• University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Leeds Featured Masters Courses
University of Sussex Featured Masters Courses
Coventry University Featured Masters Courses
Loughborough University Featured Masters Courses
"complex" AND "systems"×
0 miles

Masters Degrees (Complex Systems)

  • "complex" AND "systems" ×
  • clear all
Showing 1 to 15 of 886
Order by 
Our MSc Complex Systems Modelling programme enables you to apply mathematical techniques in the rapidly developing and exciting interdisciplinary field of complex systems. Read more
Our MSc Complex Systems Modelling programme enables you to apply mathematical techniques in the rapidly developing and exciting interdisciplinary field of complex systems. This field of study is applicable to areas as diverse as biomedical, natural, economic and social sciences. It is suitable for those who wish to work in research and development in an academic or industrial environment.

Key benefits

- Unrivalled location at the centre of London.

- Research-led interdisciplinary programme.

- Modern theory of complex systems modelling.

- Taught by experts in the field.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/complex-systems-modelling-msc.aspx

Course detail

- Description -

Modern societies rely on a wide range of infrastructures, institutions and technologies whose complexity has grown dramatically in the recent past. Consequently there is an ever-growing demand for expertise in complex systems modelling as a prerequisite to understanding, maintaining and further developing such systems.

The MSc in Complex Systems Modelling is a taught programme with a significant research component in the rapidly developing and exciting interdisciplinary field of Complex Systems. It covers scientific areas ranging from biomedical and natural to economic and social sciences, and consists of a wide range of modules including the following core modules:

- Research Methods and Advanced Topics in Complex Systems
- Theory of Complex Networks
- Equilibrium Analysis of Complex Systems

You must also complete a project in a relevant area after passing the written examinations. This can be carried out and supervised in the department or in appropriate academic or industrial institutions outside the College.

- Course purpose -

For graduates in mathematics, or in other suitable scientific disciplines with a strong background in mathematics, who want to work in research and development in an academic or industrial environment. The programme aims to develop a knowledge and understanding of complex systems modelling and their uses, and to enable students to use mathematical techniques to quantify, predict and improve such systems.

- Course format and assessment -

Primarily written examinations, some with coursework element, in eight lecture modules, plus an oral presentation and assessed report on the research project.

Career prospects

Our graduates are highly sought after: the applicability of complex systems modelling to areas as diverse as biomedical, natural, economic and social sciences, results in a broad range of opportunities. Some graduates are employed by the companies or laboratories that supervise their MSc research projects, or continue to PhD study.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Complex systems with a technological, biological or socio-economic background determine our everyday life. Read more

About the Program

Complex systems with a technological, biological or socio-economic background determine our everyday life. The challenge of modeling these complex systems mathematically demands the following prototypic profile of an "expert mastering a repertoire of modern mathematical and computer based methods for modeling, simulating and optimizing complex systems and knowing how to combine those methods for solving real-world problems".
The term expert is understood in the sense of generalist and not a specialist, since this program aims at teaching a broad spectrum of modern methods.

The two-years English-taught master program "Mathematical Modeling of Complex Systems" focuses on advanced techniques of modeling, simulation and optimization. A substantial set of elective courses allows concentration on areas of individual interest. A mobility window enables the students to study abroad and gain scientific and cultural experience at international partner universities. This program uses English as medium of instruction since its graduates will enter a highly globalized work and research community. Besides that, the participation and enrollment of international candidates is explicitly welcomed.

Application oriented, interdisciplinary seminars link the theoretical basics and concepts of modeling and simulation. Students work in small teams to solve real world problems. This teamwork reflects typical work in applied sciences and corresponds to our paradigm of an "expert mastering a repertoire of methods to solve problems".

Find out more about the program and our campus in Koblenz under:
https://www.uni-koblenz-landau.de/de/koblenz/fb3/mathe/studium/mmcs/

Aims/Career Perspectives

The Master degree in Mathematical Modeling of Complex Systems is to give those possessing extended skills in Mathematics, Physics and Computer Science in theory, experiment and practical application. These skills are complemented with further knowledge in additional topics, individually selected by each student. The degree entitles its holder to exercise professional work in the field of Applied Mathematics and/or Mathematical Modeling in science or industry or to pursue a PhD program in related fields.

Program Structure

The first three terms of the two-years master „Mathematical Modeling of Complex Systems“ consist of core courses in Applied Mathematics and Applied Physics. Elective courses in Applied Mathematics, Applied Physics and Computer Sciences allow each student to set its individual focus. Active use of the gained knowledge and its application to the solution of real-world problems is taught and practiced in a project seminar. This project seminar can be carried out in a three-month period at a research institution, enterprise or at university. The master thesis in the last term and dealing with modeling and simulating a real-world problem, shows the student’s ability to perform independent research work.
The core and elective courses typically include a written or oral exam, the project seminar is graded based an oral presentation and written report of the project results.

You can find an exemplary list of courses and can download a overview of the modules under:
https://www.uni-koblenz-landau.de/de/koblenz/fb3/mathe/studium/mmcs#curriculum

Read less
What do Facebook, the financial system, Internet or the brain have in common?. All are connected in a network. Read more
What do Facebook, the financial system, Internet or the brain have in common?

All are connected in a network. From the underlying skeleton of social relations, the interdependent evolution of our financial system, to the emergent collective computation in the brain, most of the complex systems that appear in society, technology, and nature are ultimately characterised by a nontrivial pattern of inter-relations. This underlying architecture is in turn shaping how information diffuses and spreads, how resilient the system is against attacks or perturbations, or how complex patterns emerge at the systemic level from the aggregation of seemingly simple individuals.

