graduates will be well-suited for posts in all sectors of the chemical industry, including the pharmaceutical industry and government institutions.

Students who complete a MRes degree will be well qualified to proceed to a three-year PhD programme or the MRes can be studied as the first year of our Integrated PhD programme. They should have a competitive edge in relation to undergraduate students applying for doctoral studies.

Career Opportunities

Career opportunities
Recent Bath graduates have gone on to employment or postdoctoral research in the UK, USA (Princeton, Harvard and Yale), the Netherlands, France, Luxembourg, Norway, Brunei and New Zealand.

Employers include the NIST Center for Neutron Research, Tocris, EPSRC and the Royal Society of Chemistry.

Find out more about the department here - http://www.bath.ac.uk/chemistry/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
The Master of Enterprise [MEnt] is run jointly by the School of Chemistry and Manchester Enterprise Centre. The course has been designed to combine Masters level research, sound business theory and the practical enterprise skills needed to apply that knowledge in a business context. Read more

Overview

The Master of Enterprise [MEnt] is run jointly by the School of Chemistry and Manchester Enterprise Centre. The course has been designed to combine Masters level research, sound business theory and the practical enterprise skills needed to apply that knowledge in a business context.

The Master of Enterprise degree reflects the nature of knowledge-based enterprise and innovation. Students develop ideas from their discipline into new products and services. The School of Chemistry has particular strengths in biological chemistry and organic synthesis, computational and theoretical chemistry, materials chemistry (inorganic and polymer), magnetic resonance and structural chemistry, radiochemistry and environmental chemistry and nanoscience. Manchester Science Enterprise Centre provides the enterprise element of the course and support in the business development activities undertaken by students. Each student has at least one subject supervisor, an enterprise supervisor and potentially a business mentor from a relevant industry sector.

Programme Content and Assessment

Students will learn key enterprise skills such as opportunity recognition, idea generation and the ability to transform ideas into tangible business proposals. Students will also gain essential knowledge and awareness in areas such as finance, risk management and market research.

Students are assessed by a combination of exams and coursework. Students take two compulsory enterprise units (30 credits in total) and two optional subject units (30 credits in total) from your academic area of interest and an Enterprise Project (120 credits). These can be selected from any of the University’s postgraduate programmes and will enable you to enhance your subject knowledge a commercial context.

Year-long enterprise research project

The project will develop a students competences in knowledge transfer and will combine enterprise, entrepreneurship and innovation research from a commercial perspective.

The project must have a potential commercial application and can be based on a students own proposal for a start-up business, or it can be undertaken on behalf of an external organisation. We can source suitable projects for students if required.

Fees, Funding and Scholarships

Fees for this programme are dependent upon the subject based units that you choose and the School of Chemistry tuition fees. Contact Elisa Harrocks for more details.

Manchester Science Enterprise Centre offer a limited number of scholarships for both UK and EU student.

Read less
The basis of natural sciences is the modelling of phenomena and solving these models. The Master’s programme in theoretical and computational methods will give you a strong basis in the theoretical methods, modelling, and mathematical and numerical analysis within physics, mathematics, chemistry and/or computer science. Read more
The basis of natural sciences is the modelling of phenomena and solving these models. The Master’s programme in theoretical and computational methods will give you a strong basis in the theoretical methods, modelling, and mathematical and numerical analysis within physics, mathematics, chemistry and/or computer science. The special feature of this programme is that you can combine the above disciplines into a comprehensive programme. It is well suited for the needs of basic research and for many fields of application. This programme requires a strong commitment from you to develop your own skills and plan your degree. You can tailor your programme according to your existing knowledge and interests, in cooperation with the programme professors.

The programme’s strong scientific emphasis makes it a natural gateway to further studies in physics, mathematics, chemistry, and computer science. This will usually take place within one of the research groups working on the Kumpula campus.

