• Queen Mary University of London Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
Cranfield University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Worcester Featured Masters Courses
Bath Spa University Featured Masters Courses
"composite" AND "material…×
0 miles

Masters Degrees (Composite Materials)

  • "composite" AND "materials" ×
  • clear all
Showing 1 to 15 of 52
Order by 
The Composite Materials research degrees are part of a forward-thinking area of research in the school. Read more
The Composite Materials research degrees are part of a forward-thinking area of research in the school. We have close links with the Northwest Regional Development Agency and other leading companies such as, Quickstep, a manufacturer of autoclave processing equipment, as well as a large number of suppliers in the aircraft industry.

Active research

Current research covers interfacial phenomena in composite materials, natural composites and rapid composites manufacture. The deformation mechanics of a range of high performance synthetic reinforcement fibres for composites are explored, as are those of natural and regenerated cellulose fibres. In the later case the main emphasis is on understanding the relationships between the microstructure and molecular structure of these materials and their mechanical properties. Molecular dynamics modelling together with experimental studies have been used to gain an improved insight into the behaviour of natural fibres.

Northwest Composites Centre

We are actively involved with the Northwest Composites Centre, a collaboration which incorporates researchers from several schools in the university, together with colleagues from the University of Liverpool, University of Bolton and Lancaster University covering a wide range of polymer and metallic composites. The hub of this activity is based here at the School of Materials, established through a £2.1m grant from NWDA, and has facilities for rapid processing of composites through a variety of new technologies, including microwave and radio frequency heating as well as Quickstep. There are also extensive facilities for the characterisation of composites.

There are a large number of researchers working in the centre, nearly all on the rapid processing of composites with a view to improving the cycle time and properties of composites. These involve not just the use of rapid curing techniques, but also textile structures for next generation 3 D composites. The evaluation of these materials is also an important part of the projects and therefore supported by state-of-the-art equipment.

Facilities

To underpin the research and teaching activities, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Read less
Composite materials are increasingly replacing traditional metallic components in several industrial applications, such as aerospace engineering, wind turbine blades and the automotive industry. Read more
Composite materials are increasingly replacing traditional metallic components in several industrial applications, such as aerospace engineering, wind turbine blades and the automotive industry. This MSc provides you with an in-depth theoretical understanding and practical knowledge of advanced composite materials.

The programme is based in the Advanced Composites Centre for Innovation and Science (ACCIS), one of the world's leading centres in composite materials, which houses a number of state-of-the-art composites manufacturing facilities.

ACCIS has strong industrial and research links with companies like Rolls-Royce, Airbus, BAE Systems and GE Aviation as well as government research labs such as the UK's Defence Science and Technology Laboratory, the European Space Agency and the US Army International Technology Centre.

Programme structure

Core subjects
-Composites Design and Manufacture
-Smart Materials
-Nanocomposites and Nano engineering
-Research Skills
-Elements of Polymer Composites

And either:
-Advanced Composites Analysis or
-Structures and Materials

after discussion with the programme director.

Optional units
You will select from a list of options which will include the following:
-Engineering Design for Wind and Marine Power
-Nonlinear Structural Dynamics
-Ultrasonic Non-Destructive Testing
-Structural Engineering 4
-Advanced Techniques in Multi-Disciplinary Design
-Nonlinear Behaviour of Materials
-Nature's Materials - Biomimetics, Biomaterials and Sustainability

Project
To complete the programme you will carry out a research project, which may be either academically or industrially led.

Careers

Graduates from this programme could enter a career in one of the rapidly growing composites-related industries, such as aerospace, marine, automotive and wind turbine, materials testing/manufacturing or in engineering consultancy sectors. Some of our MSc graduates continue to PhD study, either at Bristol or other relevant PhD programmes.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Engineering at Swansea University has key research strengths in materials for aerospace applications and steel technology. As a student on the Master's course in Materials Engineering, you will be provided with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Key Features of MSc in Materials Engineering

Through the MSc Materials Engineering course you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, modern methods used for engineering design and analysis, the relationship between structure, processing and properties for a wide range of materials, materials and advanced composite materials, structural factors that control the mechanical properties of materials, and modern business management issues and techniques.

