• Swansea University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Glasgow Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
University of Nottingham Featured Masters Courses
"complex" AND "systems"×
0 miles

Masters Degrees (Complex Systems)

We have 966 Masters Degrees (Complex Systems)

  • "complex" AND "systems" ×
  • clear all
Showing 1 to 15 of 966
Order by 
The Complex Systems Modelling - From Biomedical and Natural to Economic and Social Sciences MSc programme will teach you to apply mathematical techniques in the rapidly developing and exciting interdisciplinary field of complex systems and examine how they apply to a variety of areas including biomedicine, nature, economics and social sciences. Read more

The Complex Systems Modelling - From Biomedical and Natural to Economic and Social Sciences MSc programme will teach you to apply mathematical techniques in the rapidly developing and exciting interdisciplinary field of complex systems and examine how they apply to a variety of areas including biomedicine, nature, economics and social sciences. This research-led course is suitable for graduates who wish to work in research and development in an academic or industrial environment.

Key benefits

  • Located in the heart of London, giving unparalleled access to research facilities.
  • You will be studying innovative modules covering modern theories of complex systems modelling.
  • Research-led study programme taught by staff who are recognised leaders in their field.

Description

The Complex Systems Modelling MSc is an innovative study programme that explores the latest research in the rapidly developing and exciting interdisciplinary field of cpmplex systems.

Modern societies rely on a broad range of infrastructures, institutions and technologies, and their complexities have grown dramatically in the recent past. Consequently, there is a rapidly expanding demand for expertise in complex systems modelling as a foundation for understanding, maintaining and further developing of such systems.

The programme offers you the choice to study either full or part-time. You must take a combination of required and optional modules totalling 180 credits to complete the course. If you are studying full-time, you will complete the course in one year, from September to September. If you are studying part-time, your programme will take two years to complete. You will study the required modules in the first year, and a further selection of required and optional modules including the complex systems modelling module in your second year.

You will study key natural and biomedical scientific topics as well as economic and social sciences. We also offer the opportunity to study an additional zero-credit module called foundations for complex systems modelling and cross-disciplinary approaches to non-equilibrium systems and is designed as a refresher module covering vital mathematics and physics skills.

Course purpose

For graduates in mathematics, or in other suitable scientific disciplines with a strong background in mathematics, who want to work in research and development in an academic or industrial environment. The programme aims to develop a knowledge and understanding of complex systems modelling and their uses, and to enable students to use mathematical techniques to quantify, predict and improve such systems.

Course format and assessment

Primarily written examinations, some with coursework element, in eight lecture modules, plus an oral presentation and assessed report on the research project.

Career destinations

Our graduates are highly sought after: the applicability of complex systems modelling to areas as diverse as biomedical, natural, economic and social sciences, results in a broad range of opportunities. Some graduates are employed by the companies or laboratories that supervise their MSc research projects, or continue to PhD study.

Other career destinations include:

  • Complexity science consultancies and software development
  • Information Processing 
  • Data Analysis
  • NHS Research
  • Financial and re-insurance sectors
  • Industrial sectors linked to Physics, Science Materials and Engineering
  • Information Technology
  • Entertainment and Gaming 
  • Research and further studies

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
Complex systems with a technological, biological or socio-economic background determine our everyday life. Read more

About the Program

Complex systems with a technological, biological or socio-economic background determine our everyday life. The challenge of modeling these complex systems mathematically demands the following prototypic profile of an "expert mastering a repertoire of modern mathematical and computer based methods for modeling, simulating and optimizing complex systems and knowing how to combine those methods for solving real-world problems".
The term expert is understood in the sense of generalist and not a specialist, since this program aims at teaching a broad spectrum of modern methods.

The two-years English-taught master program "Mathematical Modeling of Complex Systems" focuses on advanced techniques of modeling, simulation and optimization. A substantial set of elective courses allows concentration on areas of individual interest. A mobility window enables the students to study abroad and gain scientific and cultural experience at international partner universities. This program uses English as medium of instruction since its graduates will enter a highly globalized work and research community. Besides that, the participation and enrollment of international candidates is explicitly welcomed.

Application oriented, interdisciplinary seminars link the theoretical basics and concepts of modeling and simulation. Students work in small teams to solve real world problems. This teamwork reflects typical work in applied sciences and corresponds to our paradigm of an "expert mastering a repertoire of methods to solve problems".

Find out more about the program and our campus in Koblenz under:
https://www.uni-koblenz-landau.de/de/koblenz/fb3/mathe/studium/mmcs/

Aims/Career Perspectives

The Master degree in Mathematical Modeling of Complex Systems is to give those possessing extended skills in Mathematics, Physics and Computer Science in theory, experiment and practical application. These skills are complemented with further knowledge in additional topics, individually selected by each student. The degree entitles its holder to exercise professional work in the field of Applied Mathematics and/or Mathematical Modeling in science or industry or to pursue a PhD program in related fields.

Program Structure

The first three terms of the two-years master „Mathematical Modeling of Complex Systems“ consist of core courses in Applied Mathematics and Applied Physics. Elective courses in Applied Mathematics, Applied Physics and Computer Sciences allow each student to set its individual focus. Active use of the gained knowledge and its application to the solution of real-world problems is taught and practiced in a project seminar. This project seminar can be carried out in a three-month period at a research institution, enterprise or at university. The master thesis in the last term and dealing with modeling and simulating a real-world problem, shows the student’s ability to perform independent research work.
The core and elective courses typically include a written or oral exam, the project seminar is graded based an oral presentation and written report of the project results.