Upon completing the Master’s programme, you will:
-Have a solid basis of skills in your chosen scientific field.
-Have good skills in analytical and computational thinking and deduction.
-Be able to apply theoretical and computational methods to the analysis and understanding of problems in various fields.
-Be able to generalise information on scientific phenomena, and identify the inner relationships.
-Be able to create mathematical models of natural phenomena.
-Be able to solve the models, both analytically and numerically.

As a graduate of this Master’s programme you can work as an expert in many kinds of scientific jobs in the private and the public sectors. The employment rate in this field is good.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The special feature of this programme is its great scope: it consists of several modules in physics, mathematics, chemistry, and/or computer science. Out of these, you may select a suitable group of subjects according to your interests and the courses you took for your Bachelor's degree. The programme incorporates modules from e.g. the following areas:
-Theoretical physics
-Mathematics
-Cosmology and particle physics
-Computational physics
-Physical chemistry
-Laser spectroscopy
-Mathematical physics and stochastics
-Applied analysis
-Software engineering
-Theoretical computer science

The courses include group and lecture instruction, exercises, literature, and workshops. Most courses also include exams or project assignments. In addition, you can complete some courses independently, by taking exams.

Selection of the Major

This Master’s programme does not have any sub-programmes; instead, can can tailor a suitable combination according to your plans and existing knowledge from the modules in physics, mathematics, chemistry, and computer science. Your personal study plan will ensure that your courses will form a functional combination.

Programme Structure

The Master’s programme comprises 120 credits (ECTS) and it is possible to complete the degree in two academic years. The degree includes:
-90 credits of courses in the Master’s programme, including the Master’s thesis (Pro gradu) of 30 credits.
-30 credits of other courses from your Master’s programme or other programmes.

Your studies will include a personal study plan, working-life orientation, and career planning. The other studies could also include a traineeship, complementary courses in your major or minor subject, or a completely new minor subject.

Career Prospects

The Master’s degree in sciences applying theoretical and computational methods gives you an excellent basis for postgraduate studies or for work in many careers in Finland or internationally. Masters of Science employed within research and R&D in industry are very well paid. On the other hand, a career at the university or a research institute lets you carry out academic research on a topic of your own choosing.

As a graduate with an MSc degree you could embark on a career in:
-Industry, especially advanced technology corporations (applied research and R&D, leadership).
-Universities and research institutes abroad and in Finland (basic scientific research).
-Teaching in universities and universities of applied sciences.
-Software engineering, e.g. gaming industry.
-Various design and consultation jobs in the public and private sectors.

Graduates of similar programmes in the earlier degree system have found employment as researchers and teachers in universities and research institutes in Finland and abroad (e.g. CERN, ESA, NASA), for example, in administration (e.g. the Finnish Academy), and in private corporations. The strong analytical skills provided by the education are sought after in areas such as data analysis (industries, media companies, gaming industry, finance), and corporate research, product development, and consultation (e.g. Nokia, Ericsson, Apple, Sanoma, Spinverse, Supercell, Nielsen, Valo Research and Trading, Planmeca, Reaktor, Comptel, Vaisala, KaVo Kerr Group, IndoorAtlas and Goldman Sachs).

Internationalization

The Master’s programme works in a very international atmosphere, with many top researchers from Finland and abroad teaching in it. If you write your MSc thesis in one of the research groups, you will get first-hand experience of work in an international research project. In addition, the University of Helsinki and the Faculty of Science offer you many opportunities for international activities:
-Student exchange in one of the exchange locations of the faculty or university.
-Traineeships abroad.
-Courses given in English within the faculty.
-Cooperation with students in the international programme.
-International tasks within the students’ organisations or union.
-Language courses at the Language Centre of the University of Helsinki.

The Faculty of Science aims to be at the cutting edge of European research within its disciplines.

The collaboration partners include several top international research centres, such as CERN, ESA, ESRF, and ITER.R.