The MSc Materials Engineering course is an excellent route for those who have a first degree in any scientific or technical subject and would like to become qualified in this field of materials engineering.

MSc in Materials Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

The part-time scheme is a version of the full-time equivalent MSc scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Materials Engineering course can vary each year but you could expect to study:

Composite Materials

Polymer Processing

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Simulation Based Product Design

Aerospace Materials Engineering

Structural Integrity of Aerospace Metals

Ceramics

Environmental Analysis and Legislation

Physical Metallurgy of Steels

Accreditation

The MSc Materials Engineering course at Swansea University is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Materials engineering underpins almost all engineering applications and employment prospects are excellent.

Employment can be found in a very wide range of sectors, ranging from large-scale materials production through to R&D in highly specialised advanced materials in industries that include aerospace, automotive, manufacturing, sports, and energy generation, as well as consultancy and advanced research.

Materials engineering knowledge is vital in many fields and our graduates go on to successful careers in research and development, product design, production management, marketing, finance, teaching and the media, and entrepreneurship.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
Offered as part of the. Continuing Professional Development. (CPD) programme. Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials. Read more

Offered as part of the Continuing Professional Development (CPD) programme.

Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials.

The modules cover metals, polymers, ceramics, composites, nanomaterials, bonding, surfaces, corrosion, fracture, fatigue, analytical techniques and general research methods. Each module is followed by an open book assessment of approximately 120 hours.

There is also a materials-based research project, which is made up of the Research Project Planning and the Project modules.

The MSc in Advanced Materials is accredited by the Institute of Materials, Minerals and Mining (IOM3) and by the Institution of Mechanical Engineers (IMechE) when a Project is undertaken.

Programme structure

This programme is studied full-time over one academic year and part-time over five academic years. It consists of eight taught modules and a compulsory Project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

  • To provide students with a broad knowledge of the manufacture, characterisation and properties of advanced materials
  • To address issues of sustainability such as degradation and recycling
  • To equip graduate scientists and engineers with specific expertise in the selection and use of materials for industry
  • To enable students to prepare, plan, execute and report an original piece of research
  • To develop a deeper understanding of a materials topic which is of particular interest (full-time students) or relevance to their work in industry (part-time students) by a project based or independent study based thesis

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The different major classes of advanced materials
  • Routes for manufacturing and processing of advanced materials
  • Characterisation techniques for analysing bonding and microstructure
  • Mechanical, chemical and physical properties of advanced materials
  • Processing -microstructure - property relationships of advanced materials
  • Material selection and use
  • Appropriate mathematical methods

Intellectual / cognitive skills

  • Reason systematically about the behaviour of materials
  • Select materials for an application
  • Predict material properties
  • Understand mathematical relationships relating to material properties
  • Plan experiments, interpret experimental data and discuss experimental results in the context of present understanding in the field

Professional practical skills

  • Research information to develop ideas and understanding
  • Develop an understanding of, and competence, in using laboratory equipment and instrumentation
  • Apply mathematical methods, as appropriate

Key / transferable skills

  • Use the scientific process to reason through to a sound conclusion
  • Write clear reports
  • Communicate ideas clearly and in an appropriate format
  • Design and carry out experimental work

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?. The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Read more
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?

The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Throughout the duration of this course you will develop a critical awareness of ethical and environmental considerations, in addition to learning about advanced mechanical engineering practice and theory.

Accredited by the Institution of Mechanical Engineers (IMechE), this course fully meets the academic requirements to become a Chartered Engineer.

At a time when there is an international shortage of mechanical engineers there has never been a better time to enter this dynamic and rewarding industry.

Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/mechanical-engineering-msc-ft-dtfmez6/

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The initial semesters of this course focus on taught subjects that cover topics such as computational fluid dynamics and heat transfer, multidisciplinary design and engineering optimisation, composite materials and lightweight structures, advanced stress and analysis and thermo-mechanical energy conversion systems.

Teaching is primarily delivered by lectures, seminars and workshops, all of which are assessed by methods such as assignments, exams and technical reports. All of this course’s assessments have been devised to closely mirror the outputs required in a real working environment.

On completion of the taught modules you will undertake a substantial piece of research related to an area of mechanical engineering that particularly interests you. Our teaching team will be on-hand to offer support and guidance throughout every stage of your course.

Module Overview
KB7001 - Computational Fluid Dynamics and Heat Transfer (Core, 20 Credits)
KB7006 - Composite Materials and Lightweight Structures (Core, 20 Credits)
KB7008 - Advanced Stress and Structural Analysis (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by our team of specialist staff who boast a wealth of multi-dimensional expertise.

Our teaching team includes a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key mechanical engineering practice and research.

You will be encouraged to undertake your own research–based learning where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

We aim to regularly welcome industry specialists to deliver guest lecturers to further enable you to understand real-world issues and how they link to the concepts, theories and philosophies taught throughout your course.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Give Your Career An Edge

The MEng Mechanical Engineering course will equip you with all of the skills required to progress within the engineering industry and competition of your master’s degree will give you a competitive edge thanks to the additional skills and knowledge you will acquire.

Our accreditation with the IMechE ensures that this course’s content is in-line with the latest developments within this sector, making our course highly valued by employers.

By completing this course you will have completed the academic requirement to become a Chartered Engineer, a status that is associated with improved employability and higher salaries.

Employability is embedded throughout all aspects of your course and you will leave with enhanced key skills such as communication, computing and teamwork.

Your Future

Mechanical Engineering overlaps with a number of engineering disciplines meaning there are many career paths available to you once you have completed this course.

Many graduates choose to pursue a career in the expansive engineering sector, in roles such as designers, analysts, project managers or consultants.

You may also wish to progress your knowledge to PhD level and this course will provide you with a solid foundation that you can easily build on and advance to an even higher level.

Engineering is a growth industry and currently there is a shortage of engineers. 90% of our graduates are in work or study within six months of graduating and, of those in work, 80% are employed in a professional or managerial job (Unistats 2015).

Read less
The aerodynamics and handling performances of aircraft are amongst the most challenging aspects of aircraft designs. Take your expertise of the cutting-edge aeronautics industry to the next level with our course - focused on developing your understanding of advanced aerodynamics, materials and technologies. Read more
The aerodynamics and handling performances of aircraft are amongst the most challenging aspects of aircraft designs.

Take your expertise of the cutting-edge aeronautics industry to the next level with our course - focused on developing your understanding of advanced aerodynamics, materials and technologies.

The MSc in Aeronautical Engineering will enable you to develop a deep understanding and solid skills in aerodynamics and aerodynamic design of aircraft. Grasp detailed knowledge and application principles of composite materials and alloys, critically review and assess the application and practice of advanced materials in modern aircraft.

You will have access to our state-of-art Merlin flight simulator for design and testing your aircraft and will learn and use cutting-edge design, analysis and simulation software: MATLAB/Simulink, CATIA v5, ANSYS, and ABAQUS. You will also have access to subsonic and supersonic wind tunnel facilities and rapid prototyping facilities.

Key Course Features

-Wrexham Glyndŵr University is located nearby to one of the largest aircraft company in the world, Airbus and also has close links with aviation industries, such as Rolls-Royce, Raytheon and Magellan.
-The MSc in Aeronautical Engineering is accredited by Royal Aeronautical Society (RAeS), Institute of Engineering Technology (IET) and the Institution of Mechanical Engineers (IMechE), and provides you with the required training for registering for Chartered Engineer status.

What Will You Study?