Our MSc in Network Science will provide a thorough grounding in the core principles of modelling and analysis of complex and networked systems, along with the principal analytical and numerical methodologies. This will open to students a host of career opportunities in systems and networks modelling industries, spanning the IT, financial, and biomedical sectors, that are now requiring such specialist knowledge and skills.

Network Science is a very active and rapidly evolving research field with high societal impact, which stands at the crossroads of graph theory, complexity and data analysis. Addressing the description and modelling of the architecture and dynamics of complex systems -systems composed by many interacting units that show collective behaviour- it stands as a new kind of science to cope with some of the most challenging endeavours we face today, in an ever increasingly more connected society.
Its impact and applications outside academia pervades technological sectors such as communications and infrastructures (Internet, transportation networks, energy networks, urban mobility), biostatistics and network biology (brain modelling, protein interaction networks, postgenomic era), public health (epidemic spreading models), marketing and IT (social media, data analytics) to cite a few. This specialist masters programme aims at providing graduate students and professionals with a rigorous training in the underlying mathematical concepts, the analysis and modelling of complex networks and networked systems, complemented with training in computing, numerical simulations and massive data analysis. It is aimed towards students whose undergraduate degree is in mathematics or a cognate discipline who wish to enter a career involving analysis and optimisation of diverse kinds of networks, networked dynamics and models.

Why study your MSc Network Science at Queen Mary?
This is a pioneering MSc in the UK, a joint programme, taught by our Schools of Mathematical Sciences, and Electronic Engineering and Computer Science, drawing on their strengths in research and teaching in the area of complex networks, mathematical modelling of complex systems, and data mining.

We teach what we know and what we do best. Within the School of Mathematics, the Complex Systems & Networks group is one of the biggest hubs in Network Science within the UK, where we address both fundamental and applied challenges in the mathematical modelling of complex systems with clear societal impact, in collaboration with several industrial stakeholders. Within the School of Electronic Engineering, the Networks group was founded in 1987, and has hugely expanded ever since, bringing their expertise in online social networks, data mining and cloud computing. The coalescence of both groups expertises has fostered the creation of this unique MSc.

Read less
What do Facebook, the financial system, Internet or the brain have in common?. "Everything is connected, all is network". Read more
What do Facebook, the financial system, Internet or the brain have in common?

"Everything is connected, all is network"
From the underlying skeleton of social relations, the interdependent evolution of our financial system, to the emergent collective computation in the brain, most of the complex systems that appear in society, technology, and nature are ultimately characterised by a nontrivial pattern of inter-relations. This underlying architecture is in turn shaping how information diffuses and spreads, how resilient the system is against attacks or perturbations, or how complex patterns emerge at the systemic level from the aggregation of seemingly simple individuals.

Our MSc Network Science will provide a thorough grounding in the core principles of modelling and analysis of complex and networked systems, along with the principal analytical and numerical methodologies. This will open to students a host of career opportunities in systems and networks modelling industries, spanning the IT, financial, and biomedical sectors, that are now requiring such specialist knowledge and skills.

Network Science is a very active and rapidly evolving research field with high societal impact, which stands at the crossroads of graph theory, complexity and data analysis. Addressing the description and modelling of the architecture and dynamics of complex systems -systems composed by many interacting units that show collective behaviour- it stands as a new kind of science to cope with some of the most challenging endeavours we face today, in an ever increasingly more connected society.
Its impact and applications outside academia pervades technological sectors such as communications and infrastructures (Internet, transportation networks, energy networks, urban mobility), finance (financial risk and systemic instability, financial networks, interbank cross-correlations), marketing and IT (social media, data analytics), public health (epidemic spreading models), or biostatistics and network biology (brain modelling, protein interaction networks, postgenomic era), to cite a few. This specialist masters programme aims at providing graduate students and professionals with a rigorous training in the underlying mathematical concepts, the analysis and modelling of complex networks and networked systems, complemented with training in computing, numerical simulations and massive data analysis. It is aimed towards students with a mathematical background who wish to enter a career involving analysis and optimisation of diverse kinds of networks, networked dynamics and models.

Why study your MSc Network Science at Queen Mary?
This is a pioneering MSc in the UK, a joint programme, taught by our Schools of Mathematical Sciences, and Electronic Engineering and Computer Science, drawing on their strengths in research and teaching in the area of complex networks, mathematical modelling of complex systems, and data mining.

We teach what we know and what we do best. Within the School of Mathematics, the Complex Systems & Networks group is one of the biggest hubs in Network Science within the UK, where we address both fundamental and applied challenges in the mathematical modelling of complex systems with clear societal impact, in collaboration with several industrial stakeholders. Within the School of Electronic Engineering, the Networks group was founded in 1987, and has hugely expanded ever since, bringing their expertise in online social networks, data mining and cloud computing. The coalescence of both groups expertises has fostered the creation of this unique MSc.

More about our two schools

Queen Mary is a member of the prestigious Russell Group of leading UK universities, combining world-class research, teaching excellence and unrivalled links with business and the public sector. The School of Mathematical Sciences has a distinguished history on itself. We have been conducting pioneering mathematical research since the 1950s, and as one of the largest mathematical departments in the UK, with over 50 members of staff, the school can offer diverse postgraduate study opportunities across the field, from pure and applied mathematics, to finance and statistics. Along with the MSc in Network Science, our cohort of postgraduate students specialise in Mathematics and Statistics, Mathematical Finance and Financial Computing. We are one of the UK’s leading universities in the most recent national assessment of research quality, we were placed ninth in the UK (REF 2014) amongst multi-faculty universities. This means that the teaching on our postgraduate programmes is directly inspired by the world-leading research of our academics. Our staff includes international leaders in many areas of mathematical research, and the School is a hive of activity, providing a vibrant intellectual space for postgraduate study.