You can find an exemplary list of courses and can download a overview of the modules under:
https://www.uni-koblenz-landau.de/de/koblenz/fb3/mathe/studium/mmcs#curriculum

Read less
Outline of the program. The Master PICS program provides a comprehensive program of courses covering theoretical, experimental and engineering aspects of photonics, micro/nano technologies, time-frequency metrology, information theory and complex systems. Read more

Outline of the program

The Master PICS program provides a comprehensive program of courses covering theoretical, experimental and engineering aspects of photonics, micro/nano technologies, time-frequency metrology, information theory and complex systems. It is delivered by the University of Bourgogne Franche-Comté (UBFC) in the city of Besançon. It is designed to cover a selection of topics at the interface of physics and engineering sciences, closely integrated with domains of research excellence developed in the Region of Bourgogne Franche-Comté (BFC). The master’s program also provides complementary courses in disciplinary and interdisciplinary knowledge, as well as broad digital, societal, cultural, environmental, and entrepreneurial skills. It is open to students with undergraduate physics degrees, and it aims to provide complementary courses to prepare students for careers in either industry or for future PhD level studies. The PICS masters is strongly supported by the FEMTO-ST Institute and the ICB Laboratory, research institutions with major international reputations in Physical Sciences and Engineering. The PICS Master’s program has received a national label as a Master’s of Excellence for Engineering and Research, entitled CMI (“Cursus master en Ingénierie”) which is delivered by the CMI-FIGURE network which consists of 28 universities in France.

Our Master’s program

Photonics and nanotechnologies are one of the 6 Key Enabling Technologies identified by the European Commission as sources of innovation and competitiveness for the future. They are technological sectors that feed competitive and fast-growing markets (environment, health, automotive, safety, etc.) and there is a strong need for qualified graduates to support developing European Industry.  When compared to other French Masters programs in similar fields, the particular novelty of the Masters PICS is that it focuses on teaching multi-disciplinary skills on both the practical and fundamental level in a very wide range of topics: photonics, micro and nano-optics, quantum optics, micro-nanotechnologies, instrumentation, time-frequency metrology, micro-oscillators, micro- and nano-acoustics, bio-photonics, and complex systems.  

 

The FEMTO-ST and ICB Institutes are the underlying UBFC laboratories that support the master PICS program. The FEMTO-ST Institute in Besançon (http://www.femto-st.fr/en/), with more than 750 staff, is one of the largest laboratories in France in Engineering Sciences, having high international visibility in photonics, nanotechnology and time frequency technology. The ICB Institute in Dijon (icb.ubourgogne.fr/en/), with a staff of 300 people, is also an underlying UBFC laboratory of the PICS master’s. The PICS master’s program is based on the internationally highly recognized research activities of all these laboratories in photonics, micro & nanotechnologies, time-frequency and complex systems, with teaching and supervision being performed by renowned and highly qualified researchers (professors, assistant professors, or full-time CNRS researchers).

 

The courses, taught in English (see Teaching section), are divided between lectures, exercises/tutorials, practical labs and project activities. Students will be immersed in the labs from their 1st year of study, closely connected with the research groups via lab projects that will run throughout semester 1 to 3.  Individual supervision will be provided to all students, combining a personal project advisor and a mentor. 

 

A one-semester research internship in semester 4 can be carried out at FEMTO-ST, ICB, or a local or national industry partner. Students also have the possibility to obtain significant international experience by carrying out Master’s Internships (5-6 months) abroad at internationally-renowned universities having strong research collaborations with FEMTO-ST and ICB. The proposed PICS Master’s program is also based on strong interactions with high-tech industrial partners both at the local and international levels. 

 

Teaching

The PICS master’s program takes place over 2 academic years divided into 4 semesters. Each semester corresponds to an accreditation of 30 ECTS, which leads to a total at the end of 120 ECTS.  The program has an extensive international flavor, with all courses taught in English, except two modules of 3 ECTS in semesters 1 and 3 that will introduce French culture and language for foreign students, and organized in close connection with another master’s programs. We offer the opportunity to obtain French language certification (B2 at minimum).  The teaching staff are highly qualified researchers with international recognition and all teaching staff are fluent in English, with many at native or near-native level.

Future Career prospects

Photonics and micro/nano technologies are very dynamic industrial sectors in Europe and hold the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs.

The master program offers intensive educational activities based on high level research activities in these domains. It focuses on fundamental & applied research mainly targeting careers in industry (R&D engineer) or for future PhD level studies either in academic institution or industry.

Student profile

Students eligible to the master PICS program must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism, electronic and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.

Living in Besançon

Besançon is a historical town with a strong university community, and is consistently voted as having an excellent quality of life. It is home to a UNESCO-World Heritage listed citadel and fortifications, and is well known for its proximity to an excellent range of outdoor pursuits including hiking, mountain-biking, skiing and rock-climbing. 

Grants

Many scholarships will be awarded each year to high quality foreign students.



Read less
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. Read more

The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. The programme encompasses not only the technical tools and approaches needed to build success in this area, but also the management dimension of the relevant processes.

About this degree

Students gain an integrated, interdisciplinary view of complex systems and an advanced understanding of the systems engineering process. They gain the ability to apply this process to a variety of real-world situations and the management skills necessary to facilitate the development of complex systems on time and within budget.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits) two optional taught modules (30 credits) and three research modules (90 credits). Modules are generally taught as intensive five-day 'block weeks' to minimise time away from the office.

A Postgraduate Diploma (120 credits, full-time one academic year, or flexible study up to five years) is offered.

A Postgraduate Certificate (60 credits, full-time 12 weeks, or flexible study up to three years) is offered.