As a graduate student at the Faculty of Science, you will be able to apply for research training at places such as CERN in Geneva, Switzerland, or the ESRF centre in Grenoble, France. A traineeship in one of the internationally active research groups on campus will enable you to acquaint yourself and form contacts with the international research community during your studies. In addition, the international exchange programmes offer many opportunities for you to complete part of your degree at a foreign university.

Read less
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. Read more
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. The programme is particularly suitable for those wishing to embark on an academic career, with a strong track record of students moving into graduate research at UCL and elsewhere.

Degree information

Students develop a systematic approach to devising experiments and/or computations and gain familiarity with a broad range of synthetic, analytical and spectroscopic techniques, acquiring skills for the critical analysis of their experimental and computational observations. They also broaden their knowledge of chemistry through a selection of taught courses and are able to tailor the programme to meet their personal interests.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (30 credits), four optional modules (15 credits each) and a research project (90 credits).

Core modules - all students undertake a literature project (30 credits) and a research dissertation (90 credits), which are linked.
-Literature Project

Optional modules - students choose four optional modules from the following:
-Advanced Topics in Energy Science and Materials
-Advanced Topics in Physical Chemistry
-Biological Chemistry
-Concepts in Computational and Experimental Chemistry
-Frontiers in Experimental Physical Chemistry
-Inorganic Rings, Chains and Clusters
-Intense Radiation Sources in Modern Chemistry
-Microstructural Control in Materials Science
-Numerical Methods in Chemistry
-Pathways, Intermediates and Function in Organic Chemistry
-Principles of Drug Design
-Principles and Methods of Organic Synthesis
-Simulation Methods in Materials Chemistry
-Stereochemical Control in Asymmetric Total Synthesis
-Structural Methods in Modern Chemistry
-Synthesis and Biosynthesis of Natural Products
-Topics in Quantum Mechanics
-Transferable Skills for Scientists

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 words and a viva voce examination (90 credits).

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through the dissertation, unseen written examinations, research papers, a written literature survey, and an oral examination. All students will be expected to attend research seminars relevant to their broad research interest.

Careers

This MSc is designed to provide first-hand experience of research at the cutting-edge of chemistry and is particularly suitable for those wishing to embark on an academic career (i.e. doctoral research) in this area, although the research and critical thinking skills developed will be equally valuable in a commercial environment.

Top career destinations for this degree:
-Analyst and Adviser, Silver Peak
-Sales Associate, Sino Chen
-Phd in Nanoparticle Synthesis, UCL
-Secondary School Teacher (GCSE), Ministry of Education
-PhD in High Performance Organic Coating for Aerospace, University of Surrey

Why study this degree at UCL?

With departmental research interests and activities spanning the whole spectrum of chemistry, including development of new organic molecules, fundamental theoretical investigations and prediction and synthesis of new materials, students are able to undertake a project that aligns with their existing interests.

Students develop crucial first-hand experience in scientific methods, techniques for reporting science and using leading-edge research tools, as well as further essential skills for a research career.

Read less
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows. Read more
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows.

We make every attempt to allocate you to a supervisor directly in your field of interest, consistent with available funding and staff loading. When you apply, please give specific indications of your research interest – including, where appropriate, the member(s) of staff you wish to work with – and whether you are applying for a studentship or propose to be self-funded.

Visit the website https://www.kent.ac.uk/courses/postgraduate/18/chemistry

About The School of Physical Sciences

The School offers postgraduate students the opportunity to participate in groundbreaking science in the realms of physics, chemistry, forensics and astronomy. With strong international reputations, our staff provide plausible ideas, well-designed projects, research training and enthusiasm within a stimulating environment. Recent investment in modern laboratory equipment and computational facilities accelerates the research.

The School maintains a focus on progress to ensure each student is able to compete with their peers in their chosen field. We carefully nurture the skills, abilities and motivation of our students which are vital elements in our research activity. We offer higher degree programmes in chemistry and physics (including specialisations in forensics, astronomy and space science) by research. We also offer taught programmes in Forensic Science, studied over one year full-time, and a two-year European-style Master’s in Physics.