FULL-TIME STUDY (SEPTEMBER INTAKE)
The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)
For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE
The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE:
-Engineering Research Methods
-Sustainable Design & Innovation
-Engineering Systems Modelling & Simulation
-Advanced Composite Materials
-Applied Aerodynamics
-Flight Dynamics & Controls
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course through a variety of methods including portfolios, presentations and, for certain subjects, examinations.

Career Prospects

The courses will give you the chance to advance your career to management levels. You might also consider consultancy, research and development, testing and design positions within the aeronautical industry. Airbus is a classic example of an employer excelling in this field in the north Wales region.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering. Read more
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering.

You will distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.

Key features

-Open the door to a successful future. Our graduates have gone on to work for Ferrari, Honda, British Cycling, Rolls-Royce, Williams Grand Prix Engineering, Activa, Babcock Marine, Princess Yachts and more.
-Primed for your career: 82 per cent of our students are in a professional or managerial job six months after graduation. (Source: unistats)
-Benefit from an optional 48 week paid work placement.
-Distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.
-Develop a strong foundation in mechanical engineering principles and materials science.
-Choose from specialist modules in composites engineering, design and manufacture.
-Experience modern laboratory facilities for practical work which is a core part of the degree.
-Benefit from working on industrially relevant problems within composite materials and design of composite structures.

Course details

Year 1
In Year 1, you’ll acquire a sound foundation in design, mechanics, materials, electrical principles, thermo-fluids, mathematics and business, learning by active involvement in real engineering problems. You‘ll undertake a popular hands-on module in manufacturing methods. Modules are shared with the MEng and BEng (Hons) in Mechanical Engineering and the MEng and BEng (Hons) Marine Technology.

Core modules
-MECH120 Skills for Design and Engineering (Mechanical)
-THER104 Introduction to Thermal Principles
-BPIE115 Stage 1 Mechanical Placement Preparation
-MECH117 Mechanics
-MECH118 Basic Electrical Principles
-A5MFT1 Mech BEng 1 MFT Session
-MATH187 Engineering Mathematics
-MATS122 Manufacturing and Materials
-MECH121PP Team Engineering (Engineering Design in Action)

Year 2
In Year 2, you’ll build your knowledge of composite materials in preparation for specialist modules in the final year. The central role of design integrates with other modules like structures and materials. You'll also study modules on thermodynamics, fluid mechanics, business dynamics, mathematics and control and quality management.

Core modules
-BPIE215 Stage 2 Mechanical Placement Preparation
-CONT221 Engineering Mathematics and Control
-HYFM230 Fluid Mechanics 1
-STRC203 Engineering Structures
-MECH232 Engineering Design
-MFRG208 Quality Management l
-MATS234 Materials
-THER207 Applied Thermodynamics
-STO208 Business for Engineers

Optional placement year
In Year 3, you're strongly encouraged to do a year’s work placement to gain valuable paid professional experience. We will support you to find a placement that is right for you. Our students have worked for a variety of companies from BMW Mini, Bentley, Babcock Marine to NASA. A successful placement could lead to sponsorship in your final year, an industrially relevant final year project, and opportunities for future employment.

Optional modules
-BPIE335 Mechanical Engineering Related Placement

Year 4
In Year 4, you’ll specialise in composites design, engineering and manufacture. You’ll undertake an group design project. Additional modules of study include statistics and quality management. You'll also develop your knowledge and skills through an in-depth project on a topic of your choice.

Core modules
-HYFM322 Computational Fluid Dynamics
-MFRG311 Quality Management II
-MATS347 Composites Design and Manufacture
-PRME307 Honours Project
-MATS348 Composites Engineering
-MECH340 Engineering Design

Final year
In your final year, you'll extend your existing skills in engineering design, analysis and control theory. Broaden your knowledge by studying subjects such as entrepreneurship, advanced information technology, robotics and marine renewable energy. You’ll also work in a design team with students from other engineering disciplines working on projects such as design, materials and environmental issues related to bioenergy production, gas/nuclear power stations, energy from the sea and eco villages.