The School of Electronic Engineering and Computer Science is internationally recognised for their pioneering and ground-breaking research in several areas including machine learning and applied network analysis. This expertise uniquely complements the more theoretical knowledge offered by the School of Mathematical Sciences, providing a well balanced mix of theory and applications and offering a deep and robust programme that combines the foundations of the mathematics of networks with the latest cutting edge applications in real world problems.

Additionally, Queen Mary holds a university-level Bronze Award for the Athena SWAN Charter, which recognises and celebrates good employment practice for women working in mathematics, science, engineering and technology in higher education and research.

Read less
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. Read more
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. The programme encompasses not only the technical tools and approaches needed to build success in this area, but also the management dimension of the relevant processes.

Degree information

Students gain an integrated, interdisciplinary view of complex systems and an advanced understanding of the systems engineering process. They gain the ability to apply this process to a variety of real world situations and the management skills necessary to facilitate the development of complex systems on time and within budget.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits) two optional taught modules (30 credits) and three research modules (90 credits). Modules are generally taught as intensive five-day 'block weeks' to minimise time away from the office.

A Postgraduate Diploma (120 credits, full-time nine months, or flexible study up to five years) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, or flexible study up to two years) is offered.

Core modules
-Systems Engineering Management
-Lifecycle Management
-Risk, Reliability, Resilience
-The Business Environment

Optional modules
-Defence Systems
-Environmental Systems*
-Project Management
-Rail Systems
-Spacecraft Systems
-Systems Design
-Systems, Society, Sustainability*

*These modules are delivered by UCL's Department of Civil, Environmental and Geomatic Engineering in ten half-day sessions over the course of a term instead of the usual intensive 'block week' format

Research modules - all MSc students undertake a structured research programme comprising the following mandatory modules:
-Systems Engineering in Practice (15 credits)
-Systems Engineering Project Concept (15 credits)
-Systems Engineering Research Project (60 credits)

Teaching and learning
The programme is delivered through a combination of lectures, discussion sessions, workshop activity, and project work. Each taught course will be separately assessed through a combination of course work and a written examination. The project will be assessed through written dissertation and subsequent oral examination.

Careers

Complex systems are commonplace in many branches of UK industry including rail, aerospace, defence, and manufacturing. The ability to create such systems effectively is crucial to the competitiveness of these industries and has a direct bearing on the wealth of the nation.

Recent graduates of the programme have the following careers:
-London Underground: Head of Railway Systems
-Accenture: Analyst
-Thales Aerospace: Design Authority Manager
-BAE Systems: Systems Design Authority
-Selex Sensors and Airborne Management: Engineering Lead
-Xerox: Engineering Manager
-QinetiQ: Marine Engineer
-BAE Systems: Senior Hardware Engineer
-British Aerospace: Software Engineer
-Orange: Principal Engineer
-Halcrow Group Limited: Design Manager

Top career destinations for this degree:
-Software Engineer, Bank of America Merrill Lynch
-Analyst, Accenture
-Proposals engineer, Invensys PLC
-Engineering Manager, BAE Systems
-Systems Engineer, BIG

Why study this degree at UCL?

This MSc combines academic rigour with the practical expertise exemplified by our collaborators in UK industry and government. The flexible programme enables participants to structure their studies to suit their own career goals, and is accredited by the IET as a programme of further learning for registration as a Chartered Engineer.

Lectures are presented by experts in the field, many of whom have engaged in the practice of systems engineering in industry.

Industry is operating in an environment where technology changes rapidly, and where global competition grows ever more intensive. The challenge to remain competitive means we must make the right thing at the right price. Our MSc equips graduates with the skills to meet this challenge.

Read less
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. Read more
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. The core philosophy of the programme is to equip students both with mathematics and its applications and with high-level scientific software and associated numerical skills. The Greenwich campus, near the financial district of Canary Wharf, enables the department to build ties with many modern engineering and applied mathematics practitioners enabling our students to become part of a wider group. The Leslie Comrie seminar series, inviting both academics and industrialists, allows you to interact with our external links creating an advantageous learning experience. We provide you the grounds for building a high profile of understanding of current research practices in the industry. Our classes contain interactive applications that enhance the learning experience by innovative teaching practices. Utilising research expertise within the department you will graduate with a strong understanding of numerical methods. You will also develop an understanding for further applicability in various fields of applied mathematics and engineering.

This programme is suitable both for fresh graduates and also for experienced professional practitioners who wish to further their skills. The programme core modules cover modern mathematical skills together with applications across different industries, and there are optional professional modules directly related to research expertise within the Faculty. This ensures that students have an advanced understanding of both theory and practice in their selected specialist areas. Students will gain knowledge of mathematical skills and applications, computational skills, and relevant professional experience, related to traditional engineering and science modelling, modern enterprise applications, finance, and service industries. They will gain an understanding of emerging applications. There will be hands-on training in various development tools and in the use of computational software related to their professional direction. Assessment takes the form of 100% coursework, based on applications of current market practices. A supervised thesis project takes place at the end of the last teaching term during the summer months. Projects are allocated in March and students are invited to undertake a project that provides genuine insight in an area of the research interests within the department. The programme is also available on a part-time basis.