Our principal research covers a wide variety of topics within physics, astronomy and chemistry, ranging from specifically theoretical work on surfaces and interfaces, through mainstream experimental condensed matter physics, astrobiology, space science and astrophysics, to applied areas such as biomedical imaging, forensic imaging and space vehicle protection. We scored highly in the most recent Research Assessment Exercise, with 25% of our research ranked as “world-leading” and our Functional Materials Research Group ranked 2nd nationally in the Metallurgy and Materials discipline.

Research areas

- Applied Optics Group (AOG):

Optical sensors
This activity largely covers research into the fundamental properties of guided wave interferometers, and their application in fields ranging from monitoring bridge structures to diagnostic procedures in medicine.

Biomedical imaging/Optical coherence tomography (OCT)
OCT is a relatively new technique which can provide very high-resolution images of tissue, and which has a major application in imaging the human eye. We are investigating different time domain and spectral domain OCT configurations.

The Group is developing systems in collaboration with a variety of different national and international institutions to extend the OCT capabilities from systems dedicated to eye imaging to systems for endoscopy, imaging skin and tooth caries. Distinctively, the OCT systems developed at Kent can provide both transverse and longitudinal images from the tissue, along with a confocal image, useful in associating the easy to interpret en-face view with the more traditional OCT cross section views.

The Group also conducts research on coherence gated wavefront sensors and multiple path interferometry, that extend the hardware technology of OCT to imaging with reduced aberrations and to sensing applications of optical time domain reflectometry.

- Forensic Imaging Group (FIG):

The research of the forensic imaging team is primarily applied, focusing on mathematical and computational techniques and employing a wide variety of image processing and analysis methods for applications in modern forensic science. The Group has attracted approximately £850,000 of research funding in the last five years, from several academic, industrial and commercial organisations in the UK and the US. The Group also collaborates closely with the Forensic Psychology Group of the Open University.

Current active research projects include:

- the development of high-quality, fast facial composite systems based on evolutionary algorithms and statistical models of human facial appearance

- interactive, evolutionary search methods and evolutionary design

- statistically rigorous ageing of photo-quality images of the human face (for tracing and identifying missing persons)

- real and pseudo 3D models for modelling and analysis of the human face

- generating ‘mathematically fair’ virtual line-ups for suspect identification.

- Functional Materials Group (FMG):
The research in FMG is concerned with synthesis and characterisation of functional materials, as exemplified by materials with useful optical, catalytic, or electronic properties, and with an
emerging theme in biomaterials. The Group also uses computer modelling studies to augment
experimental work. The research covers the following main areas:

- Amorphous and nanostructured solids
- Soft functional material
- Theory and modelling of materials

- Centre for Astrophysics and Planetary Science (CAPS):
The group’s research focuses on observational and modelling programmes in star formation, planetary science and early solar system bodies, galactic astronomy and astrobiology. We gain data from the largest telescopes in the world and in space, such as ESO’s Very Large Telescope, the New Technology Telescope, the Spitzer Space Telescope and the Herschel Space Observatory. We also use our in-house facilities which include a two-stage light gas gun for impact studies.

Staff are involved in a wide range of international collaborative research projects. Areas of particular interest include: star formation, extragalactic astronomy, solar system science and instrumentation development.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Our MSc Chemistry by Research combines advanced lecture modules in your area of specialisation with safety and professional skills modules and a significant period dedicated to an individual research project. Read more

Summary

Our MSc Chemistry by Research combines advanced lecture modules in your area of specialisation with safety and professional skills modules and a significant period dedicated to an individual research project. It offers specialisation in characterisation and analytics, chemical biology, computational systems chemistry, electrochemistry, flow chemistry, magnetic resonance, organic and inorganic synthesis and supramolecular chemistry.

Visit our website for further information...