Core modules
-MECH532 Applied Computer Aided Engineering
-MECH533 Robotics and Control
-MECH534 Product Development and Evaluation
-MAR528 Mechanics of MRE Structures
-PRCE513 Interdisciplinary Design
-MECH544 Data Processing, Simulation and Optimisation of Engineering Systems

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?. The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Read more
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?

The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Throughout the duration of this course you will develop a critical awareness of ethical and environmental considerations, in addition to learning about advanced mechanical engineering practice and theory.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Accredited by the Institution of Mechanical Engineers (IMechE), this course fully meets the academic requirements to become a Chartered Engineer.

At a time when there is an international shortage of mechanical engineers there has never been a better time to enter this dynamic and rewarding industry.

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The initial semesters of this course focus on taught subjects that cover topics such as computational fluid dynamics and heat transfer, multidisciplinary design and engineering optimisation, composite materials and lightweight structures, advanced stress and analysis and thermo-mechanical energy conversion systems.

Teaching is primarily delivered by lectures, seminars and workshops, all of which are assessed by methods such as assignments, exams and technical reports. All of this course’s assessments have been devised to closely mirror the outputs required in a real working environment.

On completion of the taught modules you will undertake a substantial piece of research related to an area of mechanical engineering that particularly interests you. Our teaching team will be on-hand to offer support and guidance throughout every stage of your course.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Module Overview
Year One
KB7001 - Computational Fluid Dynamics and Heat Transfer (Core, 20 Credits)
KB7006 - Composite Materials and Lightweight Structures (Core, 20 Credits)
KB7008 - Advanced Stress and Structural Analysis (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by our team of specialist staff who boast a wealth of multi-dimensional expertise.

Our teaching team includes a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key mechanical engineering practice and research.

You will be encouraged to undertake your own research–based learning where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

We aim to regularly welcome industry specialists to deliver guest lecturers to further enable you to understand real-world issues and how they link to the concepts, theories and philosophies taught throughout your course.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Give Your Career An Edge

The MEng Mechanical Engineering course will equip you with all of the skills required to progress within the engineering industry and competition of your master’s degree will give you a competitive edge thanks to the additional skills and knowledge you will acquire.

Our accreditation with the IMechE ensures that this course’s content is in-line with the latest developments within this sector, making our course highly valued by employers.

By completing this course you will have completed the academic requirement to become a Chartered Engineer, a status that is associated with improved employability and higher salaries.

Employability is embedded throughout all aspects of your course and you will leave with enhanced key skills such as communication, computing and teamwork.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

Your Future

Mechanical Engineering overlaps with a number of engineering disciplines meaning there are many career paths available to you once you have completed this course.

Many graduates choose to pursue a career in the expansive engineering sector, in roles such as designers, analysts, project managers or consultants.

You may also wish to progress your knowledge to PhD level and this course will provide you with a solid foundation that you can easily build on and advance to an even higher level.

Engineering is a growth industry and currently there is a shortage of engineers. 90% of our graduates are in work or study within six months of graduating and, of those in work, 80% are employed in a professional or managerial job (Unistats 2015).

Read less
The Master's degree in Aerospace Engineering is a new graduate program of the Université de Lyon, operated by the École Centrale de Lyon. Read more
The Master's degree in Aerospace Engineering is a new graduate program of the Université de Lyon, operated by the École Centrale de Lyon. It offers a two-year program in Master 1 (M1) and Master 2 (M2). It will be set up progressively starting from September 2016, with only one M2 option "Aerospace Propulsion (PAS)" opened. Then from September 2017, a second M2 option "Dynamic and Sustainability of Composite Materials (DDC)" and the M1 common-core syllabus will be opened.