Visit the website http://www2.gre.ac.uk/study/courses/pg/maths/appmaths

Mathematics

Postgraduate mathematics students benefit from award-winning teaching and great facilities. Our programmes are informed by world-renowned research and our links with industry ensure our students develop the academic and practical skills that will enhance their career prospects.

What you'll study

Full time
- Year 1:
Option Set 1

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are required to choose 60 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Option Set 2
Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 60 credits from this list of options.

Principles and Practice of Evacuation Modelling (30 credits)
Principles and Practice of Fire Modelling (30 credits)

Option Set 3

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 45 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Students are also required to choose 15 credits from this list of options.

Enterprise Software Engineering Development (15 credits)
Software Tools and Techniques (15 credits)
Actuarial Mathematics and Risk Modelling (15 credits)
Financial Time Series (15 credits)
Advanced Finite Difference Methods for Derivatives Pricing (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Inverse Problems (15 credits)
Mathematics and its Applications (30 credits)
Reliability and Optimisation (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

Scientific Software Design and Development (15 credits)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematics of Complex Systems (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Finite Difference Methods for Derivatives Pricing (15 credits)
Mathematical Approaches to Risk Management (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

100% coursework: a supervised thesis project (during the summer months).

Career options

Our graduates are equipped with the tools to involve in many engineering applications and computational engineering sectors such as reliability engineering, risk management, complex engineering systems, fire safety and finance. Our expert seminar series gives you the opportunity to interact with leading figures from industry and academia and undertake projects of current industry practice. A postgraduate qualification is a major achievement and a milestone in your specialised career path leading to a professional career. The Department also offers a PhD programme which trains highly skilled candidates towards research careers in academia and industry. Our current collaborations for our PhD candidates lie with the STRIKE project for mathematical and computational applications.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The brain, the immune system and the formation of clouds, are all examples of complex adaptive systems comprising of many interacting components, often non linear and dynamic, leading to multiple levels of collective structures and organization. Read more
The brain, the immune system and the formation of clouds, are all examples of complex adaptive systems comprising of many interacting components, often non linear and dynamic, leading to multiple levels of collective structures and organization.

Inspired by complex adaptive systems in nature, several new methods for information processing have emerged: artificial neural networks resemble neurobiology; genetic algorithms and genetic programming are based on evolutionary processes in nature; the construction of artificial life, the design of autonomous robots and software agents are based on the behaviour of living systems.

Programme description

To understand the dynamics of increasingly complex phenomena where standard simulation methods are inadequate, stochastic algorithms, game theory, adaptive programming, self similarity, chaos theory and statistical methods are used to describe and increase our understanding of complex systems in nature and society, in the end trying to predict the unpredictable.
Examples are gene-regulation networks, the motion of dust particles in turbulent air or the dynamics of financial markets.

One example is fluctuations of share and option prices determining the stability of our economy. Other examples are the dynamics of dust particles in the exhaust of diesel engines, the dynamics of biological or artificial populations, earthquake prediction, and last but not least adaptive learning: the problem of teaching a robot how to respond to unexpected changes in its environment.

Truly interdisciplinary and encompassing several theoretical frameworks, this programme provides you with a broad and thorough introduction to the theory of complex systems and its applications to the world around us. The programme is based on a physics perspective with a focus on general principles, but it also provides courses in information theory, computer science and optimisation algorithms, ecology and genetics as well as adaptive systems and robotics.

Educational methods

Besides traditional lectures on simulation and theory of complex systems, the programme is largely based on numerical calculation and simulation projects and depending on course selection possibly practical work in the robotics lab.

Read less
This Masters programme provides state-of-the-art training in the latest advances in Digital Health Systems development and management. Read more
This Masters programme provides state-of-the-art training in the latest advances in Digital Health Systems development and management. It's aimed at those who aim to become leaders in the field of Health IT, either for Health systems service delivery or for the Health & Wellness IT industry.

Graduates will gain essential skills and expertise in designing applications that are accessible and usable, and that comply with complex data governance within healthcare. You'll gain experience in managing, analysing and making use of data collected from personal devices (such as apps and wearables) and large scale health systems (such as electronic records). You'll also gain key software development and management skills that are critical for deploying health systems.

This course looking at the whole systems implementation of digital health systems is one of its kind in the UK.

This new and unique course is the first of its kind to offer technical graduates the opportunity to develop the core skills required to develop advanced health and wellness systems and technologies for improving the way we personally manage our lifestyles and how our care systems deliver better health to citizens.

You'll study

The course includes 120 credits of taught material - taken over the first two semesters - and a 60-credit digital health project that runs, typically, from May to September.

In addition to learning about the design, development and evaluation process for personal health and wellness devices and systems and larger scale hospital and community based IT systems, students will also be trained to understand and use techniques for using the data that these systems produce to support decision making and planning and delivery of better care.

Work placement

Student projects will be conducted in close collaboration with the Digital Health Research group partners.

Furthermore, the Digital Health Research group has close links with Scotland’s innovation centres (Digital Health & Care Institute, Data Lab), the Strathclyde Institute of Pharmacy & Biomedical Sciences, The City Observatory, and the Centre for Health Policy. These links provide a range of opportunities for practical partnerships with the leading organisations and industries in the field.

Major projects

Working closely with the Digital Health research group means students will be alongside a group that has conducted major collaborative research and development projects and evaluations within the UK and internationally. The group were lead investigators in the evaluation of a £37 million Innovate UK programme to deploy assistive digital health and wellness technologies at scale across the UK.

The group is also involved in organising key national and international conferences such as the British Computer Society (BCS) Health Informatics conference and the ACM conference on Human Factors in Computing Systems.