Core modules

  • Systems Thinking and Engineering Management
  • The Business Environment
  • Risk, Reliability, Resilience
  • Lifecycle Management

Optional modules

Students choose two of the following:

  • Systems Design
  • Technology Strategy
  • Project Management (leading to Association for Project Management exam)
  • Delivering Complex Projects
  • Defence and Security Systems
  • Rail Systems
  • Space Systems

Research modules

All MSc students undertake a structured research programme comprising the following mandatory modules:

  • Systems Engineering in Practice (15 credits)
  • Systems Engineering Project Concept (15 credits)
  • Systems Engineering Research Project (60 credits)

Teaching and learning

The programme is delivered through a combination of lectures, discussion sessions, workshop activity, and project work. Each taught course will be separately assessed through a combination of course work and a written examination. The project will be assessed through written dissertation and subsequent oral examination.

Further information on modules and degree structure is available on the department website: Systems Engineering Management MSc

Careers

Complex systems are commonplace in many branches of UK industry including rail, aerospace, defence, and manufacturing. The ability to create such systems effectively is crucial to the competitiveness of these industries and has a direct bearing on the wealth of the nation.

Recent career destinations for this degree

  • Engineering Manager, BAE Systems
  • Systems Engineer, BIG
  • Analyst, Accenture
  • Proposals engineer, Invensys PLC

Why study this degree at UCL?

This MSc combines academic rigour with the practical expertise exemplified by our collaborators in UK industry and government. The flexible programme enables participants to structure their studies to suit their own career goals, and is accredited by the Institution of Engineering and Technology (IET) as a programme of further learning for registration as a Chartered Engineer.

The programme combines interactive lectures, group exercises and case studies to reinforce key points. Lecturers are experts in the field, many of whom have engaged in the practice of systems engineering in industry, and all of whom oversee research across a broad range of subjects relating to systems engineering, project management and technology management.

Industry is operating in an environment where technology changes rapidly, and where global competition grows ever more intensive. The challenge to remain competitive means we must make the right thing at the right price. Our MSc equips graduates with the skills to meet this challenge.



Read less
What do Facebook, the financial system, Internet or the brain have in common?. All are connected in a network. Read more
What do Facebook, the financial system, Internet or the brain have in common?

All are connected in a network. From the underlying skeleton of social relations, the interdependent evolution of our financial system, to the emergent collective computation in the brain, most of the complex systems that appear in society, technology, and nature are ultimately characterised by a nontrivial pattern of inter-relations. This underlying architecture is in turn shaping how information diffuses and spreads, how resilient the system is against attacks or perturbations, or how complex patterns emerge at the systemic level from the aggregation of seemingly simple individuals.

Our MSc in Network Science will provide a thorough grounding in the core principles of modelling and analysis of complex and networked systems, along with the principal analytical and numerical methodologies. This will open to students a host of career opportunities in systems and networks modelling industries, spanning the IT, financial, and biomedical sectors, that are now requiring such specialist knowledge and skills.

Network Science is a very active and rapidly evolving research field with high societal impact, which stands at the crossroads of graph theory, complexity and data analysis. Addressing the description and modelling of the architecture and dynamics of complex systems -systems composed by many interacting units that show collective behaviour- it stands as a new kind of science to cope with some of the most challenging endeavours we face today, in an ever increasingly more connected society.
Its impact and applications outside academia pervades technological sectors such as communications and infrastructures (Internet, transportation networks, energy networks, urban mobility), biostatistics and network biology (brain modelling, protein interaction networks, postgenomic era), public health (epidemic spreading models), marketing and IT (social media, data analytics) to cite a few. This specialist masters programme aims at providing graduate students and professionals with a rigorous training in the underlying mathematical concepts, the analysis and modelling of complex networks and networked systems, complemented with training in computing, numerical simulations and massive data analysis. It is aimed towards students whose undergraduate degree is in mathematics or a cognate discipline who wish to enter a career involving analysis and optimisation of diverse kinds of networks, networked dynamics and models.

Why study your MSc Network Science at Queen Mary?
This is a pioneering MSc in the UK, a joint programme, taught by our Schools of Mathematical Sciences, and Electronic Engineering and Computer Science, drawing on their strengths in research and teaching in the area of complex networks, mathematical modelling of complex systems, and data mining.

We teach what we know and what we do best. Within the School of Mathematics, the Complex Systems & Networks group is one of the biggest hubs in Network Science within the UK, where we address both fundamental and applied challenges in the mathematical modelling of complex systems with clear societal impact, in collaboration with several industrial stakeholders. Within the School of Electronic Engineering, the Networks group was founded in 1987, and has hugely expanded ever since, bringing their expertise in online social networks, data mining and cloud computing. The coalescence of both groups expertises has fostered the creation of this unique MSc.

Read less
What do Facebook, the financial system, Internet or the brain have in common?. "Everything is connected, all is network". Read more
What do Facebook, the financial system, Internet or the brain have in common?

"Everything is connected, all is network"
From the underlying skeleton of social relations, the interdependent evolution of our financial system, to the emergent collective computation in the brain, most of the complex systems that appear in society, technology, and nature are ultimately characterised by a nontrivial pattern of inter-relations. This underlying architecture is in turn shaping how information diffuses and spreads, how resilient the system is against attacks or perturbations, or how complex patterns emerge at the systemic level from the aggregation of seemingly simple individuals.

Our MSc Network Science will provide a thorough grounding in the core principles of modelling and analysis of complex and networked systems, along with the principal analytical and numerical methodologies. This will open to students a host of career opportunities in systems and networks modelling industries, spanning the IT, financial, and biomedical sectors, that are now requiring such specialist knowledge and skills.