The concerned disciplinary fields are fluid mechanics and energy, solid and structural mechanics, materials, and control engineering, in relation with three renowned research laboratories of Lyon: LMFA, LTDS and Ampère.

The Master is in line with the strategic axis "Science and engineering for a sustainable society" defined by the Université de Lyon, as well as with two social challenges identified by the École Centrale de Lyon, "Aeronautics and space" and "Increasing the competitiveness of the industrial economy through innovation and entrepreneurship".

The purpose is to train future technical leaders and researchers for all aspects of the aerospace industry from major constructors like SAFRAN and Airbus, to component suppliers. A special attention is paid to make students aware of codes, languages and common practice in the industry. Furthermore, this industry is intrinsically transnational, with numerous opportunities to work abroad with connections to France or to work in France with connections to other countries. So the students are given the opportunity to develop international/intercultural skills.

It is to notice that the aerospace industry is subjected to long-term cycles. A "design" dominated stage with ambitious projects (A380, A350, A400M, EC 175, LEAP, …) is ending, while a "production" dominated stage is starting for the next decade. The problematic is thus moving from the design of large complex systems to the continuous optimisation of components, taking into account manufacturing and maintainability constraints, in particular with the increasing implementation of composite materials. The provided training is supporting such a change.

More specifically, the M2 option "Aerospace Propulsion" is focusing on the design process of an aircraft or a rocket engine, providing a practical understanding of all aspects of the industry, from design to manufacture and maintenance. Graduates should drive components redesign, for optimisation for new purposes or for adaptation to new production processes or maintenance procedures.

Read less
Polymers and polymer composites are increasingly important in our everyday life and can be found everywhere around us. At the same time, more and more high-performance speciality polymers and polymer nanocomposites have been developed for advanced engineering, plastic electronics, biomedical applications. Read more

About the course

Polymers and polymer composites are increasingly important in our everyday life and can be found everywhere around us. At the same time, more and more high-performance speciality polymers and polymer nanocomposites have been developed for advanced engineering, plastic electronics, biomedical applications.

Bringing together expertise from the Department of Materials Science and Engineering and the Department of Chemistry, and further supported by the Polymer Centre, the UK’s largest single-university academic network in the field of polymers, this course will provide you with a thorough understanding of advanced topics on polymer and composite science and engineering.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Polymer Characterization and Analysis; Polymer Materials Science and Engineering; Polymer Chemistry; Biopolymers and Biomaterials; research project.

Read less
Due to the high volume of applications, this course is now over-subscribed. Applications for this course can still be made, and successful applicants will be added to a waiting list. Read more
Due to the high volume of applications, this course is now over-subscribed. Applications for this course can still be made, and successful applicants will be added to a waiting list. Places will be allocated from the waiting list on a first-come, first-served basis should places become available.

Please note, having a space on the waiting list is not a guarantee of an offer.

Aims

The programme aims to convey detailed knowledge of state-of-the-art materials systems, with a focus on composites, advanced alloys and functional and engineering ceramics. The students explore the technologies used in the manufacture and processing of advanced materials and develop an understanding of the relationships between composition, microstructure, processing and performance. The student learn how to assess materials performance in service and develop an understanding of the processes of degradation in hostile conditions. They are also trained in the essential skills needed to design and develop the next generation of high performance engineering materials, establishing a strong foundation for a future career in industry or research.

Course unit details

The taught units cover the structure and design of advanced engineering materials and provide graduates with an increased depth and breadth of knowledge of materials science, technology and engineering.

Taught units include:
-Introduction to Materials Science
-Industrial Processing of Materials
-Advanced Composite Materials
-High Performance Alloys
-Advanced Analytical Techniques
-Functional and Engineering Ceramics

Facilities

To underpin the research and teaching activities at the School, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Career opportunities

Our graduates of this programme have gone on to fill key posts as materials scientists, engineers, managers and consultants in academia, industry and research and development. You may also be able to advance to PhD programmes within the School.