Example projects include: Design of mobile apps for Managing Diabetes; Cost Benefit Analysis of Technology Enabled Care; Evaluating the Barriers to Implementing Electronic Personal Health Records at Scale.

Student competitions

Each year one student will be awarded the 'Innovative Digital Health and Care' award for the best overall student project (judged by representatives from academia, health and social care and industry).

Guest lectures

The taught modules will include guest-lectures from experts and practitioners in the field of Health IT, both from industry, this sector and the National Health Service.

Course content

Classes
-Design of Usable Health Systems
-Digital Health Implementation
-Decision Support & Health Analytics
-Research Methods & Legal, Ethical and Professional Issues for the Information Society
-Information Systems Architecture
-Database & Web Systems Development
-Individual Project

Learning & teaching

Teaching combines face-to-face lectures, labs and tutorials as well as personal/group study time.

Assessment

Taught modules are assessed using a combination of individual projects, group projects and final exams. The project is assessed on the quality of the project report (ie Master thesis). An overall minimum of 50% across all assessed classes and report is required in order to be awarded the Master in Digital Health Systems.

Careers

Graduates from the programme will enjoy a broad range of career opportunities. The NHS remains one of the largest employers in the world and IT professionals is one of the fastest growing profession within the organisation.

Equally, private and public health and care services world-wide are also expanding their digital health capacities and workforce and hardware and software companies (sensors, wearables, mobile computing) are all seeking expertise in the health and wellness sector. Future career options will include:
-Application & system developer
-Health Systems & Service Designers
-Data Analyst
-IT manager
-Knowledge management specialist
-Knowledge & information manager
-Information governance manager
-Clinical information manager
-Computer support analyst/engineer
-Clinical coder/Clinical coding trainer
-Planning & performance manager
-Systems & process Auditor

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
Enterprise Systems Management is an innovative MSc degree course designed for those who want to pursue careers as managers and leaders in implementing technology-based information systems solutions to achieve business excellence. Read more
Enterprise Systems Management is an innovative MSc degree course designed for those who want to pursue careers as managers and leaders in implementing technology-based information systems solutions to achieve business excellence.

What's covered in the course?

To understand the design of Enterprise Systems and the benefits, you will firstly gain a broader understanding of systems thinking. Case studies and live project briefs underpin reinforcement of the learning and teaching.

The modules studied in this highly rigorous course are directly relevant to industry's current and expected future needs. You will be challenged to think outside the box, and apply knowledge and skills to provide robust and innovative solutions to a range of business problems.

You will study at our Enterprise Systems Centre at the City Centre Campus, where you will learn how modern management information systems are structured, how they are managed and the issues in integrating them to support effective management of robust business processes.

You will also be given access to SAP systems based on a virtual industry. This practical element of your programme provides an applied learning experience to develop knowledge in enterprise systems.

The Master's Project module will give you the opportunity to apply your skills and knowledge to practical problems and investigate an enterprise systems management research topic.

Why choose us?

-The course explores systems and activities within an enterprise that bring together processes, people and technology to help streamline operations to gain competitive advantages, improved performance and reduced operational costs, as well as implementing efficient business processes and improving real-time decision-making capabilities.
-Enterprise Systems Management students will have access to the University’s unique SAP Lab, providing an inspirational research and development space for you to use for creative thinking and design.
-You will participate in ERPsim to gain experience of enterprise systems, using virtual business scenarios to evaluate the impact of integration of processes on manufacturing and business analytics.
-The Faculty is a member of SAP University Alliance. This programme provides you with the opportunity to undertake SAP certification in a number of key areas including enterprise resources planning (ERP) and business warehouse (BW).

Course in depth

Our teaching philosophy revolves around you both ‘learning by doing’ and also transferring acquired knowledge to others. Activities will be conducted both individually and in teams, with tutors providing leadership and mentoring aimed at supporting your transition into independent learners. In this partnership, we will be encouraging you to become proactive, so that you can develop your confidence to undertake a range of progressively complex and challenging tasks.

We expect you to attend all teaching sessions, as well as to read and prepare before these sessions. Good preparation will enable you to get the most from your contact time and will help you become an autonomous learner. Advanced preparation is also a critical skill which you must develop if you wish to succeed in business or professional practice. Teaching sessions will include lectures and small group interactive seminars.

You will be assessed in a number of different ways, including coursework, patchwork assessment, examinations (seen and unseen, open and closed-book), presentations, practical assignments, vivas, online forums, podcasts and project work.

Semester One
-Enterprise Systems 20 credits
-Manufacturing Systems 20 credits
-Strategic Information Systems Planning 20 credits

Semester Two
-Technology Relationship Management 20 credits
-Business Intelligence and Technology Entrepreneurship 20 credits
-Principles of Project Management 20 credits

Semester Three
Postgraduate Project 60 credits

Accreditation

The Faculty is a member of SAP University Alliance. This programme provides you with the opportunity to undertake SAP Certification in a number of key areas, including enterprise resources planning (ERP) and business warehouse (BW).

Enterprise Systems Management students have access to the University’s unique SAP Lab, providing an inspirational research and development space for you to use for creative thinking and design.

Enhancing your employability skills

Birmingham City University programmes aim to provide graduates with a set of attributes which prepare them for their future careers. The BCU Graduate:
-Is professional and work-ready
-Is a creative problem solver
-Is enterprising
-Has a global outlook

The University has introduced the Birmingham City University Graduate+ programme, which is an extracurricular awards framework that is designed to augment the subject-based skills that you develop through your programme with broader employability skills, enhancing your employment options when you leave university.