Network Science is a very active and rapidly evolving research field with high societal impact, which stands at the crossroads of graph theory, complexity and data analysis. Addressing the description and modelling of the architecture and dynamics of complex systems -systems composed by many interacting units that show collective behaviour- it stands as a new kind of science to cope with some of the most challenging endeavours we face today, in an ever increasingly more connected society.
Its impact and applications outside academia pervades technological sectors such as communications and infrastructures (Internet, transportation networks, energy networks, urban mobility), finance (financial risk and systemic instability, financial networks, interbank cross-correlations), marketing and IT (social media, data analytics), public health (epidemic spreading models), or biostatistics and network biology (brain modelling, protein interaction networks, postgenomic era), to cite a few. This specialist masters programme aims at providing graduate students and professionals with a rigorous training in the underlying mathematical concepts, the analysis and modelling of complex networks and networked systems, complemented with training in computing, numerical simulations and massive data analysis. It is aimed towards students with a mathematical background who wish to enter a career involving analysis and optimisation of diverse kinds of networks, networked dynamics and models.

Why study your MSc Network Science at Queen Mary?
This is a pioneering MSc in the UK, a joint programme, taught by our Schools of Mathematical Sciences, and Electronic Engineering and Computer Science, drawing on their strengths in research and teaching in the area of complex networks, mathematical modelling of complex systems, and data mining.

We teach what we know and what we do best. Within the School of Mathematics, the Complex Systems & Networks group is one of the biggest hubs in Network Science within the UK, where we address both fundamental and applied challenges in the mathematical modelling of complex systems with clear societal impact, in collaboration with several industrial stakeholders. Within the School of Electronic Engineering, the Networks group was founded in 1987, and has hugely expanded ever since, bringing their expertise in online social networks, data mining and cloud computing. The coalescence of both groups expertises has fostered the creation of this unique MSc.

More about our two schools

Queen Mary is a member of the prestigious Russell Group of leading UK universities, combining world-class research, teaching excellence and unrivalled links with business and the public sector. The School of Mathematical Sciences has a distinguished history on itself. We have been conducting pioneering mathematical research since the 1950s, and as one of the largest mathematical departments in the UK, with over 50 members of staff, the school can offer diverse postgraduate study opportunities across the field, from pure and applied mathematics, to finance and statistics. Along with the MSc in Network Science, our cohort of postgraduate students specialise in Mathematics and Statistics, Mathematical Finance and Financial Computing. We are one of the UK’s leading universities in the most recent national assessment of research quality, we were placed ninth in the UK (REF 2014) amongst multi-faculty universities. This means that the teaching on our postgraduate programmes is directly inspired by the world-leading research of our academics. Our staff includes international leaders in many areas of mathematical research, and the School is a hive of activity, providing a vibrant intellectual space for postgraduate study.

The School of Electronic Engineering and Computer Science is internationally recognised for their pioneering and ground-breaking research in several areas including machine learning and applied network analysis. This expertise uniquely complements the more theoretical knowledge offered by the School of Mathematical Sciences, providing a well balanced mix of theory and applications and offering a deep and robust programme that combines the foundations of the mathematics of networks with the latest cutting edge applications in real world problems.

Additionally, Queen Mary holds a university-level Bronze Award for the Athena SWAN Charter, which recognises and celebrates good employment practice for women working in mathematics, science, engineering and technology in higher education and research.

Read less
The Master’s programme focuses on designing and using complex modern computer systems. As part of the programme, students cover such subjects as innovation and entrepreneurship, hardware systems design and modelling, computer architecture and programming, software project management and databases, to name but a few. Read more

The Master’s programme focuses on designing and using complex modern computer systems. As part of the programme, students cover such subjects as innovation and entrepreneurship, hardware systems design and modelling, computer architecture and programming, software project management and databases, to name but a few.

Students can choose between the following two specialisations:

  • Computer Systems Design – focusing on the modelling, analysing, designing and testing of complex systems consisting of both hardware and software components;
  • Automation and Systems Engineering – focusing on the modelling, analysing and designing of automation and computer control systems.

The Department of Computer Engineering received the IBM Faculty Award 2011 and has an excellent partnership with experts from the IBM Development Centre in Germany and the IBM research laboratory in Israel.

Key features

  • Individual approach to students
  • Students work closely with professors
  • Uses the latest software and hardware to develop practical skills
  • Close cooperation and networking with the IT industry
  • Develops the computing and IT management skills needed to be effective in the industry and in commerce straight away

Course outline

The Computer and Systems Engineering Master's programme focuses on the education of designing and using modern complex computer systems. Nowadays computer systems are used more or less everywhere, they are extremely diverse and most of them are "invisible" to users. Such systems include not only traditional PC-s and sophisticated supercomputers, but also computer systems "embedded" into cars and mobile phones, for instance. Most of these computers are interconnected via various wired and wireless networks and do not work in isolation. These embedded systems can be either stand-alone items or an integral part of a larger system and represent the combination of software and hardware designed to perform specific functions.

When studying the Computer and Engineering Systems programme, students are exposed to systems design and modelling, computer architectures and programming, to name few of the topics. Exposure to those topics will position students well for jobs at small, medium and large companies. Their jobs will involve defining, designing and using embedded computer system in areas such as automotive electronics, consumer devices, telecommunications, etc.

The Computer and Systems Engineering programme is supervised by two departments of TUT - Department of Computer Engineering (DCE) and Department of Computer Control (DCC). Students can choose between two of the following specialisations:

  • Computer Systems Design (supervised by DCE) focuses on the modelling, analysing, designing and testing of complex systems consisting of both hardware and software components;
  • Automation and Systems Engineering (supervised by DCC) focuses on the modelling, analysing and designing of automation and computer control systems.

Faculty

Faculty of Information Technology (founded in 1965) trains specialists in the main fields of information and communications technology (ICT) at bachelor, master and doctoral level. High-quality knowledge based teaching and training is based on international research and development activities, and tight cooperation with ICT industry.