Accrediting organisations

The MSc in Advanced Engineering Materials is accredited by the Institute of Materials, Minerals and Mining (IoM3) with the award of Further Learning.

Read less
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Read more
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Being in the heart of one of Europe’s highest concentration of high-tech businesses provides opportunities for industry-focused studies.You will take charge of your career by building on your undergraduate degree and developing your professional skills. It introduces you to research, development and practice in advanced engineering design and equips you for professional practice at senior positions of responsibility.You will gain the skills to take complex products all the way from idea to fully validated designs. Using the most advanced CAD packages, you will learn the techniques required to analyse and test your designs followed by full design implementation. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught by staff with exceptional knowledge and expertise in their fields, including world-leaders in research on sustainable engineering, materials and joining technology and design engineers leading development of novel products such as carbon and bamboo bike. Our research projects and consultancies are done with partners such as Siemens, Yasa Motors, Stannah Stairlifts, 3M etc. using our facilities including analytical and mechanical test equipment, scanning electron microscope and the latest 3D printing technology. Well-funded research programmes in areas of current concern such as modern composite materials, vehicle end-of-life issues and electric vehicles.

Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Visiting speakers from business and industry provide professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule. Our close industry links facilitate industrial visits, providing you with opportunities to explore technical challenges and the latest technology - to get a flavour of activities within our department see 2015 highlights.

You will have the opportunity to join our acclaimed Formula Student team (OBR), where you have a chance to put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the Dissertation.

Compulsory modules
-Advanced Mechanical Engineering Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules
-Computation and Modelling
-CAD/CAM
-Advanced Materials Engineering and Joining Technology
-Sustainable Engineering Technology
-Noise, Vibration and Harshness
-Vehicle Crash Engineering
-Engineering Reliability and Risk Management

The Dissertation (core, triple credit) is an individual project on a topic from motorsport engineering, offering an opportunity to specialise in a particular area of motorsport. In addition to developing a high level of expertise in a particular area of motorsport, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. Far-Axon, Clayex/Dymola, Tranquillity Aerospace, Norbar, etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work designed to demonstrate important aspects of theory or systems operation.

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in a wide range of industries.

Read less
The MSc in Racing Engine Design is the only programme of its kind in the world - it has been developed with the needs and requirements of the race engine manufacturers in mind. Read more
The MSc in Racing Engine Design is the only programme of its kind in the world - it has been developed with the needs and requirements of the race engine manufacturers in mind. The programme is designed to produce highly-skilled graduates who are ready to undertake advanced design roles with major engine manufacturers and their supply chain.

The UK is a world leader in motorsport and high performance engines industry - many of the world's most advanced high-performance engines are designed not far from our location in the UK motorsport valley. The department’s unrivalled access to motorsport industry informs and directs development and delivery of the programme.

In addition to the strong theory-based modules, graduates gain a comprehensive understanding of how winning engines are created. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

We are known as a premier institution for Motorsport education - our motorsport legacy is recognised worldwide and many of our graduates progress to work for most advanced high-performance engine manufacturers, such as Ferrari and Mercedes HPP, all of F1 teams and major suppliers to motorsport industry, such as Riccardo, Xtrac, Prodrive, and Hewland. Our programme has been developed with and delivered in collaboration with the automotive and motorsport industry: you will be taught by staff with many years of racing engine experience, from performance road cars, Rally, IRL, Kart and F3 right up to F1 and equipped with state-of-the-art equipment, that include four engine test cells, analytical and mechanical test equipment and the latest 3D printing technology, in addition to a range of racing cars. Industrial aspect of delivery is enhanced by our visiting speakers from business and industry, providing professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule.

Our close industry links can also be seen through research projects and consultancies that enable us to feed the latest technology and developments into our teaching as well as providing opportunities for students to undertake projects with neighbouring companies, also based in the UK Motorsport Valley, whilst our well-funded research programmes in areas of current concern such as vehicle end-of-life issues, modern composite materials and electric vehicles offer. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from motorsport industry. You can put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website. You will have an opportunity to work on our novel V-twin engine design and also select this as your dissertation topic, which may lead to the possibility of furthering their studies towards a PhD research degree.