Read less
At the graduate level, the Chemistry Department features a research-based Master of Science degree. After completion of core coursework in the major sub-disciplines, students in the Chemistry M.S. Read more
At the graduate level, the Chemistry Department features a research-based Master of Science degree. After completion of core coursework in the major sub-disciplines, students in the Chemistry M.S. program have the opportunity to participate in a wide range of research experiences, including environmental, organic synthesis, natural product isolation, computational and theoretical, analytical, nanomaterials, catalysis, polymers, biochemistry, and chemical education. The research experience is considerably enhanced by MTSU’s new 250,000-square-foot science building and upgraded instrumentation. Talented undergraduates also have the opportunity to participate in a new Accelerated Bachelor’s/Master’s (ABM) program which enables them to complete a bachelor’s and master’s degree in five years. Graduates find employment in a wide range of areas as well as continuing their education in high-quality doctoral and/or professional programs. The department also participates in three interdisciplinary Ph.D. programs (Molecular Biosciences, Computational Science, and Math and Science Education).

Career

Jobs in science, technology, engineering and mathematics are projected to grow 13 percent by 2022. Chemistry graduates with advanced degrees will particularly find better job opportunities with pharmaceutical and biotech companies. MTSU's state-of-the-art science building offers both large and small lab spaces so faculty can pursue research projects with both graduate and undergraduate students. A memorandum of understanding between the university and Oak Ridge National Laboratory also has been renewed three times. Some potential professional pursuits:

Analytical chemist
Biochemist
Biomedical engineer
Chemical engineer
Chemist
Chemistry teacher
Food scientist
Forensic scientist
Gas chromatography/mass spectrometry (GC/MS) specialist
Materials scientist
Molecular informatics specialist
Organic chemist
Patent attorney
Product development/design
Professor/educator
Research assistant/associate
Researcher
Sales/marketing – scientific equipment/pharmaceuticals

Employers of MTSU alumni include:

Abbott Pharmaceutical
Aegis
Albany Molecular Research
ALCOA
Bedford County School System
Belcher Pharmaceutical
California public school system
Commonwealth Technologies
Eli Lilly Inc.
Garratt Callahan
Google
Harcross Chemicals
Hewlett-Packard
Kyzen Corp.
Lipscomb University
L. King High School
Mead Johnson
Merck Pharmaceutical
Metro-Nashville Public Schools
Middle Tennessee State University
Nissan
Novartis Pharmaceuticals
Oak Ridge National Laboratory
Palm Corp.
Pellissippi State Community College
Purdue University
Rutherford County Schools
Schering-Plough Pharmaceuticals
Specialized Assays
Jude Children’s Research Hospital
Sylvan Learning
TBI Crime Laboratory
Tennessee Department of Health
Tennessee Dept. of Environment & Pollution Control
Tennessee Dept. of Health Lab Services
Test America
University of Cincinnati
Vanderbilt Drug Discovery Program
Vanderbilt-Ingram Cancer Center
Varian
Vi-Jon Laboratories
Williamson County Schools
Wilson County Schools

Doctoral/professional programs where alumni have been accepted include:

Arizona State University
Colorado State University
Florida State University
Loyola Stritch School of Medicine, Chicago
Michigan State University
Middle Tennessee State University
Niger Life University
Ohio State University
Rutgers University
Syracuse University
University of Alabama
University of British Columbia
University of Buffalo
University of Louisville
University of New Hampshire
University of New Mexico
University of Notre Dame
University of South Carolina
University of Tennessee-Knoxville
University of Tennessee-Memphis
University of Texas Southwestern Medical School
University of Utah
University of Vermont
University of Wyoming
Vanderbilt University
Virginia Commonwealth University
Wright State University

Read less
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Read more
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in:
-Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data.
-Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.
-Making systematic and innovative use of investigation or experimentation to discover new knowledge.
-Reporting results in a clear and logical manner.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The six study lines are as follows:
Aerosol Physics
Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods. As a graduate of this line you will be an expert in the most recent theoretical concepts, measurement techniques and computational methods applied in aerosol research.

Geophysics of the Hydrosphere
Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes.