There are more than 2100 students annually learning in the faculty, which employs 150 faculty members, lecturers, researchers and engineers.

Curriculum

Structure of curriculum

Future career options

Graduates find employment as specialists in the design, realisation, application and administration of computerised equipment and systems. Career opportunities are varied: computer and software companies; banks; diagnostic systems in manufacturing, service, medicine; "smart" houses and manufacturing systems; industrial automation; management control and monitoring systems in air, water and ground based transport, etc. Master’s degree holders interested in high-level research work and university staff positions have the opportunity to continue their studies in the PhD programme.

Career opportunities and potential jobs: designer of computer and automated control systems and the components thereof, project manager, software developer, department manager, management board member, and management board chairman.



Read less
Why this course?. The management of large complex systems engineering projects demands a unique set of skills that are not taught within conventional engineering or business management programmes. Read more

Why this course?

The management of large complex systems engineering projects demands a unique set of skills that are not taught within conventional engineering or business management programmes.

The aim of this programme is to develop systems engineering management capability by creating graduates who understand the complexities of the management situations they face, and who can apply systems thinking approaches and techniques in order to address the challenge of managing the complexity between the technical system being developed and the people and organisations that are responsible.

You'll focus on engineered systems, however, many of the skills and techniques you'll acquire are equally applicable to other complex systems such as manufacturing and organisations.

The programme is based within the Department of Design, Manufacture and Engineering Management, the only department in the UK combining end-to-end expertise from creative design, through engineering design, manufacture and management of the entire system.

Our work in partnership with a number of global companies with extensive systems engineering expertise, not only ensures our teaching is based on the latest research and the skills you gain are cutting edge and relevant, it also enables us to incorporate practical challenges and solutions in the programme, through your project work with an industrial partner.

The right course for you

This course is ideal for:

  • project managers who need to develop their skills to address the challenges of large systems engineering projects.
  • recent graduates from any engineering discipline, either employed within or interested in systems engineering industries, looking to develop their skills to enhance their career.
  • staff and graduates who'd like to move into leading-edge systems engineering research or consultancy careers.

Develop your skills

This course will help you develop a unique set of skills that'll help you manage systems engineering projects. We have a strong track record of world-leading systems engineering management research.

 

You'll gain skills in:

  • systems decomposition and integration.
  • management of complexity and uncertainty within engineering, business and socio-technical systems.
  • processes for managing the lifecycle of systems.
  • verification and validation

You’ll study

You'll take a number of compulsory and optional modules. The Masters project provides the opportunity to work with an industrial partner.

Major Projects 

During the course, you'll undertake an Individual Project and an Industrial Group Project. These will help you to develop and apply your skills as a Systems Engineering Manager within the real world.

The Industrial Group Project will give you the opportunity to work as part of a team. You'll develop your people and project management and leadership skills. You'll do this by applying systems engineering management principles to address a practical problem for an industrial client, gaining direct industry experience. These Industrial Group Projects work in conjunction with major organisations that face challenges with the management of major systems engineering projects and have a demand for the skills gained from this course.

Careers

Industries that lead the development of aerospace, automotive, civil and construction, defence, electronics, infrastructure, and power generation projects have identified that systems engineering management skills are the scarcest in the sector and are a rare commodity in today’s recruitment environment.



Read less
This course has been designed with industry to meet the challenge of interdependence between sophisticated engineered systems of all kinds. Read more
This course has been designed with industry to meet the challenge of interdependence between sophisticated engineered systems of all kinds. It is often taken in its part-time format.

It is aimed at engineers who have specialised in a traditional discipline but are now expected to understand, operate in, develop and integrate entire systems that are not only increasingly complex but rapidly changing.

The block taught format of the programme and the option to elect assessment by coursework rather than exam makes it a popular part time course and a CPD option.

Core study areas include systems thinking, systems architecture, systems design, verification and validation, and an individual project.

Optional study areas include enterprise systems management, holistic engineering (industry-led module), sensors and actuators for control, imagineering technologies, engineering and management of capability and understanding complexity.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/systems-engineering/

Programme modules

Compulsory Modules:
• Systems Thinking
• Systems Architecture
• Systems Design
• Validation & Verification
• Individual Project

Optional Modules (choose four):
• Enterprise Systems Engineering
• Holistic Engineering (industry-led module)
• Sensors and Actuators for Control
• Imagineering Technologies
• Engineering and Management of Capability
• Understanding Complexity

Block taught, individual modules are also highly suitable as CPD for professional engineers working onsystems engineering projects and challenges.

How you will learn

The curriculum stimulates thinking and extends the capabilities of technical managers and engineers to handle complexity, enabling them to remain effective in the workplace by providing:
- an integrated systems engineering view of inter-related technologies, processes, tools, techniques and their effective use;

- essential systems skills such as model-based systems architecture and design, against a background of the need for traceability in managing complex projects;

- knowledge and technical expertise in a range of systems technologies;

- experience of the importance to ultimate success of effective, integrated, multi-skilled project teams working in extended enterprises beyond the confines of any particular organisation;

- increased depth of technical and management knowledge through elective modules; and

- the ability to transfer systems skills and knowledge into the workplace through the individual master’s project.

Teaching staff comprise a varied skill set of international expertise to give the broadest perspectives and modules frequently feature master classes from industry practitioners.

- Assessment
There is the option to complete without written examinations as all compulsory modules are assessed by coursework. Where examinations are taken these are in January and May.

Facilities

We employ advanced modelling, simulation and interactive visualisation tools and techniques to enable you to gain greater understanding of the performance, behaviour and emergent properties of advanced technology and complex systems.