Regular visits to F1 teams, Formula E teams and major suppliers to the motorsport industry provide students with opportunities to explore technical challenges and the latest technology -- to get a flavour of the activities within our department see our 2015 highlights.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three time periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the dissertation.

Compulsory modules:
-Racing Engine Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules:
-Advanced Powertrain Engineering
-Computation and Modelling
-CAD/CAM
-Data Acquisition Systems

The Dissertation (core, triple credit) is an individual project on a topic from race engineering, offering an opportunity to specialise in a particular area related to high performance engines. In addition to developing your expertise in a highly specialised field, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. McLaren, AVL, VUHL etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation. .

Please note: As our courses are reviewed regularly, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work to demonstrate important aspects of theory or systems operation. Visiting speakers from business and industry provide valuable insights.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading motorsport companies, including directly into F1 teams and suppliers.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

This MRes degree includes modules covering a range of areas within the Materials discipline, which are linked to the College of Engineering’s main research strengths of aerospace materials, environmental materials and steel technology.

Key Features of MRes in Materials Engineering

Through this course in Materials Engineering, you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, aerospace materials, recycling techniques, and modern business management issues and techniques.

The Materials Engineering course will provide you with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Combination of taught modules (60 credits) and a research thesis, which presents the outcome of a significant research project (120 credits) over 12 months full-time study. An MRes (Master of Research) provides relevant training to acquire the knowledge, techniques and skills required for a career in industry or for further research.

Modules

Modules on the Materials Engineering programme can vary each year but you could expect to study:

Strategic Project Planning

Communication Skills for Research Engineers

Aerospace Materials Engineering

Materials Recycling Techniques

Environmental Analysis and Legislation

Physical Metallurgy of Steel

MSc Research Thesis

Accreditation

This degree is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University provides state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Through this Materials Engineering scheme, you will be provided with the detailed technical knowledge and experience required for a successful career at a technical or management level within the modern steel industry.

At the end of the course, you will have a higher level qualification along with crucial experience of industry allowing you to more quickly enter into the world of work and contribute fully to this important sector.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
The Mechanical Engineering MSc develops your knowledge and skills in mechanical engineering. You have the opportunity to undertake in-depth studies through your research projects. Read more
The Mechanical Engineering MSc develops your knowledge and skills in mechanical engineering. You have the opportunity to undertake in-depth studies through your research projects.

This one year course is intended for honours graduates (or an international equivalent) in mechanical or mechanical-related engineering (eg automotive, aeronautical or design), maths, physics or a related discipline.

A two year MSc is also available for non-native speakers of English that includes a Preliminary Year.

The taught part of the course consists of major engineering themes such as:
-Energy sources and storage
-Manufacturing
-Vehicle drives and dynamics
-Computational methods
-Engineering software

You will develop skills in:
-Mechanical engineering principles, practices, materials, components and systems
-Research and information retrieval
-Data collection
-Critical evaluation and effective application
-Current and developing practices in the field

Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of basic engineering science to practical design, make and test investigations.

General areas for project work include:
-Design and manufacture
-Thermo-fluid dynamics
-Composite materials
-Bioengineering and biomaterials
-Microelectronic-Mechanical Systems
-Mathematical and computational engineering modelling

Some research may be undertaken in collaboration with industry.

The course is delivered by the School of Mechanical and Systems Engineering. The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Graduates of this course, who pass with merit are normally offered the opportunity to progress to PhD study either on a self-funded project or on a funded PhD studentship.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's level course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Accreditation

The courses have been accredited by the Institution of Mechanical Engineers (IMechE) and the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

The accreditations are a mark of assurance that the course meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). This will give you some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less

Show 10 15 30 per page



Cookie Policy    X