Meteorology
Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example. As a graduate of the meteorology line, you will be an expert in atmospheric phenomena who can produce valuable new information and share your knowledge.

Biogeochemical Cycles
Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Remote Sensing
Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry. As a graduate of the remote sensing line you will have broad expertise in the operational principles of remote sensing instruments as well as methods of data collection, analysis and interpretation.

Atmospheric Chemistry and Analysis
Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods. As a graduate of this line you will have understanding of the chemical processes of the atmosphere and the latest environmental analytical methods, so you will have vital skills for environmental research.

Programme Structure

The basic degree in the Programme is the Master of Science (MSc). The scope of the degree is 120 credits (ECTS). As a prerequisite you will need to have a relevant Bachelor’s degree. The possible major subjects are Physics, Meteorology, Geophysics, Chemistry, and Forest Ecology. The programme is designed to be completed in two years. Studies in ATM-MP consist of various courses and project work: lecture courses, seminars, laboratory work and intensive courses.

Your first year of studies will consist mainly of lecture courses. During the second year, you must also participate in the seminar course and give a presentation yourself. There is also a project course, which may contain laboratory work, data analysis, or theoretical or model studies. You will have to prepare a short, written report of the project. There are also several summer and winter schools as well as field courses for students in the Programme. Many of the courses take place at the Hyytiälä Forestry Field Station in Southern Finland. The intensive courses typically last 5–12 days and include a concise daily programme with lectures, exercises and group work.

Career Prospects

There is a global need for experts with multidisciplinary education in atmospheric and environmental issues. Governmental environmental agencies need people who are able to interpret new scientific results as a basis for future legislation. Industry, transportation and businesses need to be able to adapt to new regulations.

As a Master of Science graduating from the Programme you will have a strong background of working with environmental issues. You will have the ability to find innovative solutions to complex problems in the field of environmental sciences, climate change and weather forecasting. Graduates of the Programme have found employment in Meteorological Institutes and Environmental Administration in Finland and other countries, companies manufacturing instrumentation for atmospheric and environmental measurements and analysis, and consultancy companies. The Master's degree in ATM-MP also gives you a good background if you intend to proceed to doctoral level studies.

Internationalization

The Programme offers an international study environment with more than 30% of the students and teaching staff coming from abroad.

The ATM-MP is part of a Nordic Nordplus network in Atmosphere-Biosphere Studies, which gives you good opportunities to take courses currently in fourteen Nordic and Baltic universities. There are also several Erasmus agreements with European universities. The PanEurasian Experiment (PEEX) project provides you with opportunities to carry out part of your studies especially in China and Russia.

Research Focus

All the units teaching in the Programme belong to the National Centre of Excellence (FCoE) in Atmospheric Science – From Molecular and Biological processes to the Global Climate (ATM), which is a multidisciplinary team of the Departments of Physics, Forest Sciences and Chemistry at the University of Helsinki, the Department of Applied Physics at the University of Eastern Finland (Kuopio) and the Finnish Meteorological Institute.

The main objective of FCoE ATM is to quantify the feedbacks between the atmosphere and biosphere in a changing climate. The main focus of the research is on investigating the following topics:
1. Understanding the climatic feedbacks and forcing mechanisms related to aerosols, clouds, precipitation and biogeochemical cycles.
2. Developing, refining and utilising the newest measurement and modelling techniques, from quantum chemistry to observations and models of global earth systems.
3. Creating a comprehensive understanding of the role of atmospheric clusters and aerosol particles in regional and global biogeochemical cycles of water, carbon, sulphur, nitrogen and their linkages to atmospheric chemistry.
4. Integrating the results in the context of understanding regional and global Earth systems.

In addition to the research focus of FCoE, current research in hydrospheric geophysics at Helsinki University has an emphasis on cryology, with a focus on the effect of aerosols on Indian glaciers, the impact of climate change on the Arctic environment, the dynamics of the Austfonna ice cap in Svalbard, and the winter season in the coastal zone of the Baltic Sea.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X