Many of these facilities are part of the Advanced VR Research Centre ( AVRRC) http://www.lboro.ac.uk/research/avrrc/facilities/

Careers and further study

Graduates of this course gain capabilities that are in global demand across a range of sectors and which can be applied to the challenges and issues posed by any complex system design and operation.

Promotion within their company for sponsored students is common since the course enables them to match higher job expectations and demands. Employed students often bring a work-relevant topic to their individual project giving the opportunity to display newly acquired skills.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/systems-engineering/

Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more

The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

About this degree

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits).

A Postgraduate Diploma (120 credits) is offered.

Core modules

  • Collaborative Environmental Systems Project
  • Environmental Systems
  • Systems Engineering and Management
  • Systems Society and Sustainability
  • Environmental Modelling

Optional modules

Options may include the following:

  • Engineering and International Development
  • Industrial Symbiosis
  • Politics of Climate Change
  • Project Management
  • Water and Wastewater Treatment
  • Urban Flooding and Drainage
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Energy Systems Modelling
  • Smart Energy Systems: Theory, Practice and Implementation
  • Indoor Air Quality in Buildings
  • Light, Lighting and Wellbeing in Buildings
  • Building Acoustics
  • Science, Technology and Engineering Advice in Practice
  • Energy Systems and Sustainability
  • Waste and Resource Efficiency

Dissertation/report

All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Further information on modules and degree structure is available on the department website: Environmental Systems Engineering MSc

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Recent career destinations for this degree

  • Air Quality Engineer, National Environment Agency
  • Environmental Engineering Consultant, DOGO
  • Nuclear Analyst, EDF Energy
  • Graduate Flood Risk Engineer, Pell Frischmann
  • Project Manager, Veolia Environmental Services

Employability

The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:

  • design, construct and operate urban water systems
  • develop and implement cleaner production technologies to minimise industrial pollution
  • recycle waste materials into new products and generate energy
  • evaluate and minimise the environmental impact of engineering projects
  • develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Accreditation

The progamme is accredited by the Joint Boad of Moderators, which is made up of the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institutions of Highways and Transportation, and the Institute of Highway Engineers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing. Read more

Aims and Basic Characteristics:

The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing.

The degree course aims at training a professional engineer with a thorough knowledge and understanding of the principles of systems engineering of transportation, logistics and production, in which to realize the acquired ability to conceive, plan, design and manage complex, innovative systems and processes, with particular attention to the related safety aspects.
The degree in Safety Engineering for Transport, Logistics, and Production will support the state exam for a license to practice in all the three areas of Engineering: Civil and Environmental, Industrial, and Information.

The typical professional fields for graduates in Safety Engineering for Transport, Logistics, and Production are those of the design and management of safety systems, with particular reference to the transport systems, the development of advanced innovative services, the management of logistics and production, in private and public enterprises, and public administration.

For any information, feel free to write to Prof. Nicola Sacco: safety_at_dime.unige.it

Job opportunities:

• engineering companies and/or large professional firms operating in the field of design, implementation, security management with reference of the transport systems and territorial
• public and private institutions that handle large lines infrastructure (railways, highways, ...)
• government (municipalities, provinces, regions, port authorities, ...)
• freelance
• research structures (universities, research centers, ...)

What Will You Study and Future Prospects:

The main goal is to enable M.Sc. graduates to operate in the various activities related to safety in transport systems, logistics, and production, but also of the territory where they are located.

The course provides notions about:

• the risk assessment of local systems, and in particular the planning, design and management of both safety (protection against accidental events) and security (protection than intentional events);
• the evaluation in terms of cost/benefits of different design alternatives for risk mitigation in transport, logistics, and production systems;
• the planning and management of the mobility of people and goods, through the knowledge of the fundamental elements of transport and logistic systems, as well as the criteria to define the physical characteristics of isolated infrastructures a network of infrastructures, with particular reference to the relevant functions and interdependencies;
• the design and safe management of transport, logistic, and production systems, with reference to either the systems as a whole, and to the relevant single components, such as infrastructures, facilities, vehicles, equipment;
• the development and use of advanced methods to manage and optimize the performance and safety of road, rail, air and sea infrastructure and transport services, as well as their interactions in an intermodal framework, by means of the design and implementation of monitoring, regulation, and control systems via the most advanced technologies related to their specific disciplines;
• the analysis and evaluation of the externalities of transport and logistic systems, with explicit reference to the particular safety aspect and issues characterizing each phase of the mobility of people and goods, even within the production plants connected, and their interaction with surrounding environment.

The course is articulated into two alternative curricula:

1. TRANSPORT AND LOGISTICS: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective mobility of passengers and freights.

2. INDUSTRIAL LOGISTICS AND PRODUCTION: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective production plant internal logistics and management.

Entry Requirements:

Admission to the Master of Science in Safety Engineering for Transport, Logistics and Production is subject to the possession of specific curricular requirements and adequacy of personal preparation.

The access requirements are equivalent to those provided by the general educational objectives of all three-year university degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering. In fact, one of the following curricular requirements must be fulfilled:

• possession of a Bachelor, or a Master degree, or a five-year degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering, awarded by an Italian University, or equivalent qualifications;
• possession of a Bachelor, or a Master degree, or a five-year degree with at least 36 ECTS (“Base Courses”, e.g. Mathematics, Physics, Chemistry, Informatics) and at least 45 ECTS that pertain to the Engineering classes, awarded by an Italian University, or equivalent qualifications;

To access, a knowledge of English is required, at least equivalent at B1 European Level.

Read less
Data is the driving force behind today's information-based society. There is a rapidly increasing demand for specialists who are able to exploit the new wealth of information in large and complex systems. Read more

Data is the driving force behind today's information-based society. There is a rapidly increasing demand for specialists who are able to exploit the new wealth of information in large and complex systems.