The programme will help you with crafting your CV, personal statements, covering letters and presentations, and will also help you seek part-time work experience and voluntary placements.

Read less
Created in response to the worldwide shortage of qualified engineers in the petroleum-refining systems-engineering industry, our programme combines technologies, operations and economics with modelling, simulation, optimisation, and process design and integration. Read more
Created in response to the worldwide shortage of qualified engineers in the petroleum-refining systems-engineering industry, our programme combines technologies, operations and economics with modelling, simulation, optimisation, and process design and integration.

PROGRAMME OVERVIEW

This programme will equip you with the essential knowledge for engineering careers in the oil, gas and petrochemical sectors.

Upon completion of the course you will have gained a comprehensive understanding of oil refining and associated downstream processing technologies, operations and economics; process safety and operations integrity; and methods for the optimal design of process systems.

You will learn about the general economics of the energy sector, oil exploration and production, as well as renewable energy systems.

Furthermore, your study of the various aspects of petroleum refining will be augmented by unique work assignments at a virtual oil-refining and chemical company.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Refinery and Petrochemical Process
-Renewable Energy Technologies
-Solar Energy Technology
-Advanced Process Control
-Technology, Business & Research Seminars
-Energy Economics and Technology
-Process and Energy Integration
-Process Systems Design
-Process Safety and Operation Integrity
-Knowledge-based Systems and Artificial Intelligence
-Supply Chain Management
-Biomass Processing Technology
-Introduction to Petroleum Production
-Wind Energy Technology
-Economics of International Oil & Gas
-Dissertation

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide a highly vocational education that equips the students with the essential knowledge and skills required to work as competent engineers in the petrochemical sector.

This is to be achieved through combining proper material in two popular and complementary topics: process systems engineering and petroleum refining. The key objective is to develop a sound understanding of oil refining and downstream processing technologies, process safety and operation integrity, as well as systems methods for the optimal design of process systems.

A balanced curriculum is provided with essential modules from these two areas supplemented by a flexible element by way of elective modules that permit students to pursue subjects of preference relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in petroleum refining and petrochemical processing, in terms of the technologies of processes that comprise a modern refinery and petrochemicals complex
-The principles for analysing and improving the profitability of refining and petrochemicals processing
-General Safety, health, and environment (SHE) principles on a refinery and petrochemicals complex
-Methods and systems for ensuring safe and reliable design and operation of process units
-State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems, mathematical optimization and decision making, process systems design and process and energy integration
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: petroleum exploration and production, economics of the energy sector, sustainable and renewable systems, supply chain management

Intellectual / cognitive skills
-The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation.
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Apply knowledge of the operation of refineries to analyze and to improve the profitability of refining and petrochemical processing
-Apply relevant principles, methods, and tools to improve the safety and operation integrity of refineries
-Apply systems engineering methods such as modelling, simulation, optimization, and energy integration to improve the design of petroleum refining units and systems

Key / transferable skills
-The programme aims to strengthen a range of transferable skills that are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation.
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organizing and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Technical systems, be they consumer products or industrial systems for process and production control, have an increasing need for intelligent control. Read more
Technical systems, be they consumer products or industrial systems for process and production control, have an increasing need for intelligent control.

By extending mechanical solutions with sensors and electronics there are ample possibilities to create not only new functions, but also make these new solutions effective and apply to quality and safety requirements, cost reductions and environmental demands.

The challenge lies in making the control of these systems accurate (precise), fast and yet robust and flexible.

Programme aim

The aim of the programme is to prepare the students for a professional career by providing a broad systems engineering
base, suited to the engineering of complex, computer-controlled (embedded) products and systems, and offering course packages toward subtopics (e.g. control; automation; mechatronics) and/or fields of application.

Applications span a wide spectrum, from small consumer devices and medical equipment to large systems for process and production control.

A basic idea behind the programme is the systems perspective and the general systems engineering skills. The elective part of the programme can be tailored towards an application area or to more fundamental topics in control, automation or mechatronics.

Programme description

A striking example of the current development can be found in the automotive area, where modern passenger cars increasingly depend on the integration of the car’s mechanical subsystems with a substantial amount of embedded computers, sensors, actuators, and communication devices, making it possible to create cars with active safety functions and new propulsion systems. Other evolving fields of this discipline is HVDC power transmission to minimize loss in the grid and intelligent robots for households and industry, to name a few.

To ensure development within the field, all these systems depend on engineers making them precise, effective, flexible, fast and safe. As a student you will become able to contribute to the development that will lead to the integration of functions for sensing, monitoring and control with a wide range of products and systems.

We prepare you for a professional career by providing a broad systems engineering base. In the basic courses our focus lies in developing your engineering skills on a system level; Discrete event systems, Modelling and simulation, Linear control system design, Embedded control systems and Design project. In the elective part of the programme, we offer course packages toward subtopics e.g. control, automation and mechatronics and/or fields of application.

In collaboration with Universität Stuttgart, we also offer you a possibility to pursue a double degree.

Why apply

The programme leads to a wide range of career opportunities with emphasis on operation, design, development and research of complex technical systems within almost any branch of industry. In fact, the generality of many of the methods offers great opportunities in terms of choosing among many different application domains. The acquired skills are needed at manufacturing companies, supplier companies, consulting firms and utility companies.

Job roles range from applied research to product and system development and operation, as well as extend to sales support and product planning. In addition, other career opportunities may arise as academic researchers, technical advisors, project managers and teachers at different levels.

Read less
This industry-focused course is for Computer Science graduates and experienced professional programmers interested in developing high-quality, complex software systems. Read more
This industry-focused course is for Computer Science graduates and experienced professional programmers interested in developing high-quality, complex software systems.