The programme focuses on modern methods from machine learning and database management that use the power of statistics to build efficient models, make reliable predictions and optimal decisions. The programme provides students with unique skills that are among the most valued on the labour market.

The rapid development of information technologies has led to the overwhelming of society with enormous volumes of information generated by large or complex systems. Applications in IT, telecommunications, business, robotics, economics, medicine, and many other fields generate information volumes that challenge professional analysts. Models and algorithms from machine learning, data mining, statistical visualisation, computational statistics and other computer-intensive statistical methods included in the programme are designed to learn from these complex information volumes. These tools are often used to increase the efficiency and productivity of large and complex systems and also to make them smarter and more autonomous. This naturally makes these tools increasingly popular with both governmental agencies and the private sector.

The programme is designed for students who have basic knowledge of mathematics, applied mathematics, statistics and computer science and have a bachelor’s degree in one of these areas, or an engineering degree.

Most of the courses included in the programme provide students with deep theoretical knowledge and practical experience from massive amounts of laboratory work.

Students will be given the opportunity to learn:

  • how to use classification methods to improve a mobile phone’s speech recognition software ability to distinguish vowels in a noisy environment
  • how to improve directed marketing by analysing shopping patterns in supermarkets’ scanner databases
  • how to build a spam filter
  • how to provide early warning of a financial crisis by analysing the frequency of crisis-related words in financial media and internet forums
  • how to estimate the effect that new traffic legislation will have on the number of deaths in road accidents
  • how to use a complex DNA microarray dataset to learn about the determinants of cancer
  • how interactive and dynamic graphics can be used to determine the origin of an olive oil sample.

The programme contains a wide variety of courses that students may choose from. Students willing to complement their studies with courses given at other universities have the possibility to participate in exchange studies during the third term. Our partner programmes were carefully selected in order to cover various methodological perspectives and applied areas.

During the final term of the programme, students receive help in finding a private company or a government institution where they can work towards their thesis. There they can apply their knowledge to a real problem and meet people who use advanced data analytics in practice.



Read less
The systems science program emphasizes the complementary use of mathematical, computational and heuristic approaches to solving systems problems. Read more
The systems science program emphasizes the complementary use of mathematical, computational and heuristic approaches to solving systems problems. Students learn to analyze assumptions under which various methods are applicable with the aim of selecting methods that best fit the problem. The program emphasizes learning through classes that deal with systems modeling and simulation, systems analysis and synthesis, and the various problems associated with the simplification of overly complex systems to make them manageable, and includes such research areas as fuzzy logic; data analysis and knowledge discovery; uncertainty theories; generalized information theory; soft computing; intelligent control and robotics; decision making; and complex systems.

Recent doctoral graduate placements include: Industrial Engineer for Best Buy, Industrial Engineer for IBM Corporation, Assistant Professor at Middle East University (Jordan), Industrial Engineer for North Shore-LIJ Health System.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university you have attended
- For PhD candidates, an MS in engineering or related field is desirable, but does not preclude admission for exceptional applicants
- Two letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form (PDF)
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
In today's fast-moving, global marketplace, traditional project management techniques based around strategic planning and control are not enough. Read more

In today's fast-moving, global marketplace, traditional project management techniques based around strategic planning and control are not enough. Many modern projects are not only complicated (tough technical problems needing co-ordination across many suppliers) but also complex (with unclear requirements). The new Management of Complex Projects MSc has been designed to produce project managers equipped to lead the most challenging of projects.

About this degree

Students gain a systems view of project management, so they can develop effective technical solutions within a constrained commercial context. We teach students a number of guiding principles to enable them to manage complex projects and help them to develop key skills such as risk management, requirements management, conflict resolution, effective communication and leadership.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits), two research modules (75 credits), two optional taught modules (30 credits) and one compulsory group project (15 credits). Modules are generally taught as intensive five-day 'block weeks' to minimise time spent away from the office for the flexible/modular students.

A Postgraduate Diploma (120 credits, full-time one academic year, or flexible study two to five years) is offered.

A Postgraduate Certificate (60 credits, 12 weeks or flexible study up to three years) is offered.

Core modules

The first four modules are core and must be taken, then two further taught modules should be selected.

  • Systems, Thinking and Engineering Management
  • The Business Environment
  • Risk, Reliability, Resilience
  • Delivering Complex Projects

Research Modules

  • All MSc students undertake a structured research programme comprising the following mandatory modules:
  • Project Management Project Concept
  • Project Management Research Project
  • All students undertake an independent research project which culminates in a dissertation of 12,000 words and a presentation of 20-30 minutes.

Optional modules

Two modules should be selected from the Optional Module List

  • Project Management (leading to Association for Project Management exam)
  • Lifecycle Management
  • Systems Design
  • Technology Strategy
  • Defence and Security Systems
  • Rail Systems
  • Space Systems

Group project

Students undertake a compulsory group project simulation in which they are confronted with a series of realistic project scenarios and must work together to determine and present their recommended course of action. The scenarios will build on challenges typical of complex projects such as requirements definition, risk management, scope creep and contract and conflict management.

Teaching and learning

The programme is delivered through a combination of lectures, case-studies, discussion sessions, workshop activity, and project work. Assessment is through a combination of course work, in class tests and written examinations. The research modules are assessed through a written report and a short presentation.

Further information on modules and degree structure is available on the department website: Management of Complex Projects MSc

Careers

Complex systems are commonplace in many sectors including rail, aerospace, defence, construction and energy. The ability to manage effectively the projects that deliver such systems is crucial in these industries, and individuals who can demonstrate these skills are in high demand

Employability

We have an industrial advisory board including representatives from Airbus, Atkins, BAE Systems, Boeing, DSTL, Leonardo, MAATS Tech, PA Consulting, Rolls-Royce, Transport for London and Ultra Electronics. These organisations provide project support and even one-to-one careers guidance in some cases.

Drawing on our experience of providing short training courses for industry, such as the Project Manager Training Course for the European Space Agency, we integrate skills development into our teaching. This includes the skills of communication, negotiation, leadership and motivation, decision-making and managing multi-faceted, time-constrained tasks which will be invaluable in future careers.

Why study this degree at UCL?

Standard project management courses are no longer a differentiator. Completing this programme at one of the world's leading universities will give students a competitive edge, putting them on the fast track for a career in project or programme management.

Participants gain the skills and knowledge needed to get ahead - from academic theories of conflict and motivation to practical tools for managing risk and tracking project progress.

Students will meet like-minded individuals from other industries, and through extensive group work and classroom interaction will share experiences, learn new approaches, and build contacts that will contribute to future career development.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Space & Climate Physics

90% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Systems Analysis and Design pathway gives students an understanding of how technological information systems work, enabling them to deliver IT-based solutions, such as enterprise systems to business and organisations. You’ll learn how to manage data to deliver actionable business insight using creative, sophisticated techniques to solve complex business issues. . Read more

The Systems Analysis and Design pathway gives students an understanding of how technological information systems work, enabling them to deliver IT-based solutions, such as enterprise systems to business and organisations. You’ll learn how to manage data to deliver actionable business insight using creative, sophisticated techniques to solve complex business issues. 

Commercial focus

Students will learn how systems ‘think’ and be able to apply their understanding to systems analysis and design methodology to enable them to plan, manage and design and implement information management projects.

After you’ve graduated

Our graduates leave us prepared to take on a range of jobs in the digital economy, from systems analysis and design, to product development and management consulting. Among other organisations, our alumni join financial services firms, IT companies, consulting firms, software houses, healthcare and the public sector.

Not sure which pathway to choose from 3 choices? Apply for the one that you feel fits you better and you will be able to change the pathway within the first few weeks from your arrival to the university.

Why Henley?

  • Consistently maintain highest standards: Henley is in top 1% of business schools worldwide to hold accreditation from all three bodies in the UK, Europe and US
  • Excellent networking potential : 72,000 Henley alumni members in 150 countries
  • High calibre students: always oversubscribed, 1,000 ambitious new Masters students join Henley each year
  • Award winning campus: beautiful, green, 134 hectares, with state of the art facilities
  • World-leading faculty: widely published, frequently asked for expert comment by media and to speak at events
  • Henley is proud to be part of the University of Reading. The University is ranked within the top 200 universities worldwide (Times Higher Education World University Rankings 2016/17 and QS World University Rankings 2018) and 98% of the research is rated as being of international standard.

Course content

Compulsory modules

Optional modules

In addition students must choose two optional module from the list below.

Please note there is no guarantee that in any one year all modules will be available. 

How we teach you

A holistic approach

Effective leadership requires more than first-class business acumen. It also requires a degree of self-awareness and sensitivity. Henley is renowned for its well-researched, professional approach to this aspect of business education and all our postgraduate programmes examine this aspect of leadership - helping to create emotionally intelligent graduates who can be fully effective in their chosen careers.

How you will learn

Henley Business School enjoys a strong reputation for the practical application of business ideas and concepts, underpinned by academic excellence and the strength of our research. We offer high-quality technical skills training as well as a deep understanding of the importance of personal development for leaders, a thread that runs through all of our Masters programmes.

Our postgraduate masters programmes feature a mix of core and optional modules, allowing you to tailor your degree towards your individual personal development needs and career ambitions. You will complete up to 10 taught modules during your programme, totalling 180 credits. One module usually equates to 20 credits or 10 hours of work per week. Your week will include lectures, tutorials, workshops and personal study, with each accounting for 25% of your time on average. This stimulating mix of lectures and interactive tutorials provides you with the opportunity to discuss and explore the subject material in depth with your lecturers and fellow students. You will be introduced to the latest thinking and research findings and be able to challenge some of those that have created it. You will also explore real-world issues and tackle current business challenges, and interact with guest lectures and speakers from industry, giving you the opportunity to test, extend and refine your knowledge and skills.

How we assess you

You will learn and be assessed through a wide variety of teaching methods which vary depending on your chosen Masters programme. These include online materials and multimedia content, guest lectures, individual and group assignments, case studies, field visits, dealing room simulations, presentations, applied projects, consultancy work and examinations.

On average examinations form around 70% of the assessed work with the remaining 30% coming from coursework, including a written dissertation or project depending on your chosen programme. The exam period falls between April and June in the summer term, with students taking an average of 5 or 6 exams. Graduation normally takes place in December.

Ongoing support

While postgraduate students are self-motivated and determined individuals, study at this level can present additional pressures which we take seriously. Lecturers are available to discuss the content of each module and your personal tutor can meet with you regularly to discuss any additional issues. Full-time support staff are also available to help with any questions or issues that may arise during your time at Henley

Careers and accreditations

Each pathway of our MSc Information Management is designed to give a rigorous academic understanding of real-life and current business issues. Graduates of the Systems Analysis and Design pathway will be equipped to manage and utilize information resources in various business fields including business & management, construction management and healthcare through a thorough understanding of systems analysis and design methodology.

A number of our students join our PhD programmes each year.

Students who pass the module INMR66 – Business Domain and Requirements Analysis with a mark of 60 or above will be eligible for the British Computer Society Professional Certificate in Business Analysis Practice. 



Read less

Show 10 15 30 per page



Cookie Policy    X