Who is it for?

This industry-focused course is for Computer Science graduates and experienced professional programmers interested in developing high-quality, complex software systems and aiming at a high-quality career in the industry, e.g. software houses, consultancies, and major software users across different sectors.

Students will have a keen interest in designing complex software systems, coding them in a programming language using the latest technologies (SOA, cloud, etc.), and ensuring that they are of high quality and that they actually meet the needs of their stakeholders.

Objectives

You will develop skills in analysing requirements and designing appropriate software solutions; designing and creating complex software systems to solve real-world problems, evaluating and using advanced software engineering environments, design methods and programming languages, and evaluating and responding to recent trends in interoperability and software development.

The course focuses on advanced engineering concepts and methods, as well as design issues for the systematic development of high-quality complex software systems. These are explored using industrial strength technologies, like the C++ and Java programming languages and the UML modelling language.

The course covers significant trends in systems development, including service-oriented architecture, cloud computing, and big data. The course is delivered by acknowledged experts and draws on City's world-class research in Systems and Software Engineering, which has one of the largest groups of academics working in this area in London, covering almost all aspects - from requirements, to designing reliable systems for the nuclear industry.

Placements

Postgraduate students on a Computing and Information Systems course are offered the opportunity to complete up to six months of professional experience as part of their degree.

Our longstanding internship scheme gives students the chance to apply the knowledge and skills gained from their taught modules within a real business environment. An internship also provides students with professional development opportunities that enhance their technical skills and business knowledge.

Internships delivered by City, University of London offer an exceptional opportunity to help students stand out in the competitive IT industry job market. The structure of the course extends the period for dissertation submission to January, allowing students to work full-time for up to six months. Students will be supported by our outstanding Professional Liaison Unit (PLU) should they wish to consider undertaking this route.

Teaching and learning

Software Engineering MSc is available full-time (12 months) as well as part-time (up to 28 months).

Students successfully completing eight taught modules and the dissertation for their individual project will be awarded 180 credits and a Master's level qualification. Alternatively, students who do not complete the dissertation but have successfully completed eight taught modules will be awarded 120 credits and a postgraduate diploma. Successful completion of four taught modules (60 credits) will lead to the award of a postgraduate certificate.

Assessment

Each module is assessed through a combination of coursework and examination.

Modules

You will develop skills in analysing requirements and designing appropriate software solutions; designing and creating complex software systems to solve real-world problems, evaluating and using advanced software engineering environments, design methods and programming languages and evaluating and responding to recent trends in interoperability and software development.

The focus of the course is on advanced engineering concepts and methods, as well as design issues for the systematic development of high-quality complex software systems. These are explored using industrial strength technologies, such as the C++ and Java object-oriented programming languages and the UML modelling language.

The course covers significant trends in systems development, including service-oriented architecture, mobile and pervasive computing, cloud computing, big data, and XML-enabled interoperable services. The course is delivered by acknowledged experts and draws on City's world-class research in Systems and Software Engineering. City has one of the largest groups of academics working in the area in London, working on almost all aspects of the area - from requirements, to designing reliable systems for the nuclear industry.

Core modules - there are five core modules:
-Advanced Database Technologies (15 credits)
-Research Methods and Professional Issues (15 credits)
-Service Oriented Architectures (15 credits)
-Software Systems Design (15 credits)
-Advanced Programming: Concurrency (15 credits)

Elective modules - you will be required to take three elective modules, choosing from the following:
-Advanced Algorithms and Data Structures (15 credits)
-Big Data (15 credits)
-Programming in C++ (15 credits)
-Business Engineering with ERP Solutions (15 credits)
-Mobile and Pervasive Computing (15 credits)
-Data Visualization (15 credits)
-Cloud Computing (15 credits)

Career prospects

The MSc in Software Engineering aims to meet the significant demand for graduates with a good knowledge of computing. This demand arises from consultancies, software houses, major software users such as banks, large manufacturers, retailers, and the public services, defence, aerospace and telecommunications companies.

Typical entrants to the course have a degree in an engineering or scientific discipline, and wish to either move into the software engineering field or to the development of software for their current field. Entrants must have previous exposure to computing, especially to programming (particularly in Java or C#) and relational databases (from either academic or professional experience).

From this base, the course provides solid technical coverage of advanced software development, including such widely used languages as C++, Java, UML and XML for which demand is particularly high. The course is therefore quite demanding; its success in providing advanced academic education along these lines is evident from the fact that recent graduates of the course are currently employed in a wide spectrum of organisations.

Of course, the employment value of a master's degree is not just short term. Although on-the-job training and experience as well as technology specific skills are valuable, they can be rather narrow and difficult to validate, and to transfer. The structure of this course ensures that there is a strong balance between the development of particular skills and a solid education in the enduring principles and concepts that underlie complex software system development.

SAP Certification - in parallel to your degree you will be able to register for a SAP TERP10 Certification course at a substantial discount, thus obtaining an additional, much sought-after qualification

Read less
The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. Read more

Mission and goals

The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. She/he may take on full responsibility for designing, installing, testing and maintaining complex machines and systems. The goal of the Automation and Control Engineering programme is to provide the graduate with a strong background in fundamental scientific disciplines, such as mathematics and physics, in classical engineering fields, such as thermodynamics, mechanics, electric drives, automatic control, and in the disciplines of the information and telecommunication technology, like computer science, electronics, communication networks. Thanks to the interdisciplinary nature of her/his background, the graduate has all the necessary skills to design or manage systems resulting from the integration of highly diverse components and technologies. This flexibility both in the attitude and in the competences is a significant asset of the Automation and Control Engineer, in view of the large variety of possible applications, of the continuous and rapid evolution of the technologies, as well as of the dynamics of the job market.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Career opportunities

Automation and Control Engineering offers challenging and fulfilling careers for engineering technologists in design, research and development, and technical support, in many fields where automation and control are of paramount importance, such as: (a) industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems; (b) process industry (pulp and paper, energy production and conversion, chemical and petrochemical industry, etc.); (c) transportation systems (ground, marine and aerospace), concerning both the development of vehicles (cars, boats, helicopters, aircrafts, satellites), and the design, management and control of infrastructures; (d) transportation and distribution networks; (e) food industry; (f) electrical appliances and domotics; (g) environmental resources.

Typical companies where the automation and control engineers may operate include those producing and selling automation systems (both hardware and software); companies that use automated production plants or that manage highly complex services; engineering and consulting firms that design and project complex, economically challenging and technologically advanced plants and systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Automation_Engineering.pdf
This programme aims at providing the graduates with sound engineering skills to design, develop, implement and manage automation systems for manufacturing plants, industrial processes, mechatronic devices, distribution networks and environmental systems. Graduates have a strong background in the classical engineering fields and in the information and telecommunication technology. The interdisciplinary nature of this programme provides the graduates with all the skills to design/manage systems resulting from the integration of highly diverse technologies.
Graduates will have wide employment opportunities in many fields: industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems, process industry, transportation systems, transportation and distribution networks, food industry, electrical appliances, home automation and environmental resources.
The programme is taught in English.

Subjects

The mandatory courses are:
- Advanced and multivariable control
- Automation and control laboratory
- Computer aided manufacturing
- Dynamics of electrical machines and drives
- Dynamics of mechanical systems
- Model identification and data analysis
- Software engineering

Among the optional courses:
- Automation and control in vehicles
- Automation of energy systems
- Control of industrial robots
- Production systems control
- Safety in automation systems
- Thesis and final exam

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Information systems (IS) today are large, complex, varied in form and distributed, serving different types of people who use a variety of devices to access information. Read more
Information systems (IS) today are large, complex, varied in form and distributed, serving different types of people who use a variety of devices to access information. Specialists who recognise diverse business needs, and have a systematic approach to understanding the impact of technology on organisations, are essential to the success of any IS/IT strategy. Equal in importance to the architectures of systems and the supporting technologies, is the management and delivery of content, whether in the form of data, documents, images and sound.

Increasingly, the fundamental systems comprise digital architectures and networks which then embody and enable the distribution of digital content. Developed information systems are in reality socio-technical systems incorporating people, technologies and content. The information systems specialist becomes a more broadly based information professional as they extend their range and scope of operations towards the end users and their environments. Providing services to users and people at large and ensuring information resources deliver value is equally a part of the wider world of information systems.

Course detail

This course builds on typical undergraduate computing courses studied at level 4 and 5 or equivalent ( such as HND) by offering a level 6 entry route 'integrated' to a level 7 Masters course.

The two year combination provides a route to develop new knowledge and skills in areas critical to the introduction and success of modern information systems for enterprises. The course also provides a route for people with other backgrounds and experience to engage with the world of information systems. It helps you gain a full understanding of how information systems are designed and constructed, and of the impact of technology and its integration into an organisation. It will also give you the skills you need to work effectively in a business-consulting environment, and provide a solid basis for research.

To qualify for the award of MSc Information Systems (Integrated), candidates on the integrated pathway must study five level 6 modules consisting of 20 credits each and two 10 credits each, and six level 7 modules consisting of 20 credits and a 60 credits dissertation module.

Modules

Year One (Level 6)
• Strategies and Systems or Advanced Business Systems
• Development Methodologies
• Computer Security
• Advanced Databases
• Project Preparation
• Project
• IT Industry
Year Two (Level 7)
• Project Management
• Consultancy and Technological Innovation
• Enterprise Architecture
• Knowledge Management
• Learning and Professional Development
• Employability Skills and Employment
• HCI for Information Systems (optional)
• Mobile Applications Development ( optional)
• Data Architectures ( optional)
• UML Component Modelling(optional)
• Security Management ( optional)
• Research Methods
• Dissertation

Note: students select one option from the list offered

Format

Teaching consists of lectures, seminars and laboratory work to provide a basis for the intensive individual study you need to undertake to maximize your investment of time and potential outcomes from taking the course.

Assessment

Course assessed work is a significant part of the total assessment. There is practical work, report writing, critical academic writing and the skills and knowledge gained in these contribute to a capacity to deliver a high quality dissertation.

There are a number of end of module exams. Course tutors provide appropriate support throughout the module to ensure candidates are well prepared.

Career and study progression

The course aims to provide routes into a number of careers:
- information officers
- librarians, information service staff
- content and intelligence gatherers
- analysts
- researchers
- editors
- searchers and intermediaries
- advice and assistance workers
- data managers
- management information systems staff
- multimedia content workers
- mapping specialists and cartographers
- marketing research
- public relations and communication staff.

Outstanding graduates have gone on to further study at the level of MPhil and PhD at UWL and at other institutions. We actively encourage students with potential for research to make their interest known early on in their course.

How to apply

Click the following link for information on how to apply to this course: http://www.uwl.ac.uk/students/postgraduate/how-apply

Scholarships and bursaries

Information about scholarships and bursaries can be found here: http://www.uwl.ac.uk/students/postgraduate/scholarships-and-bursaries

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X